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Abstract—Computer simulation, as a third way in science
alongside the theoretical and experimental approaches, offers
a range of methods to study and predict the properties of
various physical and chemical processes. Among them, molecular
dynamics simulation uses classical mechanics and often runs on
supercomputers to help the scientists understand the behavior
of large molecules and molecular systems, including proteins,
membranes, and nucleic acids.

The increasing complexity of molecular dynamics simulations
studying biologically relevant systems leads to big demands on
computation resources and time. Therefore, a significant portion
of present research is focused on the development of simulation
methods and their implementations in heterogeneous, parallel,
and distributed environments with the goal of with the goal of
reducing the time to solution.

The prevailing method for calculating computationally expensive
long-range interactions on the last generation of supercomputers
was particle mesh Ewald. It is presently being substituted for
the fast multipole method to support the new highly parallel
exascale supercomputers featured in the first few sports of the
TOP500 list. The present implementation of the aforementioned
method has the disadvantage of allowing only cubic simulation
boxes; our future work includes extending the method and its
implementation with support for non-cubic simulation boxes,
focusing primarily on the practically relevant ones.

The evolution of networking devices resulted in smart network
interface cards, also known as data processing units, including
both data transfer and compute capabilites. In the era of
increasing data volume, data processing units are becoming
more and more prominent in data centers and can be expected
in future supercomputers in some capacity. While the present
implemenation of parallel algorithms used in the molecular
dynamics simulation supports the execution on various hetero-
geneous systems, this support does not include the systems with
data processing units. Our future work includes extending the
parallelization of simulation methods to support the execution on
data processing units.

Molecular dynamics simulation capabilities are already expanding
with the first batch of exascale supercomputers in operation. Such
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supercomputers are able to rapidly produce and analyze huge
amounts of data, and they will certainly have a profound impact
in this as well as the next decade. Our planned contributions
will help make the molecular dynamics simulation methods both
faster and more efficient.

Index Terms—molecular dynamics simulation, exascale supercom-
puters, parallelization techniques, heterogeneous computing, data
processing units,

INTRODUCTION AND MOTIVATION

In the recent decades, computer simulations have become an
indispensable tool for the study and prediction of physical
and chemical processes. The phenomena that can be studied
in this way range from the smallest length scales, such as
quantum mechanics of matter at nanoscale, to the dynamics
of the universe at extragalactic distances. Similarly, the time
scales on which the observed phenomena take place range from
femtoseconds to several billion years, and the masses range
from 10−27 kilograms for individual atoms to 1040 kilograms
for entire galaxies.

The wide range of phenomena described shows that experiments
cannot always be carried out in the desired way. In astrophysics,
for example, the models that describe nature well enough are
often so complicated that no analytical solution can be found.
For example, if we take the motion of the planets and the
gravitational force acting between the planets according to
Newton’s law, there are generally no analytical solutions for
the case of three or more bodies. This is also true for our
planetary system as well as for the stars in our galaxy.

Furthermore, expensive experimental setups can be avoided by
using simulations. Specifically, we can observe phenomena that
would be difficult or impossible to measure, or experiments
would take too long or proceed too quickly to be visible.
Chemical reactions, for example, can proceed at different rates.
Some occur so quickly, almost instantaneously, that it is difficult
to follow them, while others can drag on for months or even
years.



These are just some of the reasons why computer simulation
has recently emerged as a third approach in science, alongside
the experimental and theoretical approaches. In this way,
simulation enables the study of phenomena that were previously
inaccessible to experiment.

In most cases, the complexity of the model leads to enor-
mous demands on memory and computer time. However, the
rapid development of computer technology overcomes these
difficulties and allows us today to perform more and more
realistic simulations. Therefore, the current research is mainly
focused on the development of methods and related algorithms
that allow the quickest possible calculation of the problems
(multilevel and multiscale methods, multipole methods, particle
mesh Ewald, fast Fourier transform, sparse linear algebra, etc.)
and that can approximate the solution with as little memory
as possible.

Parallel programming on heterogeneous systems has also
attracted much attention in the last 15 years. In parallel
computers, several dozen to many thousands of powerful
processors are combined into a single computer system that
can compute simultaneously and independently with mutual
communication to perform operations in a reasonable amount
of time. However, the heterogeneity of the system leads to
difficulties in communication and load balancing between
central processing unit (CPU) and graphics processing unit
(GPU), which, given a myriad of possible combinations of
CPUs and GPUs, remains a hot research topic even today.

Recent advances in algorithms, software, and hardware have
enabled supercomputers to break the 1 exaFLOP threshold,
starting the era of exascale supercomputing. Just this year, the
most powerful supercomputer ever, Frontier, was launched,
which is also the first true exascale supercomputer [1]. There
is no doubt that Frontier is ushering in a new milestone in
high-performance computing to solve challenges in a wide
range of scientific fields and improve our understanding of the
world and our lives.

In this paper, we review the state of the art molecular dynamics
simulation parallelization techniques. We survey the latest
technologies, ideas, and features discussed, developed, and
used in molecular dynamics during the last decade. We also
present a proposal to improve the fast multipole method for
computing long-range interactions on today’s supercomputers
and a proposal to develop a new library expossing the message
passing interface to perform the expensive computations on
data processing units. Our main motivation is to find the best
way to execute molecular dynamics algorithms on exascale
supercomputers.

This paper is organized as follows. We first present the main
topics related to molecular dynamics simulation. We follow
with an overview of the latest technologies, ideas, features,
software packages, and supercomputers that enable these
simulations. Finally, we conclude the paper with an outlook
on our planned future work.

THE FUNDAMENTALS OF MOLECULAR DYNAMICS
SIMULATION

Molecular dynamics (MD) simulation is a computer simulation
method that allows the analysis of the motion of atoms and
molecules whose mutual interactions obey the known laws of
classical physics. Molecular systems generally consist of a large
number of particles, so it is impossible to analytically determine
the properties of such complex systems. MD overcomes this
problem by numerically solving Newton’s equations of motion
for a group of atoms. The method is used mainly in biophysics,
chemical physics, and materials science. Since it establishes a
connection between experiment and theory, we can consider it
as a virtual experiment.

For molecular dynamics simulations to be possible, it must be
possible to estimate the potential energy of particles and the
forces between them very quickly. To describe the interactions
between and within atoms, the interactions in molecular
dynamics are approximated by a simple empirical potential
energy function called the force fields. The force field (FF)
describes the dependence of the energy of the system on the
positions of its particles. It consists of the potential energy and
the associated. The force field replaces the real potential with
a simplified model. Ideally, it should be simple enough to be
evaluated quickly, yet detailed enough to show the properties of
interest [2]. The general form of the force field can be written
as follows:

𝑈 = 𝑈𝑏𝑜𝑛𝑑 + 𝑈𝑎𝑛𝑔𝑙𝑒 + 𝑈𝑡𝑜𝑟𝑠 + 𝑈𝐿𝐽 + 𝑈𝐶
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Parameters 𝑘𝑏,𝑖, 𝑘𝑎,𝑖, 𝑘𝑡,𝑖 etc. are taken to represent experimen-
tal data or quantum mechanical calculations.

Bonded interactions

The first two expressions in eq. 1 represent bond stretching
(𝑈𝑏𝑜𝑛𝑑) and angle bending (𝑈𝑎𝑛𝑔𝑙𝑒). Both are described by a
simple harmonic potential, which is a good approximation only
for small deviations from the equilibrium position. For a more
exact description of the molecular movements, anharmonic
energy expressions of higher order are necessary. The bond
potential is used to model the interaction of covalently bonded
atoms in a molecule. It is a pretty poor approximation at
extreme stretching, but the bonds are stiff enough to work at
moderate temperatures. The Morse potential is more accurate,
but more expensive to calculate. The angle potential describes
the bond bending energy and is defined for each triplet of



bonded atoms [3]. The third term (𝑈𝑡𝑜𝑟𝑠) is often called the
torsion term and represents the potential energy of the molecular
system that describes the coupling between adjacent bonds,
angles and dihedrals. The torsion energy is defined for all 4
successively bonded atoms. The presented expressions belong
to the group of the so-called bonding interactions and describe
the interactions between several neighboring atoms within the
molecule.

Non-bonded interactions

Non-bonded potentials are non-electrostatic and electrostatic
interactions between all pairs of atoms. The nonelectrostatic
potential energy is most commonly described by the Lennard-
Jones potential (𝑈𝐿𝐽 ), which approximates the potential energy
of the interaction between a pair of nonbonded atoms or
molecules. The term 𝑟−12 approximates the strong Pauli
repulsion arising from the overlap of electronic orbitals, while
the term 𝑟−6 describes the weaker attractive forces acting
between local, dynamically induced dipoles in valence orbitals.
The electrostatic potential is described by Coulomb’s law (𝑈𝐶 ),
where point charges are associated with the positions of atomic
nuclei. Interactions can be classified as short-range and long-
range interactions. In a short-range interaction, the potential
decreases faster than 𝑟−𝑑, where 𝑟 is the distance between
the particles and 𝑑 is the dimension. Otherwise, it is a long-
range interaction. Accordingly, Lennard-Jones interactions are
short-range, while Coulomb interactions are long-range [3].

Potential energy

After determining the potential and taking into account the
fact that we are dealing with conservative forces (the work
done during the motion of the particle does not depend on
the path), we can calculate the gradient of potential energy,
i.e. the force. By determining the forces acting on individual
atoms or molecules, the new positions and velocities of the
particles are obtained by numerical integration methods of
Newton’s equations of motion. One of the simplest algorithms
for calculating the orbit of an atom is Euler’s algorithm.
The Euler’s algorithm uses a second-order Taylor expansion
to estimate position and velocity for the next time step.
Euler’s algorithm is not time reversible and is therefore
computationally demanding. Nevertheless, Euler’s scheme can
be used to integrate some other equations of motion. For
example, GROMACS molecular dynamics simulation software
[4] provides an Euler integrator for Brownian or positional
Langevin dynamics. Another algorithm for simulating the
evolution of the system over time is the Verlet algorithm. The
algorithm uses current positions and forces as well as previous
positions to calculate the position at the next time step. This is
inconvenient when performing simulations when only current
positions are available. Although velocities are not required
for calculating trajectories, they can be useful for calculating
other quantities, such as kinetic energy. The most commonly
used algorithm in MD simulations due to its simplicity and
stability is the Velocity Verlet algorithm. The Velocity Verlet
algorithm is an improved version of the Euler algorithm with

acceleration estimates at the next time step. Unlike the basic
Verlet algorithm, this algorithm explicitly considers velocity,
eliminating the first time step problem. The Verlet algorithm
is time reversible and saves energy. The Leap Frog algorithm
is a variant of the Velocity Verlet. Both integrators provide
equivalent trajectories, but the difference is that velocities are
not computed simultaneously with positions. Leap integration
corresponds to updating positions and velocities at nested
time points arranged to “leapfrog” each other [3]. The initial
configuration of the system is usually a known structure
obtained from a database or experiment, and the initial
velocities are randomly assigned to each atom or molecule
according to the Maxwell-Boltzmann distribution at a given
temperature.

Simulation duration

The complexity of the simulated system is determined by the
available computer capacity. System size (number of particles),
the time step, and the total duration of the simulation should
be chosen so that the calculation is completed in a reasonable
amount of time. However, the simulation should be long
enough to faithfully represent the natural process that we
are studying. The size of the integration time step is one
of the more important factors affecting the total simulation
duration. It is the time interval between possible measurements.
To avoid instability of the simulation, one should use a time
step shorter than the fastest motions in the molecule, such
as atomic oscillations, which are usually on the order of
a few femtoseconds (10−15𝑠). This value can be increased
by replacing the binding oscillations with holonomic (time
invariant) constraints.

Constraints

Instead of explicitly integrating the fast degrees of freedom,
the bond lengths are fixed at ideal values. By eliminating some
fast degrees of freedom in this way, larger time steps can be
used. This is usually achieved by a constraining force acting
in the opposite direction along the bond. In this case, this has
no effect on the total energy of the simulation system, since
the total work of the constraining forces is zero. From the
point of view of statistical mechanics, the constrained system
is not equivalent to the system we started with. However,
the bond displacements are usually small and constrained to
a single equilibrium value by the harmonic potentials, and
the constraints have little effect on the average geometries.
Moreover, the force field can be parameterized to restore the
flexibility lost due to the added stiffness of the system [5], [6].

Several algorithms have been developed specifically for small
or large molecules. A widely used iterative algorithm for large
molecules is SHAKE. The algorithm uses distance and angle
constraints that sequentially reset all constrained distances and
angles to the configured values until the desired tolerance
is reached. However, SHAKE has the disadvantage that no
solutions can be found if the shifts are large, and its iterative
nature makes it difficult to parallelize. For small molecules,
SETTLE is a faster algorithm. SETTLE solves this problem



analytically, but for larger molecules this is too complicated.
Therefore, there is a need for a faster and more reliable
algorithm. An alternative is the LINear Constraint Solver
(LINCS) algorithm, which uses a power series expansion to
determine how to move the atoms so that all constraints are
satisfied. Alogitam has better convergence properties and is
more stable than SHAKE, but is not suitable for constraining
bonds and angles. There are other ways to increase simulation
speed. For example, long-range electrostatic interactions can be
computed less frequently than short-range interactions. Also, an
intermediate time step can be used for short range non-bound
interactions, with only bound interactions being calculated in
each time step [3], [7].

Simulation software

The enormous potential for applications has led to the imple-
mentation of molecular dynamics in many commercial and
research software packages. In this section, we provide a brief
overview of the leading software packages for performing
molecular dynamics simulations [8].

∙ Amber is a proprietary suite of biomolecular simulation
programs that is available under an academic license [9].

∙ CHARMM is a molecular simulation program for many-
particle systems that is freely available to academic and
non-profit users [10]. It Includes support for QM/MM,
MM/CG and a number of implicit solvent models.

∙ DL_POLY is a general purpose classical molecular dy-
namics simulation software [11]. It is free for academic
scientists pursuing scientific research of a non-commercial
nature.

∙ EGO is a parallel program for molecular dynamics
simulations of biomolecules [12]. It is is freely available.

∙ GROMACS is a software package for high-performance
molecular dynamics and output analysis [4]. It is a free
and open-source software released under the GNU Lesser
General Public License.

∙ GROMOS is a software package for dynamic modeling
of (bio)molecules [13]. It is released under a proprietary
license.

∙ HOOMD-blue is a general-purpose particle simulation
toolkit that implements molecular dynamics and hard
particle Monte Carlo [14]. It is available under a non-
copyleft open-source license.

∙ The ITAP Molecular Dynamics (IMD) program is a soft-
ware package for classical molecular dynamics simulations
[15]. It is a free and open-source software available under
GNU General Public License.

∙ LAMMPS is a classical molecular dynamics simulation
code with a focus on material modeling [16]. It is a free
and open-source software available under GNU General
Public License.

∙ Moldy is a short-range molecular dynamics package [17].
It is a free and open-source software available under GNU
General Public License.

∙ MOSCITO is a software for molecular dynamics simu-
lation specialized for gas and condensed phases [18]. It
is a free and open-source software available under GNU
General Public License.

∙ NAMD is a software for molecular dynamics simulation
[19]. It is a proprietary software tha is free for noncom-
mercial use.

∙ OpenMM is a high-performance toolkit for molecular
simulation [20]. It is a free and open-source software
available under MIT and GNU General Public Licenses.

∙ ORAC isa n OpenMP/MPI molecular dynamics engine
to simulate solvated biomolecules [21]. It is a free and
open-source software available under GNU General Public
License.

∙ Tinker is a suite of software applications for molecular
dynamics simulation [22]. It is proprietary freeware.

We chose to focus on GROMACS since it is the most popular
actively developed open-source software. It also offers very
good performance while being extensible.

ALGORITHM COMPLEXITY AND PARALLELIZATION

The computational cost of bound interactions 𝑂(𝑁), 𝑁 being
the number or particles, represents only a small fraction of
the total simulation time. However, the most computationally
intensive task is the calculation of the unbound van der Waals
interactions and the electrostatic interactions. In this step, the
interactions for each of the 𝑁 particles in the simulation are
calculated relative to all other (𝑁 − 1) particles. This leads
to 𝑂(𝑁2) complexity. It is common to divide the non-bonded
interactions between atoms into short and long distances. This
is achieved by setting a limiting distance above which only
long distance interactions between two atoms are assumed. In
this way, different specialized algorithms can be used to handle
each case separately, improving the overall efficiency of the
simulation. Effective methods for excluding pairs of atoms
separated by a large distance are neighbor searching methods.
Particle neighbors can be determined in two ways. First, by
dividing the simulation system into grid cells (cell list), as
shown in fig. 1 Second, by generating a list of neighbors for
each particle (Verlet list), as shown in fig. 2.

The cell list method divides the simulation domain into 𝑛 cells
with edge length greater than or equal to the cutoff radius of
the interaction to be calculated. The interaction potential for
each particle is then calculated as the sum of the pairwise
interactions between the particle and all other particles in
the same cell and all other particles in neighboring cells. A
Verlet list stores all particles within the bounding distance of
each particle plus an additional buffer distance. Although all
pairwise distances must be evaluated to create the Verlet list, it
can be used for several consecutive time steps until a particle
has moved more than half the buffer. At that point, the list is
invalid and a new list must be created. Verlet provides a more
efficient calculation of pairwise interactions at the cost of a
relatively large memory requirement, which can be a limiting
factor. This method can also be easily modified for Monte



Figure 1: Cell lists (image source: [3])

Figure 2: Verlet lists (image source: [3])

Carlo simulations. In practice, almost all simulations can run
in parallel and use a combination of spatial decomposition and
Verlet lists [3], [8].

Electrostatic interactions occurring over long distances decrease
slowly, and increasing the limiting distance to account for
interactions over long distances can dramatically increase
computational costs. In periodic simulation systems, the most
commonly used method for calculating electrostatic interactions
over long distances is particle mesh Ewald method. In this
method, the electrostatic interaction is divided into two parts:
a short-range contribution and a long-range contribution. The
short-range contribution is calculated in real space, while the
long-range contribution is calculated outside the boundary
radius using the Fourier transform. The advantage of this
method is the fast convergence of energy. The method requires
charge neutrality of the molecular system to accurately calculate
the total Coulomb interaction. Variations of the above method
are particle-particle-particle-mesh (P3M) and particle mesh
Ewald (PME) with 𝑂(𝑁 log𝑁) complexity [23], [24]. Better
scaling of the PME method can be achieved using the eight
shell domain decomposition method [25] or the smooth particle
mesh Ewald (SPME) method [26], [27]. The current generation
of computers takes advantage of parallelism over a large number
of central processors and accelerators to speed up the processes.
However, on such computers, PME becomes a limiting scaling
factor. An alternative is the fast multipole method (FMM) with
𝑂(𝑁) complexity [28].

The growing interest in the complexity of biological interactions
is leading to an ever-increasing need for computer simulations
that require not only powerful and advanced hardware, but also
adaptable software that can accommodate large numbers of
atoms interacting through complex force fields. Because of the
way molecular dynamics simulations are structured, there is
much scope for parallelizing algorithms to to take advantage of
multicore processors that can speed up calculations by several
orders of magnitude. In parallel calculations of molecular
dynamics simulations, processors are used in parallel to
calculate forces and update coordinates. MD simulation time
steps are inherently sequential: the most recent coordinates
are needed to accurately compute the forces, and coordinates
can only be updated when the most recent forces have been
computed. While the calculation of forces and the updating
of coordinates occur in parallel, the processors must exchange
forces and coordinates between these two calculations [29].

Multilevel heterogeneous parallelization extends parallelization
to treat each level of hardware parallelism separately to enable
the fastest possible computation of parts of a individual
simulation step. At the lowest level, parallel computer systems
are categorized according to whether the data stream and/or
the instruction stream are processed in parallel. In this way,
the basic types SISD (Single Instruction/Single Data Stream –
the classic microprocessor), SIMD (Single Instruction/Multiple
Data Stream – the graphics processing unit) and MIMD (Mul-
tiple Instruction/Multiple Data Stream) can be distinguished.



SIMD CPU units provide fine-grained parallel execution of
data, as shown in fig. 3. However, the common parallelization
scheme for molecular simulation and most other codes today is
Single-Program, Multiple-Data (SPMD), where all processors
execute the same code but with different data. This is an
obvious solution for decomposing a system with hundreds of
thousands of similar particles. However, for the implementation
of parallel algorithms, such as the PME algorithm, this approach
had some drawbacks. The remedy is to support parallelization
with Multiple-Program, Multiple-Data (MPMD) [4], [25].

Figure 3: Multilevel heterogeneous parallelization (image
source: [30])

The next level of parallelization involves the use of GPU
accelerators. Accelerator tasks are executed asynchronously
using CUDA, OpenCL, and SYCL APIs that schedule GPU
tasks and CPU-GPU data movement to ensure concurrent task
execution. This design aims to maximize CPU-GPU execution
overlap, reduce the number of transfers by moving data early,
keep data on the accelerator as long as possible, ensure that
transfers overlap with computations, and optimize critical path
task scheduling to reduce time per step [31]. Modern GPUs
use a SIMD-like execution called Single Instruction, Multiple
Threads (SIMT). This means that each of these processors
can execute hundreds of threads simultaneously, providing an
additional layer of parallelization. SIMT allows the GPU to
split a single task into a large number of identical tasks that
execute independently on each thread on the same or different
cores. At the same time, the threads can communicate with
each other and, if necessary, cooperate in executing part of
the computation. The execution on the CPU is additionally
parallelized using multithreading via OpenMP [32].

This heterogeneous parallelization model introduces additional
complexity, which comes at a price. Different parts of the
program running concurrently must communicate with each
other at some point. If the program is divided into a large
enough number of parallel parts and these parts must constantly
communicate with each other, the time spent on communication
can easily negate any performance gain or even increase the
overall runtime. Therefore, slow CPU-GPU transfers are more
difficult to solve with overlays because computations are faster
than data movements. For this reason, recent efforts have
focused on increasingly eliminating CPU-GPU data movement
and shifting more work to powerful accelerators [31].

Finally, since most interactions in molecular simulations are
local, high-level domain decomposition (DD) is a natural

way to decompose a system. Domain decomposition assigns
a spatial domain to each rank, which then integrates the
equations of motion for the particles that are currently in
their local domain. GROMACS currently uses the eight-shell
domain decomposition [25], but for certain systems or hardware
architectures it may be useful to use the midpoint method
[4] DD was also originally used for intra-node parallelism
using MPI. Since the DD algorithm ensures data locality, it
is surprisingly well suited for NUMA architectures. However,
this comes with challenges related to exposing finer parallelism
between cores and limits the ability to use efficient data sharing
with shared caches [31].

Exploiting low-level parallelism can be tedious and is often
avoided in favor of using more hardware to achieve the desired
time to resolution. However, the evolution of hardware makes
this trade-off increasingly difficult. The end of frequency scal-
ing of microprocessors and the resulting increase in hardware
parallelism means that exploiting all levels of parallelism is a
necessity for getting good performance on modern hardware,
not an option [31].

Use of general-purpose and specialized hardware

Advances in algorithms, software and hardware have enabled
very fast computer simulations that can simulate millions of
atoms in a reasonable amount of time. Today’s dominant
method for calculating computationally demanding long-range
electrostatic interactions is the Particle Mesh Ewald (PME). The
PME method is suitable for parallelization at the scale of last
generation supercomputers and allows very fast computation
of the mentioned interactions on them. However, for large
parallel simulations with multiple nodes, PME becomes a
limiting scaling factor as it requires communication between
all nodes. As a result, the number of messages exchanged
increases quadratically with the number of nodes involved. To
enable efficient and scalable molecular simulations on exascale
supercomputers, a method with better scaling properties is
needed. The Fast Multipole Method (FMM) is such a method
and there is a proposal for its implementation for MD
simulations [28], [30], [33].

The increasing complexity and demands of molecular dynamics
simulations require sufficient hardware to perform them. The
idea of multicore processors allows a high degree of paral-
lelization of computations, which is very suitable for efficient,
balanced and scalable molecular simulation. The parallelism
just mentioned in combination with graphics processing units
(GPUs) has attracted much attention in the last 15 years. To take
advantage of multi-core processors and speed up calculations
by several orders of magnitude, there are many efficient
implementation strategies and algorithms available today [32],
[34], [35]. Although heterogeneous CPU-GPU acceleration is
powerful enough to perform all operations in a reasonable time,
the bottleneck of molecular dynamics development is slowly
shifting from hardware to communication and load balancing
between processors. This is still a hot research topic today,



considering the large number of possible combinations of CPU
and GPU [31], [36].

In the era of growing data volumes that computer scientists deal
with, network interface cards (NICs) that connect a computer
to a computer network can be additionally used to process the
data they transmit. Therefore, the NIC offers the possibility of
reducing the load on the main processor, so that the functions
of processing the received or sent network traffic, which
were traditionally performed by the main processor, are now
performed by the NIC itself, called SmartNIC (smart network
interface card). As data processing has expanded beyond servers
and personal computers to large, centralized data centers, whose
network speeds continue to increase, currently reaching 400
GB per second, a third level of offloading is required. These
demands for big data have led to the development of data
processing units, or DPUs for short.

DPUs with their three primary functions, which are processing,
networking, and acceleration, have become the third main pillar
of computing along with CPUs and GPUs, and the speed with
which data is processed becomes incomparable. The next step
in accelerating molecular dynamics could be the conversion of
existing tools for molecular dynamics simulations into tools
that perform some of the computations on DPUs. This could
make molecular dynamics acceleration, which has been limited
to a few supercomputers, available to a wide range of high-
performance computers [37].

Even with the use of state-of-the-art algorithms and efficient
parallel implementations, the cost of estimating the forces
between all particles of large systems (106 atoms) presents a
new challenge for high-performance computing. Exceptions
are supercomputers for special purposes. Examples of such
supercomputers are Anton and MDGRAPE, massive parallel
supercomputers for molecular dynamics simulations [38]–[42].

Molecular simulation capabilities are expanding with the
advent of exascale supercomputers. With a trillion (1018)
calculations per second, exascale supercomputers like Frontier
will be able to rapidly analyze massive amounts of data
and make simulations more realistic [1]. However, scalability,
high communication cost, data distribution, heterogeneity,
power management, etc. are still current issues of exascale
supercomputers and present many challenges to developers
[43].

CONCLUSION AND FUTURE WORK

In surveying the developments in molecular dynamics simula-
tion over the last decade, we found that the fast multipole
method has been developed for the very important and
computationally intensive calculation of long-range electrostatic
interactions. The mentioned method replaces the prevailing
particle mesh Ewald method adapted for parallelization of
last generation supercomputers. With the increase in number
of nodes one exascale supercomputers, the FMM method is
expected to outperform PME. However, an existing limitation
of this implementation method is the ability to use only cubic

simulation boxes. The possibility of introducing other types of
simulation boxes would allow the amount of water simulated
around the biomolecular system to be reduced, which in turn
would improve simulation performance.

Our future work on this topic would include support for other
types of simulation boxes, eventually enabling the use of boxes
such as the rhombic dodecahedron. The advantage of such
“truncated” cubes is that the amount of water to be simulated
is reduced, thus improving the simulation performance. As a
first step towards implementing a general non-cubic box, we
consider the possibility of simulating cuboidal simulation boxes
by irregularly subdividing the boxes into sub-boxes. In the case
of regular subdivision, the box is divided into eight sub-boxes
at each step. The system can be generalized to divide into 6
or 4 sub-boxes if this corresponds to the simulated system.
This would make it possible to go from a cube, which is very
different from a cube, to cuboid-shaped sub-boxes, which are
a good approximation of cubes, in a few steps.

The demands of data-centric computing have led to the
development of data processing units. Although they are
increasingly used in data centers and supercomputers, they are
still unknown to the general public. The open problems that
remain with the introduction of DPUs in computer architecture
are how to adapt existing tools to DPUs. Another step toward
accelerating molecular dynamics could be to perform some of
the computations of existing molecular dynamics simulation
tools on DPUs.

To enable the transfer of molecular dynamics to DPUs, we
are interested in further work on the development of a new
Message Passing Interface (MPI) library that would enable
the conversion of existing MD simulation tools into tools that
perform some of the computation on DPUs. The motivation for
this development is to make molecular dynamics acceleration,
previously limited to the Anton 2 supercomputer, available to
a wide range of high performance computers.

The desire to understand complex biological phenomena at
the molecular level has greatly stimulated the development
of molecular dynamics. Molecular dynamics simulations are
progressing rapidly thanks to improvements in methodology,
algorithms, and increasing computer power. Today, we can
study complex systems involving millions of atoms, solve
problems in many scientific fields, and there is hope for
better understanding and discovery of new drugs for many
deadly diseases such as viral infections, autoimmunity, and
even cancer.

The potential capabilities of molecular simulation are expanding
with the advent of exascale supercomputers. However, soft-
ware scalability, high communication cost, data distribution,
heterogeneity, power management, and many other challenges
remain unsolved in molecular dynamics simulation as well as
other fields of scientific computing.



REFERENCES

[1] D. Schneider, “The Exascale Era is Upon Us: The
Frontier supercomputer may be the first to reach
1,000,000,000,000,000,000 operations per second,”
IEEE Spectrum, vol. 59, no. 1, pp. 34–35, Jan. 2022.

[2] M. A. González, “Force fields and molecular dynamics
simulations,” École thématique de la Société Française
de la Neutronique, vol. 12, pp. 169–200, 2011.

[3] web-page, “Practical considerations for Molecular Dy-
namics.”

[4] web-page, “GROMACS.”

[5] R. Elber, A. P. Ruymgaart, and B. Hess, “SHAKE
parallelization,” The European physical journal. Special
topics, vol. 200, no. 1, pp. 211–223, Nov. 2011.

[6] R. D. Skeel and S. Reich, “Corrected potential energy
functions for constrained molecular dynamics,” The
European Physical Journal Special Topics, vol. 200, no.
1, pp. 55–72, Nov. 2011.

[7] B. Hess, H. Bekker, H. J. C. Berendsen, and J. G.
E. M. Fraaije, “LINCS: A linear constraint solver
for molecular simulations,” Journal of Computational
Chemistry, vol. 18, no. 12, pp. 1463–1472, 1997.

[8] D. Vlachakis, E. Bencurova, N. Papangelopoulos, and S.
Kossida, “Current state-of-the-art molecular dynamics
methods and applications,” Advances in Protein Chem-
istry and Structural Biology, vol. 94, pp. 269–313, 2014.

[9] web-page, “The Amber Molecular Dynamics Package.”

[10] web-page, “CHARMM: Home.”

[11] web-page, “DL_POLY.”

[12] web-page, “EGO.”

[13] web-page, “GROMOS.”

[14] web-page, “HOOMD-blue - Home.”

[15] web-page, “IMD - The ITAP Molecular Dynamics
Program.”

[16] web-page, “LAMMPS Documentation (15 Sep 2022
version) — LAMMPS documentation.”

[17] web-page, “Moldy.”

[18] web-page, “MOSCITO Homepage.”

[19] web-page, “NAMD 2.14 User’s Guide.”

[20] web-page, “OpenMM.”

[21] web-page, “ORAC (release 6) - A molecular dynamics
program to simulate solvated biomolecules.”

[22] web-page, “Tinker User’s Guide documentation.”

[23] T. Darden, D. York, and L. Pedersen, “Particle mesh
Ewald: An N log(N) method for Ewald sums in large
systems,” The Journal of Chemical Physics, vol. 98, no.
12, pp. 10089–10092, Jun. 1993.

[24] P. E. Kyziropoulos, C. K. Filelis-Papadopoulos, and G.
A. Gravvanis, “Parallel n-Body Simulation Based on
the PM and P3M Methods Using Multigrid Schemes in
conjunction with Generic Approximate Sparse Inverses,”
Mathematical Problems in Engineering, vol. 2015, p.
e450980, Apr. 2015.

[25] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl,
“GROMACS 4: Algorithms for Highly Efficient, Load-
Balanced, and Scalable Molecular Simulation,” Journal
of Chemical Theory and Computation, vol. 4, no. 3, pp.
435–447, Mar. 2008.

[26] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden,
H. Lee, and L. G. Pedersen, “A smooth particle mesh
Ewald method,” The Journal of Chemical Physics, vol.
103, no. 19, pp. 8577–8593, Nov. 1995.

[27] M. J. Abraham and J. E. Gready, “Optimization of
parameters for molecular dynamics simulation using
smooth particle-mesh Ewald in GROMACS 4.5,” Jour-
nal of Computational Chemistry, vol. 32, no. 9, pp.
2031–2040, 2011.

[28] B. Kohnke, C. Kutzner, and H. Grubmüller, “A GPU-
Accelerated Fast Multipole Method for GROMACS:
Performance and Accuracy,” Journal of Chemical The-
ory and Computation, vol. 16, no. 11, pp. 6938–6949,
Nov. 2020.
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