Marina Ivasic-Kos, Mile Pavli¢, Patrizia Posti¢

._:-._-

Faculty of Philosophy, Rijeka

Department of Computer Science
marinai@perri. hr

mile.paviic@ris. hr
patrizia@perri.fir

ISS 2004, Varazdin

== i

-
| ied Modeling Language; (UML) s a graphical language for
Zlfle); specn‘ymg, constiticting), and documenting the artifacts
50 fE/r SERERSIVEISYSIEMB

IENIMIBGEfines numerous diagrams and their meanings, but not
SeiLwae developement procedures, sequence of using diagrams,
beSieillocation or similar.

f

. »_ &ML is'a modeling language, not a method or methodology.
This paper analyses UML v.1.5 diagrams and proposes most

appropriate ones for IS modelling, observing use-case driven,
iterative and incremental development.

A proposal for IS development life cycle by using UML, (possible

proposal for methodic) will be presented. ;

N

—
i

—

IENIMIE defines the following) diagrams

® viayw gflliElefe use case diagram
Siicl| .faI VIEW class, object diagram
Shavioral view behavior diagrams:

—

= statechart diagram
= activity diagram

e
—-'-"1‘_'5"
— -

—
-

““interactional view interaction diagrams:
seguence diagram
collaboration diagram
Implementational view implementation diagrams:

component diagram
deployment diagram

y |
== o
e
,_——-

 (Static

=

® Sie|tlc ST r~ of trlj2 |1D:Longint

rnoclel

(QJ’J"F]FIG U EXIST,
trieir in) [- Structure,
2lricl cnsw clationships)

o clzigge agram SHNOWS
Eclé’ss'é‘s and their
‘relationships, while
object-diagram shows
their specific instances
(possible snapshot of a

system state)

-surname : String
-name : String
-adress : String
-age : Integer

Mauro:Person

-ID : Longint = 2011969005
-surname : String = "Kos"

-name : String = "Mauro"

-adress : String = "Put za forticu 8"
-age : Integer = 31

-CarlD : String
-Mfg : String
-Model : String
-MfgYear : Integer

+GetCarlD()
+Create()
+Delete()

Mauro's Bussines Car:Car

-CarlD : String = "Rl 757 MM"
-Mfg : String = "Audi"

-Model : String = "A4"
-MfgYear : Integer = 2000

Mauro's FamilyCar:Car

-CarlD : String = "RI 001 IK"
-Mfg : String = "Ranault"
-Model : String = "Senic 4x4"
-MfgYear : Integer = 2001

defines requirements and describes functionality of a system

explains how actor can use the system

described from the actor's point of view (system behavior experienced
by user)

5

shows explicit sequential exchange of message among objects through
a flow' or function (vertikal time lines)
better for real-time specifications of communication among objects and
for complex scenarios
exists in: - general form (describing all possible sequences)
- form of instance (sequence according to the general formy

AR

/ Manager: Person / Employee : Person

Presents interactions among participants playing different roles and
their relationships that are meaningful for a given set of goals
better for understanding the effect at given instance or for procedure
design
two levels of abstraction:
- specialized level (describing classifier or association role, message)
- instance level (describing object, common relationships, stimuli)

Dialing

entry/start dial tone
exit/stop dial tone

-- -
-

,—_‘ Shows behavior of model elements capable of dynamic behavior

—-

— describes possible sequences of states and actions through which
eIement can proceed during its lifetime while reacting to received event
Instances (signals, operation invocations)

The statechart diagram is quite opposite to class description because it
presents all possible states that a class object can assume and events it
causes as state changes.

Customer

Request
service

== Take and
fill order

/

Ord
[fiIIed]

collected

a special case of the statechart diagram (all states are actions/ activities
and transitions are triggered by completion of actions/activities in the original
states)

used to describe activities performed within an operation (where most
of the events represent the completion of internally-generated actions)

presents specifications of messages being sent or received within
activities and objects representing either action input or output

-
-

. 'graph of components (software components including source code, binary
code and exe files) connected by dependency relationships

only in a type form (for instances deployement diagram is used)

shows physical structure of code in terms of code components (some
exist in compilation time, other in link time, run time or in several times)

may present interface and calling dependencies among components (for
classifier that have operations and interface)

DBServer:MSSQL
«database»
customerDB
«databasey
. productDB

4

ClientPC:PC]

1 -Customer
] Service

graph of nodes (physical object that represents a processing resource
having @ memory and processing capability; devices, human resources
mechanical processing) connected by communication associations

shows the configuration of process element in real time, program
components representing software code units in real time and object

that reside on them 11

"‘:."g_

— o _F f
enberg: «Modeling with UML is similar to sitting down to an huge
)od, the thought that you can't p055|bly eat everything on the plate

A similar phenomenon can occur with UML modeling. The thought of
roduce a complete set of sequence, collaboration, state, deployment, use
lass diagrams that comprehensively covers each and every use case of the

th a fully detailed dynamic model can intimidate a team right out of object-
I analysis and design. «

“Not all dlagrams have to be used in solving a particular problem (only
hg_se that facilitate communication, contibute to a better problem
— understanding and simplify development)

-f

To build @ model of an IS, it is necessary to identify an appropriate set

of objects and assign them adequate system behavior (the most
appropriate are use-case, class and interaction diagrams)

Other diagrams may be used as well (component diagrams for
distributed applications, object diagrams for complex class diagrams) 1,

—

L
S

—_— -

' Activity
Diagram
Use-case | | Class —— -

ke Diagram
- Sequence
- Diagram

Diagram Diagram

= Diagram
Deployment
The UML authors recommend use case-driven, iterative, and
incremental approach

Diagrams are interconnected due to the iterative nature of OO
modeling and incremental approach

—_—
ase diagram defines requirements and context of the system at._.
evel of abstraction (system functionality)

ayels of abstraction can be shown on interaction diagrams that
pehavior distribution among classes (Sequence diagram shows
articular use case, while collaboration diagram presents logics
‘of several use cases with asynchronous messages exchanged
bjects)

CW :f rawing sequence diagrams, operations and new objects are
Sidentified, thus while drawing up the dynamic model, the system static

“striicture is built

p—

-

The static structure of the system is presented on class diagram (At
analyses, only objects and operations necessary for understanding the system
can be defined, while at design should be defined all of them in details)

The completeness and integrity of the system static structure is provided
through the use case and sequence diagrams
14

S

< User rgquirements Analysis Design Code
Statechart
Diagram
Deployment Activity
Diagram Diagram

In reviewing IS development phases and diagrams predominantly used at
particular phase, a serial usage of diagrams can be considered.

Use-case Component Class
Diagram Diagram Diagram

T

e —

. Sequence Collaboration
e Diagram Diagram

Although the iterative approach is promoted, the fact remains that it is
first necessary to draw up a strategic study, to identify and analyze
requirements and then design software and produce code 2

ic study Use-case diagram f
Other strategic planning methods
g requirements Use-case diagram
' Textual description -

Use-case diagram — detailed operations
Sequence diagram

Class diagram

Components diagram

Class diagram; Object diagram

Use-case diagram — detailed operations
Sequence diagram; Collaboration diagram
Components diagram; Deployment diagram

Prototyping and State diagram

softver production Activity diagram
Implementation using CASE tools (Rose, ...)

and programming in OOPL (Java, C++, ...)

Implementation Entering database initial states; Users training;
and application Testing; Writing help; Optimization;
Final testing — delivery; Application of software pro%uct

Way of using UML diag
development life cy

als N

em is best approached through a small set of nearly”™
ant views of a model.

omg X ary to define sets of diagrams to

he context of particular problem domain. Strict set boundaries
t L be defined because, if necessary, other diagrams and techniques,
ither within or outside the UML, may be used.

. 4,.1 dlagrams may not necessarily be implemented in development of
ne IS. Implementatlon primarily depends on complexity and size of a system,

5.-:' pﬂﬁed CASE tool, programing language, OO database and other conditions.

_—'—' -

Use case, sequence and class diagrams are most appropriated for IS
modeling. This set may be expanded with object, components and
collaboration diagrams.

According to the IS development life cycle phases, a way of using UML
diagrams is proposed (possible proposal for methodic). Further research
would define the sequence of diagram usage more precisely. e

