
Implementation of UML Implementation of UML
diagrams in IS designdiagrams in IS design

MMarinaarina IvaIvaššiićć--Kos, Kos, MMileile PavliPavlićć,, PPatriziaatrizia PoPoššččiićć
Faculty of Philosophy, RijekaFaculty of Philosophy, Rijeka

Department of Computer ScienceDepartment of Computer Science
marinai@pefri.hrmarinai@pefri.hr

milemile.pavlic@ri.pavlic@riss.hr.hr
patrizia@pefri.hrpatrizia@pefri.hr

ISS 2004, VaraždinISS 2004, Varaždin

22

1. 1. IntroductionIntroduction
•• The Unified Modeling Language (UML) is a graphical language for The Unified Modeling Language (UML) is a graphical language for

visualizing,visualizing, specifying, constructing, and documenting the artifacts specifying, constructing, and documenting the artifacts
of a softwareof a software--intensive system.intensive system.

•• TheThe UML defines numerous diagrams and their meanings, UML defines numerous diagrams and their meanings, butbut not not
software developsoftware developementement procedures, sequence of using diagrams, procedures, sequence of using diagrams,
tasks allocation or tasks allocation or similar.similar.

•• The UML The UML iis a modeling languages a modeling language, , not a method or methodology.not a method or methodology.

•• ThisThis paper analyses UML vpaper analyses UML v..1.5 diagrams and proposes most 1.5 diagrams and proposes most
appropriate appropriate onesones for for IS IS modelling, observing usemodelling, observing use--case driven, case driven,
iterative and incremental development.iterative and incremental development.

•• AA proposal for IS development life cycle proposal for IS development life cycle byby using UML, using UML, ((possible possible
proposal for proposal for methodicmethodic)) will be presented.will be presented.

33

The The UML defines the following diagramsUML defines the following diagrams

•• view of usageview of usage..use case diagramuse case diagram

•• statical view statical view ..classclass, object, object diagramdiagram

•• behavioral view behavioral viewbehavior diagrams:behavior diagrams:
–– statechart diagramstatechart diagram
–– activity diagramactivity diagram

•• interactional view interactional viewinteraction diagrams:interaction diagrams:
–– sequence diagramsequence diagram
–– collaboration diagramcollaboration diagram

•• implementational view implementational viewimplementation diagrams:implementation diagrams:
–– component diagramcomponent diagram
–– deployment diagramdeployment diagram

2. Views and Diagrams2. Views and Diagrams

44

2.1 2.1 Class and Class and OObject bject DDiagramiagram
((Static Static SStructure tructure DDiagramsiagrams))

Car

+GetCarID()
+Create()
+Delete()

-CarID : String
-Mfg : String
-Model : String
-MfgYear : Integer

Person

+GetID()

-ID : LongInt
-surname : String
-name : String
-adress : String
-age : Integer

Owns 0..*

Mauro's Bussines Car:Car

-CarID : String = "RI 757 MM"
-Mfg : String = "Audi"
-Model : String = "A4"
-MfgYear : Integer = 2000Mauro:Person

-ID : LongInt = 2011969005
-surname : String = "Kos"
-name : String = "Mauro"
-adress : String = "Put za forticu 8"
-age : Integer = 31

Owns

Mauro's FamilyCar:Car

-CarID : String = "RI 001 IK"
-Mfg : String = "Ranault"
-Model : String = "Senic 4x4"
-MfgYear : Integer = 2001

Owns

•• static structure of the static structure of the
modelmodel
((entities that exist, entities that exist,
their internal structure, their internal structure,
and their relationshipsand their relationships))

•• class diagram shows class diagram shows
classes and their classes and their
relationships, relationships, whilewhile
object diagram showsobject diagram shows
their their specific instancesspecific instances
((possible snapshot of a possible snapshot of a
system system state)state)

55

Customer

Offering

Selesman
Ordering

Shipping

Clerk for
shipping

Billing

Products selling

•• definedefiness requirements and describerequirements and describess functionality of a systefunctionality of a systemm
•• explains how actorexplains how actor can use the systemcan use the system
•• describedescribedd from the actor's point of viewfrom the actor's point of view (system(system behavior experienced behavior experienced
by user) by user)

2.2 Use Case2.2 Use Case DDiagramiagram

66

ob1:C1

ob2:C2

ob3:C3

[x>0]op2(x)

op()

[x<0]op3r(x)

2.3 2.3 Sequence Sequence DDiagramiagram
(I(Interactionnteraction DDiagramiagram))

•• shows shows explicit explicit sequensequentialtial exchange of message among objects through exchange of message among objects through
a flow or function (a flow or function (vertikal time linesvertikal time lines))
•• better for realbetter for real--time specifications of time specifications of communicationcommunication among objects and among objects and
for complex scenariosfor complex scenarios
•• existexistss inin: : -- general formgeneral form ((describing all possible sequencesdescribing all possible sequences))

-- form of instanceform of instance ((sequence according to the general formsequence according to the general form))

77

/ Manager: Person

company
member*

: Company

:Project

/ Employee : Person

leader 1 participant *

company
member*

defined
project *

got project *

boss 1 employee *

company 1company 1

2.3 2.3 Collaboration Collaboration DDiagramiagram
(I(Interactionnteraction DDiagramiagram))

•• presentpresents interactions among participants playing different roles and s interactions among participants playing different roles and
their relationships that are meaningful for a given settheir relationships that are meaningful for a given set of goals of goals
•• better for understanding the effect at given instance or for probetter for understanding the effect at given instance or for procedure cedure
designdesign
•• two levels of abstractiontwo levels of abstraction::

-- specialized levelspecialized level (describing classifier (describing classifier oror association roleassociation role, , message) message)
-- instance levelinstance level (describing object, common relationships(describing object, common relationships, , stimuli)stimuli)

88

Dialing

Start
entry/start dial tone
exit/stop dial tone

Partial Dial

entry/number.add(n)

digit(n) [number.isOK()]

digit(n)

2.4 2.4 Statechart Statechart DDiagramiagram
(B(Behavior ehavior DDiagramiagram -- State Machine)State Machine)

• shows behavior of model elements capable of dynamic behavior
• describes possible sequences of states and actions through which
element can proceed during its lifetime while reacting to received event
instances (signals, operation invocations)

The statechart diagram is quite opposite to class description because it
presents all possible states that a class object can assume and events it
causes as state changes.

99

Request
service

Pay

Take and
fill order

Order
[filled]

Order
collected

Customer Sales

Order
[placed]

2.5 2.5 Activity Activity DDiagramiagram
(B(Behavior ehavior DDiagramiagram))

• a special case of the statechart diagram (all states are actions/ activities
and transitions are triggered by completion of actions/activities in the original
states)
• used to describe activities performed within an operation (where most
of the events represent the completion of internally-generated actions)
• presents specifications of messages being sent or received within
activities and objects representing either action input or output

1010

Customer
Management

Service
Offering

Billing

Product
Offering

• graph of components (software components including source code, binary
code and exe files) connected by dependency relationships

• only in a type form (for instances deployement diagram is used)

• shows physical structure of code in terms of code components (some
exist in compilation time, other in link time, run time or in several times)

• may present interface and calling dependencies among components (for
classifier that have operations and interface)

2.6 2.6 Component DiagramComponent Diagram
(I(Implementation mplementation DDiagramiagram))

1111

:Customer
Service

:Sales and
Services

ClientPC:PC

AppServer:Server

DBServer:MSSQL

«database»
customerDB

«database»
productDB

2.7 2.7 Deployment DiagramDeployment Diagram
(I(Implementation mplementation DDiagramiagram))

•graph of nodes (physical object that represents a processing resource
having a memory and processing capability; devices, human resources
mechanical processing) connected by communication associations

•shows the configuration of process element in real time, program
components representing software code units in real time and object
that reside on them

1212

3. Using Diagrams in IS Design3. Using Diagrams in IS Design
• D. Rosenberg: «Modeling with UML is similar to sitting down to an huge
plate of food, the thought that you can't possibly eat everything on the plate
just kills your appetite before you get started.

A similar phenomenon can occur with UML modeling. The thought of
having to produce a complete set of sequence, collaboration, state, deployment, use
case, and class diagrams that comprehensively covers each and every use case of the
system with a fully detailed dynamic model can intimidate a team right out of object-
oriented analysis and design. «

• Not all diagrams have to be used in solving a particular problem (only
those that facilitate communication, contibute to a better problem
understanding and simplify development)

• To build a model of an IS, it is necessary to identify an appropriate set
of objects and assign them adequate system behavior (the most
appropriate are use-case, class and interaction diagrams)

• Other diagrams may be used as well (component diagrams for
distributed applications, object diagrams for complex class diagrams)

1313

3.1 3.1 UML UML ddiagrams from an iterative pointiagrams from an iterative point of viewof view

Component
Diagram

Use-case
Diagram

Class
Diagram

Sequence
Diagram

Collaboration
Diagram

Deployment
Diagram

Statechart
Diagram

Activity
Diagram

• The UML authors recommend use case-driven, iterative, and
incremental approach

• Diagrams are interconnected due to the iterative nature of OO
modeling and incremental approach

1414

•The use case diagram defines requirements and context of the system at
the highest level of abstraction (system functionality)

• Lower levels of abstraction can be shown on interaction diagrams that
present the behavior distribution among classes (Sequence diagram shows
logic of a particular use case, while collaboration diagram presents logics
consisting of several use cases with asynchronous messages exchanged
among objects)

• While drawing sequence diagrams, operations and new objects are
identified, thus while drawing up the dynamic model, the system static
structure is built

•The static structure of the system is presented on class diagram (At
analyses, only objects and operations necessary for understanding the system
can be defined, while at design should be defined all of them in details)

• The completeness and integrity of the system static structure is provided
through the use case and sequence diagrams

1515

3.2 3.2 UML UML ddiagrams from a serial point of viewiagrams from a serial point of view

Component
Diagram

Use-case
Diagram

Class
Diagram

Sequence
Diagram

Collaboration
Diagram

Deployment
Diagram

Statechart
Diagram

Activity
Diagram

User requirements Analysis Design Code

Source Code

• In reviewing IS development phases and diagrams predominantly used at
particular phase, a serial usage of diagrams can be considered.

• Although the iterative approach is promoted, the fact remains that it is
first necessary to draw up a strategic study, to identify and analyze
requirements and then design software and produce code

1616

Entering database initial states; Users training;
Testing; Writing help; Optimization;
Final testing – delivery; Application of software product

Implementation
and application

State diagram
Activity diagram
Implementation using CASE tools (Rose, ...)
and programming in OOPL (Java, C++, ...)

Prototyping and
softver production

Class diagram; Object diagram
Use-case diagram – detailed operations
Sequence diagram; Collaboration diagram
Components diagram; Deployment diagram

Design

Use-case diagram – detailed operations
Sequence diagram
Class diagram
Components diagram

Analyses

Use-case diagram
Textual description

Defining requirements

Use-case diagram
Other strategic planning methods

Strategic study
Diagram/MethodPhase

W
ay

 o
f

us
in

g
U

M
L

di
ag

ra
m

s
ac

co
rd

in
g

to
 t

he
 I

S
de

ve
lo

pm
en

t
lif

e
cy

cl
e

ph
as

es
 (

pr
op

os
al

 f
or

 m
et

ho
di

c)

1717

4. 4. ConclusionConclusion
•A complex system is best approached through a small set of nearly
independent views of a model.

• UML is rather complex, so it is necessary to define sets of diagrams to
be used in the context of particular problem domain. Strict set boundaries
should not be defined because, if necessary, other diagrams and techniques,
defined either within or outside the UML, may be used.

• All UML diagrams may not necessarily be implemented in development of
the IS. Implementation primarily depends on complexity and size of a system,
applied CASE tool, programing language, OO database and other conditions.

• Use case, sequence and class diagrams are most appropriated for IS
modeling. This set may be expanded with object, components and
collaboration diagrams.

• According to the IS development life cycle phases, a way of using UML
diagrams is proposed (possible proposal for methodic). Further research
would define the sequence of diagram usage more precisely.

