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I 

 

SAŽETAK 

Cilj ovog doktorskog rada je razviti inovativni sustav za detekciju osoba na 

snimkama bespilotnih letjelica u akcijama traganja i spašavanja na neurbanim 

područjima. Razvijeni sustav testiran je na snimkama bespilotne letjelice 

neurbanog područja kontinentalnog dijela Hrvatske. Temelji se na uspješnoj 

implementaciji detektora objekata korištenjem konvolucijskih neuronskih mreža. 

Za potrebe istraživanja kreiran je namjenski skup označenih slika nazvan SARD. 

Skup sadrži slike osoba snimljene iz ptičje perspektive na neurbanom području u 

različitim scenarijima tipičnim za akcije traganja i spašavanja s oznakama osoba.  

U eksperimentima su korišteni aktualni detektori objekata poput Faster R-CNN, 

YOLOv4, RetinaNet i Cascade R-CNN te YOLOv8. Nadalje, predložena su dva 

načina rada: detekcija na snimkama tijekom potrage u realnom vremenu na 

terenu i analiza prethodno snimljenog materijala. U slučaju naknadne analize 

snimaka, kako bi zemaljski timovi pristupili traženoj osobi potrebno je znati njenu 

geolokaciju. Pomoću podataka pohranjenih u slici i koordinate detektirane osobe 

na slici, predlaže se metoda za određivanje geolokacije tražene osobe. Za osobu 

koja miruje (najčešći scenarij u akcijama traganja i spašavanja) i koja je 

detektirana na više slika preporuča se koristiti algoritam mjerenja presjeka, dok 

u slučaju da se osoba giba ili je detektirana na samo jednoj slici, najbolji rezultati 

postignuti su korištenjem algoritma koji u obzir uzima i visinu terena na kojem se 

vrši potraga. Zaključno je prikazan prototip sustava koji sjedinjuje sve navedene 

cjeline. 

 

Ključne riječi: snimke bespilotnih letjelica, konvolucijske neuronske mreže, 

prepoznavanje ljudi, YOLO, potraga i spašavanje 
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ABSTRACT 

The goal of this doctoral thesis is to create an advanced system for person 

detection in drone footage during search and rescue operations in rural areas. 

The developed system was tested on drone footage of the non-urban area of the 

continental part of Croatia. It is based on the successful implementation of an 

object detector using a convolutional neural network. For research purposes, a 

dataset of images called SARD was created. The set contains bird's-eye images 

of people in a non-urban area in various scenarios typical of search and rescue 

operations. Current state-of-the-art object detectors such as Faster R-CNN, 

YOLOv4, RetinaNet, Cascade R-CNN, and YOLOv8 were used in the 

experiments. Additionally, two operational modes are suggested: real-time field 

search and analysis of recorded footage. In the second case, for the ground 

teams to approach the missed person, it is necessary to know his geolocation. 

Using metadata stored within the image along with the pixel coordinates of the 

detected person, we determine the geolocation of the person. When dealing with 

a stationary person, which is the predominant scenario in search and rescue 

operations, and is detected across multiple images, it is advisable to employ the 

intersection measurement algorithm. However, if the person is in motion or is 

detected in just one image, optimal results are obtained by utilizing an algorithm 

that factors in the terrain's elevation where the search is conducted. 

In conclusion, the prototype of the system that unites all the mentioned units is 

presented. 

Keywords: drone imagery, convolutional neural networks, person detection, 

YOLO, search and rescue 
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1 UVOD 

Hrvatska gorska služba spašavanja (HGSS) bilježi akcije spašavanja tijekom svih 

godišnjih doba u Hrvatskoj. Akcije zimi najčešće se događaju na planinama, ljeti 

u nacionalnim parkovima i turističkim mjestima u prirodi, dok su u proljeće i jesen 

najčešće nesreće penjača i planinara, a sve češće i potrage za izgubljenim 

sakupljačima šparoga, kestena ili gljiva. Česte su i potrage za starijim 

stanovništvom, pogotovo za dementnim osobama. Najzahtjevnije potrage su u 

otežanim vremenskim uvjetima kao što su magla, kiša, snijeg, posebno zimi zbog 

kratkog dana i hladnoće zbog koje se još dodatno što prije treba pristupiti 

unesrećenoj ili nestaloj osobi zbog sprječavanja pothlađivanja i što hitnijeg 

pružanja odgovarajuće zdravstvene pomoći. Statistika pokazuje dramatičan 

porast intervencija u posljednjih 20 godina, podaci govore da je 1998. godine 

HGSS intervenirao 96 puta, dok je to u 2018 bilo čak 875 puta. Razlozi uključuju 

globalne trendove povećane aktivnosti u prirodi, klimatske promjene te sve veći 

broj posjeta prirodnim ljepotama Hrvatske [1].  

Rizične sportske aktivnosti u planinama i prirodi, poput penjanja, često dovode 

do nesreća s padovima, udarcima i ranjavanjima, dok i pješačke izlete prate rizici 

poput pokliznuća, iscrpljenosti, dehidracije, gubljenja i slično. Među 

unesrećenima u planinama i prirodi, većinom su prisutne lakše ozljede poput 

kontuzija, uganuća, iščašenja te iscrpljenosti, no takve ozljede, bez pravodobne 

intervencije na nepristupačnom terenu, mogu imati ozbiljne posljedice. Brza 

intervencija značajno smanjuje štetu po zdravlje i život, skraćuje vrijeme liječenja 

te pomaže u sprječavanju trajnih invalidnosti. Značajan broj spašenih ljudi bilježi 

se bez ozljeda, najčešće u situacijama kada se jednostavno izgube na 

određenom području. Brza i uspješna akcija u potrazi i pronalasku izgubljenih 

osigurava ne samo spašavanje života i zdravlja, već i sprječava moguće kasnije 

ozljede ili nesreće. 

U svakom slučaju, bez obzira na razlog intervencije, pružanje pomoći i 

zdravstvene zaštite na nepristupačnim terenima izuzetno je složeno. Posebno 

kod traganja za nestalom osobom, često je potrebno izvesti zahtjevna 

pretraživanja velikih i konfiguracijski kompleksnih terena. Važno je naglasiti da je 
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vrijeme ključni faktor u ovakvim situacijama - kako vrijeme odmiče, vjerojatnost 

preživljavanja nestale osobe opada, dok se površina koju treba pretražiti 

eksponencijalno povećava [2]. Akcije traganja i spašavanja zahtijevaju značajan 

ljudski potencijal i materijalne resurse, uključujući članove gorske službe 

spašavanja, potražne pse, policiju, zračne snage te sve češće bespilotne letjelice 

(dronovi).  

Bespilotne letjelice su postale standard u većini svjetskih SAR (engl. Search and 

Rescue) službi zbog svoje primjenjivosti u potrazi u urbanim i neurbanim 

područjima, vodama te u situacijama poput snježnih lavina. Zahvaljujući svojoj 

kompaktnosti, pokretljivosti, relativno niskoj cijeni i visokoj razlučivosti 

videozapisa, u stvarnom vremenu omogućuju nadzor većeg područja i 

prikupljanja informacija o prisutnosti osoba u zoni potrage kao i mogućnost 

određivanja lokacije osobe koju se traži. 

Primjena bespilotnih letjelica značajno povećava vjerojatnost pronalaska osobe 

tijekom traganja i spašavanja, ubrzavajući proces zahvaljujući brzom pregledu 

većih površina u jednom letu. Unatoč tomu, udaljeni piloti koji upravljaju 

bespilotnim letjelicama za vrijeme leta suočavaju se i s izazovima analiziranja 

snimaka u realnom vremenu na malom ekranu. Osobe za kojima se traga često 

su male u odnosu na okolinu, zauzimajući samo nekoliko piksela na ekranu, što 

otežava održavanje dugotrajne koncentracije i pažnje, čak i za obučene udaljene 

pilote. Nepredvidljive situacije, poput osoba koje su skrivene iza vegetacije ili 

stijena, dodatno kompliciraju pretragu, posebno u nepovoljnim vremenskim 

uvjetima poput kiše, magle ili snijega. Gubljenje orijentacije, iscrpljenost, nagla 

bolest i demencija su česti razlozi nestanka, što dodatno otežava situaciju jer 

unesrećene osobe često završavaju na neočekivanim mjestima u netipičnim 

pozama, što može uključivati i ozljede ili neobične položaje. 

U operacijama traganja za nestalim osobama, značajnu podršku udaljenom pilotu 

mogu pružiti metode automatske detekcije osoba. One omogućuju detekciju 

osoba na snimkama u stvarnom vremenu pružajući informacije o njenoj poziciji, 

čime doprinose usmjeravanju operacije traganja. 
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Za detekciju osoba već se uspješno koriste duboke konvolucijske neuronske 

mreže za detekciju objekata poput Faster-RCNN [3], Cascade R-CNN [4], 

RetinaNet [5] , SSD [6], YOLOv3 [7], koje postižu visoku točnost na slikama 

realnih scena poput MS COCO [8], i često nadmašujući ljudske performanse. 

Ove mreže trenirane su na različitim velikim skupovima podataka poput MS 

COCO, Pascal VOC [9], ImageNet [10], i postižu izvrsne rezultate u detekciji 

osoba na sličnim slikama tijekom uobičajenih aktivnosti poput stajanja, hodanja, 

trčanja ili sjedenja u urbanim scenama. 

Kako bi model detekcije postigao što veću točnost, vrlo je važno da skup 

podataka na kojem se model obučava osigurava slične uvjete onima koji se 

očekuju prilikom korištenja modela. U akcijama traganja i spašavanja ključan je 

objekt osoba, međutim kamera je montirana na bespilotnu letjelicu i snimke su iz 

ptičje perspektive, a takve snimke nisu sadržane u velikim skupovima podataka 

na kojima su ti modeli obučavani. 

Postoje skupovi podataka poput Visdrone [11], Okutama-action [12], UAVDT 

[13], koji sadrže snimke snimljene bespilotnim letjelicama koje su namijenjene 

različitim svrhama, uključujući detekciju objekata na slikama i videozapisima, 

praćenje osoba, prepoznavanje aktivnosti te predviđanje kretanja osoba ili 

događanja na snimkama. Ipak, ovi skupovi podataka su prilagođeni specifičnim 

namjenama u urbanim scenama i često ne obuhvaćaju scene koje se pojavljuju 

u situacijama traganja i spašavanja. Najbliže scenarijima snimljenim bespilotnom 

letjelicom u traganju i spašavanju su oni koji uključuju ljude u parku dok šetaju ili 

trče, stoje na trgu, hodaju ulicom ili leže na plaži. Međutim, poze osoba u tim 

scenama bitno se razlikuju od poza osoba koje se nalaze u situacijama nesreće, 

gdje su osobe ozlijeđene, iscrpljene ili izgubljene. Iz tog razloga, stvoren je vlastiti 

skup podataka nazvan SARD [14] koji simulira realne događaje u scenarijima 

traganja i spašavanja. Slike skupa su označene kako bi korištenjem transfera 

znanja i finog podešavanja parametara na odabranim arhitekturama dubokih 

neuronskih mreža, naučeni modeli detektirali osobe u scenama traganja i 

spašavanja. 
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Letom na većim visinama skenira se veće potražno područje ali se smanjuje broj 

piksela koje zauzima osoba na slici/ekranu, također snimke koje se šalju bežično 

s letjelice na uređaj manje su kvalitete pa je moguće da tražena osoba ne bude 

detektirana tijekom leta bespilotne letjelice od strane udaljenog pilota i 

programske podrške za detekciju osoba u stvarnom vremenu. Iz tog razloga je 

preporučljivo ponoviti traganje/detekciju na snimljenim materijalima, pohranjenim 

na memorijskoj kartici u letjelici, koji su veće kvalitete što modelu omogućava 

pouzdanije rezultate. 

U slučajevima kada osoba nije detektirana odmah tijekom leta bespilotnom 

letjelicom već naknadnom pretragom snimljenih materijala, potrebno je odrediti 

geografske koordinate na kojoj se nalazi detektirana osoba u stvarnom svijetu, 

kako bi joj na terenu mogli pristupiti zemaljski timovi. Iz dostupnih  GPS podataka, 

metapodataka bespilotne letjelice, karakteristika i pozicije kamere te 

metapodataka sa snimki bespilotne letjelice određuje se udaljenost od letjelice 

do detektirane osobe. Iz izračunate udaljenosti predloženi sustav, uz detekciju, 

određuje geolokaciju te smjer i brzinu kretanja ukoliko je osoba detektirana na 

više fotografija. Brzina i smjer kretanja važni su kako bi se moglo procijeniti gdje 

bi se osoba mogla nalaziti u trenutku izlaska na teren. U konačnici sustav 

predlaže korekciju potražnog područja iz tako dobivenih podataka. 

1.1 Cilj i objašnjenje osnovnih pojmova 

Cilj istraživanja u okviru doktorskog rada usmjeren je na ispitivanje potencijala 

metoda dubokog učenja za detekciju i prepoznavanje osoba na snimkama 

bespilotnih letjelica u operacijama traganja i spašavanja. Proučavanje relevantne 

literature ukazalo je na puno prostora za napredak u ovom području, posebno u 

razvoju autonomnih sustava temeljenih na dubokom učenju i neuronskim 

mrežama, s krajnjim ciljem postizanja pouzdane detekcije i geolokacije traženih 

osoba. 

Osim toga, pregled dostupne literature istaknuo je nedostatak odgovarajućih 

skupova slika za obuku modela dubokog učenja u detekciji unesrećenih osoba 

na snimkama iz ptičje perspektive. Iz tog razloga, prepoznata je nužnost 
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stvaranja novog skupa slika. U sklopu doktorskog rada, stoga je kreiran novi skup 

slika koje su pripremljene za obuku modela dubokog učenja iz domene traganja 

i spašavanja. 

1.2 Motivacija 

Motivacija i znanstvena znatiželja za istraživanjem potencijala metoda dubokog 

učenja na slikama i videozapisima nastalim tijekom akcija traganja i spašavanja 

proizlaze iz autorovog osobnog iskustva kao udaljenog pilota bespilotnih letjelica 

i voditelja potraga u HGSS-u. Stoga, kontinuirano promišljanje dovelo je do ideje 

o istraživanju primjenjivosti metoda dubokog učenja za detekciju osoba na 

slikama i videozapisima s bespilotnih letjelica. Implementacija takvih metoda u 

područje traganja i spašavanja obećava značajan doprinos spašavanju ljudskih 

života, posebno u izazovnim vremenskim uvjetima i na teškim terenima. Takav 

sustav značajno bi smanjio troškove, posebice u smislu potrebe za angažmanom 

ljudskih resursa jer se iz visine može sagledati veća površina terena, a ne 

predstavlja veliku financijsku investiciju kao kada se za tu svrhu upotrijebi 

helikopter. 

Bespilotne letjelice kao instrumenti u misijama potraga za nestalim osobama 

značajno proširuju ljudske sposobnosti u tragalačkom pristupu pružajući 

jedinstveni pogled s visine, omogućuje ljudima nešto što priroda nije pružila - 

perspektivu iz zraka. Novi izvor informacija i potreba za njihovim što uspješnijim 

korištenjem snažno je utjecao je razvoj sustava koji korištenjem dostupnih novih 

tehnologija i metoda dubokog učenja mogu analizirati slike snimljene iz zraka i 

interpretirati ih.  

1.3 Hipoteze i znanstveni doprinosi istraživanja 

Kao što je već navedeno, cilj istraživanja u okviru doktorskog rada je ispitivanje 

mogućnosti primjene modela dubokog učenja za detekciju nestale/ozlijeđene 

osobe u akcijama traganja i spašavanja uz pomoć bespilotne letjelice u cilju što 

brže detekcije unesrećene osobe u neurbanom području. 

Znanstvene hipoteze su: 
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H1: Primjena bespilotnih sustava u akcijama traganja i spašavanja doprinosi 

ranoj detekciji nestalih osoba 

H2: Korištenje dubokih neuronskih mreža omogućuje pouzdanu detekciju 

nestalih osoba u akcijama traganja i spašavanja u neurbanom području 

Očekivani znanstveni doprinosi su: 

• izrada baze slika i snimaka bespilotnom letjelicom nestalih/ozlijeđenih 

osoba na neurbanom području pripremljene za obučavanje nadziranog 

modela strojnog učenja, 

• model sustava za detekciju osoba na snimkama snimljenih bespilotnom 

letjelicom u akcijama traganja i spašavanja, 

• metoda za procjenu udaljenosti detektirane osobe od položaja bespilotne 

letjelice 

• prototip sustava za detekciju osoba u akcijama traganja i spašavanja 

bespilotnim letjelicama. 
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2 ODABRANI REZULTATI I RASPRAVA 

U ovom poglavlju pruža se detaljna rasprava o primijenjenim metodama i 

postignutim ključnim rezultatima dobivenih istraživanjem. Polazište istraživanja 

bila je sveobuhvatna analiza potencijala modela dubokog učenja (RAD 1[15]) u 

kojemu su istraženi izazovi detekcije malih objekata na snimkama iz ptičje 

perspektive, s fokusom na detekciji igračaka vojnika snimljenih kamerom 

mobilnog uređaja. Nadalje, obavljen je pregled dosadašnjih radova i skupova 

podataka koji istražuju slične probleme u detekciji objekata iz zraka ili su 

fokusirani na primjenu modela dubokog učenja u sličnim scenarijima (RAD 2 

[16]). Kreiranjem vlastitog skupa podataka istražila se preciznost i brzina 

detekcije osoba na snimkama kreiranim pomoću bespilotne letjelice, uz 

istraživanje robusnosti modela na različite vremenske uvijete i zamućenje 

uzrokovano gibanjem kamere (RAD 3 [17] i RAD 4 [14]). Primjenom različitih 

metoda transfera znanja za obučavanje modela dubokog učenja, traži se metoda 

koja dodatno poboljšava rezultate detekcije osoba (RAD 5 [18]). U konačnici 

primjenom više algoritama geolokalizacije predlaže se metoda geolokalizacije 

temeljena na zahtjevnosti potražnog terena i broju detekcija detektirane osobe 

na slikama snimljenim pomoću bespilotne letjelice korištenjem samo resursa 

dostupnih u offline načinu rada na neurbanom terenu ([19], RAD 6 [20]). 

Kao cjelina, objavljeni članci su bili međusobno povezani, ističući usklađenost i 

doprinos dodatne vrijednosti ukupnom konceptu. 

2.1 Konvolucijske neuronske mreže u akcijama traganja i spašavanja 

Konvolucijska neuronska mreža (CNN), čija je arhitektura predložena od strane 

Yanna LeCuna [21], predstavlja specifičnu arhitekturu umjetnih neuronskih 

mreža. Praktična prednost takve arhitekture leži u smanjenju broja parametara 

koje koristi CNN u usporedbi s potpuno povezanim neuronskim mrežama, što 

značajno poboljšava vrijeme obučavanja i smanjuje potrebne podatke za 

treniranje modela. Nakon što je AlexNet [22] popularizirao duboke neuronske 

mreže pobjedom na ImageNet natjecanju, duboke konvolucijske neuronske 

mreže postale su najpopularnija vrsta neuronske mreže za klasifikaciju slika i 
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probleme detekcije objekata. Modeli računalnog vida koriste se za razne zadatke 

obrade slike, uključujući klasifikaciju slika, detekciju objekata, segmentaciju slika, 

generiranje slika i još mnogo toga. Ti modeli često koriste CNN arhitekture i 

treniraju se na velikim skupovima podataka kako bi naučili prepoznavati obrasce 

u slikama. Detektori objekata kao vrsta modela računalnog vida specifično su 

dizajnirani algoritmi za lokalizaciju i prepoznavanje objekta unutar slike ili video 

zapisa. 

Na temelju provedenog pregleda literature i analiziranog potencijala mreža, 

odabrane su duboke mreže ResNet50 [23], Inception [24] i MobileNet [25] u 

kombinaciji s detektorima SSD i Faster R-CNN. Odabrani modeli vrednovani su 

na vlastitom skupu podataka koji simulira različite konfiguracije scena neurbanih 

područja, složenosti i uvjeta osvjetljenja kao i broja objekata i njihovog položaja 

(Slika 2.1). U skupu se nalaze snimke igračaka vojnika snimljenih mobilnim 

telefonom iz ptičje perspektive. 

 
Slika 2.1 Rezultati detekcije igračaka vojnika različitim modelima na složenim scenama 
skupa podataka [15] 

 

Glavni cilj RAD-a 1 bio je provjeriti jesu li duboke konvolucijske neuronske mreže 

prikladne za detekciju objekata iz ptičje perspektive. Analiza je pokazala da je 
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Faster R-CNN najprikladniji za detekciju, dok je problem bio što je ovaj model 

zahtijevao više vremena i računalne snage u odnosu na ostale testirane modele. 

Rezultati istraživanja dali su temelje za daljnje istraživanje detekcije nestalih 

osoba u stvarnom vremenu u akcijama traganja i spašavanja. 

RAD 2 daje analizu mogućnosti korištenja bespilotnih letjelica u akcijama 

traganja i spašavanja te cjeloviti pregled područja vezanog za detekciju osoba na 

snimkama bespilotnom letjelicom. Također rad je dao opis javno dostupnih 

skupova podataka te usporedbu najsuvremenijih modela za detekciju osoba na 

snimkama iz zraka. Zaključak ovoga rada je da je potrebno napraviti namjenski 

skup podataka snimljen bespilotnom letjelicom prilagođen danom zadatku. Takav 

skup sadržavao bi osobe u položajima tipičnim za unesrećene ili iznemogle 

osobe u akcijama traganja i spašavanja koji nisu sadržani u do tada objavljenim 

skupovima podataka. Također, potrebno je kombinirajući znanja iz postojećih 

skupova podataka s novim skupom podataka testirati najsuvremenije modele. 

2.2 Prikupljanje podataka 

2.2.1 SARD skup podataka 

U svrhu treniranja i testiranja modela za automatsku detekciju unesrećenih osoba 

na snimkama i videozapisima snimljenim iz zraka, formirali smo našu bazu 

podataka nazvanu SARD, koja vjerno simulira stvarne događaje u scenarijima 

traganja i spašavanja. SARD baza obuhvaća raznovrsne situacije koje uključuju 

iscrpljene i ozlijeđene osobe, te tipična kretanja ljudi u prirodnom okruženju, kao 

što su trčanje, hodanje, stajanje, sjedenje ili ležanje. Kako bi uključivala različite 

vrste terena i pozadinskih elemenata koji mogu utjecati na događaje i scenarije 

na snimljenim slikama i videozapisima, u SARD bazu su uključene snimke koje 

obuhvaćaju scene u kojima su osobe smještene na makadamskim putevima, u 

kamenolomima, niskoj i visokoj travi, sjeni šume i slično. 

Snimanje je provedeno tijekom dana, u jesen, pomoću kamere na bespilotnoj 

letjelici DJI Phantom 4A. Video zapisi su snimljeni u FHD rezoluciji od 1920 x 

1080 piksela pri frekvenciji od 50 slika u sekundi. Letjelica je letjela na različitim 

visinama, varirajući od 5 m do 50 m, s različitim kutovima kamere u rasponu od 
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45° do 90°. Sve snimke su nastale na području Moslavačke gore, izvan urbanog 

područja.  

Položaji osoba na snimkama obuhvaćaju uobičajne položaje i posture (stojeći, 

sjedeći, ležeći, hodanje, trčanje) te položaje karakteristične za iscrpljene ili 

ozlijeđene osobe, rekonstruirane od strane statista prema njihovom vlastitom 

nahođenju (Slika 2.2). Statisti su bili devet osoba različite životne dobi i spola, od 

7 do 55 godina. Osobe su također smještene na različitim lokacijama, od jasno 

vidljivih do manje uočljivih (oku) lokacija, u šumi, visokoj travi, u sjeni i slično, što 

dodatno otežava detekciju. 

 

 

Slika 2.2 Neki od položaja osoba za kojima se traga, slike su izrezane iz skupa 
podataka snimljenih bespilotnom letjelicom. [14] 
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Iz snimki ukupne duljine oko 35 min izdvojili smo 1.981 pojedinačni kadar na 

kojemu se nalaze osobe. 

Na odabranim slikama smo ručno označili prisutne osobe kako bismo formirali 

skup podataka koji će poslužiti za treniranje modela. Ukupno je označeno 6.532 

objekata za klasu osoba. 

Dimenzije okvira u skupu SARD kreću se od 7 px za najmanju širinu i 8 px za 

najmanju visinu dok je najveća širina 353 px a najveća visina 337 px. Površinom 

najmanji označeni objekt je 7 px x12 px dok je najveći 322 px x 231 px, u prosjeku 

veličina okvir je 47px x 58 px. U skupu je označeno 1883 malih objekata (objekti 

čija je površina graničnog okvira manja od 322), 4180 srednjih objekata (322 < 

površina < 962) i 1981 velikih objekata (površina > 962) 

Skup SARD podijeljen je na skup za obučavanje (train) i skup za testiranje (val) 

u omjeru 60:40 na način da su slike jednoliko raspodijeljene prema scenama 

(pozadina, osvjetljenje, poza osoba, kut kamere). Skup za treniranje sadrži 1189 

slika, na kojima je označeno 3921 osoba, dok skup za testiranje sadrži 792 slike 

na kojima je označeno 2611 osoba. 

2.2.2 VisDrone skup podataka 

VisDrone je skup podataka snimljen bespilotnim letjelicama u različitim scenama 

usredotočen na četiri osnovna problema u području računalnog vida (otkrivanje 

objekata u slikama, otkrivanje predmeta u videozapisima, praćenje pojedinačnih 

objekata i praćenje više objekata). 

Skup podataka sastoji se od 263 video isječka i dodatnih 10.209 slika. 

Videozapisi / slike snimljeni su na različitim platformama bespilotnih letjelica (DJI 

Mavic, DJI Phantom Series 3, 3A, 3SE, 3P, 4, 4A, 4P) u 14 različitih gradova u 

Kini. Skup podataka pokriva različite vremenske i svjetlosne uvjete maksimalne 

razlučivosti videozapisa (3840 x 2160 px) i slike (2000 x 1500 px). 

U preuzetom VisDrone skupu (train, val i test) nalazi se 147.747 oznaka koje 

predstavljaju osobu (osoba/pješak) na 7.482 slike, od toga 125 998 malih, 21.221 
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srednjih i 528 velikih. Iz VisDrone skupa podataka odabrano je 2.000 slika na 

kojima se nalaze osobe, objedinivši oznake iz skupa pripadnih anotacija koje se 

odnose na osobu ili pješaka na jednu klasu: osoba. Na odabranim slikama je 

označeno 30.641 malih objekata( površina < 322), 6.384 srednjih objekata (322 < 

površina < 962) i samo 101 veliki objekt (površina > 962). Iz statistike skupa vidimo 

da su snimke u VisDrone skupu podataka napravljene na većim visinama u 

odnosu na SARD skup. 

Skup smo podijelili na skup za obuku koji se sastoji od 1598 slika s 29.797 

označenih osoba i na skup za testiranje koji sadrži 402 slike s 7.329 osoba. 

VisDrone skup korišten je za istraživanje metoda transfera znanja kako bi se 

poboljšala detekcija osoba na slikama snimljenim bespilotnim letjelicama za 

potrebe operacija traganja i spašavanja 

2.3 Odabir modela za detekciju 

U provedenim istraživanjima testirali smo performanse postojećih jednofaznih i 

dvofaznih suvremenih detektora (Faster R-CNN, YOLOv4 [26], RetinaNet, i 

Cascade R-CNN), kako bismo odabrali model koji daje najbolje rezultate na 

našem skupu podataka i kojeg ćemo dalje koristiti u eksperimentima na scenama 

traganja i spašavanja. 

U eksperimentima tijekom izrade doktorskog rada koristimo nekoliko standardnih 

metrika za procjenu performansi detektora i metrika koje smo namjenski razvili 

za detekciju i geolociranje u akcijama traganja i spašavanja, kao što je objašnjeno 

u nastavku. 

Omjer presjeka nad unijom (engl. Intersection over Union, skraćeno IoU) 

tradicionalna je metrika za procjenu performansi detektora koja provjerava 

detekciju i performanse procjenom odnosa površine preklapanja između 

predviđenih i referentnih oznaka (engl. ground truth) i ukupnom površinom obje 

oznake. Jednadžba je sljedeća: 

 𝐼𝑜𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 2.1 
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Više vrijednosti za IoU ukazuju na bolje preklapanje između detekcije i stvarnih 

podataka. 

Odziv (engl. Racall) (R) i preciznost (engl. Precision) (P) izračunavaju se kao: 

 𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 2.2 

 gdje je TP (engl. True Positive) pozitivna detekcija tj. detekcija koja je točna, FP 

(engl. False Positive) je lažno pozitivna detekcija gdje su detektirana područja 

slike koja ne sadrže osobu, a FN (engl. False Negative) je lažno negativna 

detekcija, tj. ovi objekti postoje na slici ali ih detektor nije detektirao. Preciznost 

je metrika koja mjeri točnost pozitivnih detekcija, tj. koliko je predviđenih pozitivnih 

detekcija bilo točno, dok je odziv metrika koja mjeri sposobnost modela da 

detektira sve relevantne instance u skupu. 

Prosječna preciznost (AP) je uobičajena metrika procjene u otkrivanju objekata. 

AP mjeri prosječnu preciznost u rasponu IoU od 0,5 do 0,95, s intervalima od 

0,05. AP uzima u obzir preciznost svake detekcije koja ima preklapanje s 

referentnom oznakom veće ili jednako od određenog prag IoU (npr. 0,5 ili 0,75), 

te računa prosječnu vrijednost tih preciznosti kako bi dao cjelokupnu ocjenu 

performansi modela.  U našem slučaju ovu metriku promatramo samo kroz jednu 

klasu (osoba). U eksperimentu koristimo AP50. To znači da se za procjenu koristi 

preciznost detekcija koje imaju preklapanje s referentnim oznakama veće ili 

jednako 0,5, tj. uzimaju se u obzir samo one detekcije koje imaju dovoljno 

preklapanje s referentnim oznakama kako bi se smatrale relevantnim. Također u 

nekim eksperimentima prosječnu preciznost promatramo u odnosu na veličinu 

koju objekt zauzima na slici. Prosječnu preciznost kroz različite veličine objekata 

prikazujemo kao APS za male objekte čija je površina manja od 322, APM za 

srednje objekte čija je površina između 322 i 962, dok je prosječna preciznost za 

velike objekte dana kao APL za objekte čija je površina veća od 962. 

U akcijama traganja i spašavanja cilj je detektirati sve osobe prisutne na sceni, 

ali s druge strane važna je i preciznost detektora da se nepotrebno ne troše 

resursi na lažne detekcije. Iz tog razloga, na temelju postignutih rezultata 

prosječne preciznosti te odnosa preciznosti i odziva odabran je YOLOv4 detektor 
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za daljnje istraživanje obzirom da postiže najveću srednju preciznost i uspijeva 

detektirati najveći broj objekata na slici uz najvišu preciznost. Iz istog razloga 

predložena je i mjera nazvana ROpti [14] koja se računa kao omjer razlike između 

stvarnih (TP) i lažnih pozitivnih (FP) detekcija te mogućih detekcija (TP + FN) u 

skupu podataka: 

 𝑅𝑂𝑝𝑡𝑖 =
𝑇𝑃 − 𝐹𝑃

𝑇𝑃 + 𝐹𝑁
 2.3 

Ova mjera pruža kvantitativnu procjenu performansi modela u smislu smanjenja 

lažno pozitivnih detekcija i favoriziranju stvarno pozitivnih detekcija, uzimajući u 

obzir sve moguće detekcije u skupu podataka. Za savršenu preciznost (bez lažno 

pozitivnih), ROpti je jednako odzivu, a za savršen odziv (bez lažno negativnih), 

ROpti iznosi 1, što predstavlja savršen rezultat. 

 

Tablica 2.1 Rezultati detekcije osoba modelima obučenim na SARD skupu podataka 
[14] 

Model AP AP50 APS APM APL 

Cascade R-CNN 0,490 0,881 0,310 0,544 0,626 

Faster R-CNN 0,501 0,907 0,305 0,560 0,650 

RetinaNet 0,339 0,733 0,129 0,406 0,531 

YOLOv4 0,530 0,903 0,295 0,596 0,740 

 

Rezultata testiranja CNN modela dani su u Tablica 2.1. Najbolji rezultati dobiveni 

su sa YOLOv4, dok rezultati Cascade R-CNN i Faster R-CNN detektora jako 

malo zaostaju. Svi detektori najbolje rezultate postižu u slučaju AP50 s tim da 

najbolje rezultate od preko 90% postižu Faster R-CNN i YOLOv4. Što je za 

detektor kakav je potreban za akcije traganja i spašavanja odličan rezultat iz 

razloga što za pronalazak osobe nije bitan koliko je veliko preklapanje detekcije 

u odnosu na referentnu oznaku. U stvarnoj situaciji ako detektiramo i samo nogu 

osobe, osoba je pronađena. 

Primjeri detekcija osobe s treniranim modelima prikazani su na Slika 2.3. Stupci 

na Slika 2.3 predstavljaju rezultate detekcije i to redom u stupcu A) Cascade R-
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CNN(SARD) modela, stupac B) Faster R-CNN(SARD) modela, C) RetinaNet 

(SARD) i u D) YOLOv4(SARD). Na slikama se pojavljuju svi slučajevi detekcije: 

pozitivna (detektirana je osoba i granični okvir uključuje više od 50% referentne 

oznake osobe, negativne (osoba nije detektirana) i lažne pozitivne detekcije 

(detektor je označio kao osoba dio slike koji ne sadrži osobu). 

    

    

    

    

A) B) C) D) 

Slika 2.3 Primjeri detekcije različitih modela: A stupac: Cascade R-CNN(SARD), B 
stupac: Faster R-CNN(SARD), C stupac: RetinaNet(SARD), D stupac: YOLOv4(SARD) 
[14]. 

Prvi red na Slika 2.3 prikazuje slučaj u kamenolomu, jedna osoba se nalazi na 

hrpi kamenja dok su dvije osobe na prašnjavom putu. Svi detektori uspješno su 

detektirali osobe na putu, dok su samo Cascade R-CNN(SARD) i 

YOLOv4(SARD) detektirali i osobu koja sjedi na kamenju. Faster R-CNN(SARD)  

ima jednu lažnu detekciju i višestruku detekciju osobe na putu. 

U drugom redu prikazan je primjer tri osobe s preklapanjem (okulzijom) koje se 

nalaze na niskoj travi. Osobu desno gore, koja stoji uspješno su detektirali svi 

detektori. Faster R-CNN(SARD) i u ovom primjeru daje višestruke detekcije 

osoba koje se preklapaju, dok Cascade R-CNN(SARD) i Retinanet(SARD) imaju 
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problema s okluzijom i nisu detektirali osobu koja kleči iza osobe koja se kreće. 

YOLOv4(SARD) uspješno je detektirao sve osobe. 

U trećoj sceni snimljenoj sa veće visini u odnosu na prva dva primjera, nalazi se 

osam osoba. Cascade R-CNN(SARD) detektirao je sedam osoba uz jednu lažnu 

detekciju. Faster R-CNN(SARD) ima pet točnih detekcija kao i Retinanet(SARD) 

koji uz to ima i  tri lažne detekcije. YOLOv4(SARD) točno je detektirao sve osobe 

na slici. 

U zadnjem slučaju snimljenom sa još veće visine i udaljenosti od objekta u visokoj 

travi i makadamskom putu nalazi se devetero osoba. Cascade R-CNN(SARD i 

Faster R-CNN(SARD) točno su detektirali sedmero osoba dok je 

Retinanet(SARD) detektirao točno njih pet. YOLOv4(SARD)  uspješno je 

detektirao sve osobe na slici. 

Iz kvalitativne analize odabranih primjera jasno se pokazuje da je 

YOLOv4(SARD) bio najuspješniji u detekciju osoba. Međutim postoje i primjeri 

na kojima YOLOv4(SARD) model nije bio uspješan (Slika 2.4).  Najčešći primjeri 

su detekcija dvije osobe koje stoje jako blizu jedna drugoj ili koje se preklapaju 

kao jedna osoba (prvi red na slici) i lažne detekcije kada detektor detektira tamnije 

dijelove vegetacije (drugi red) ili sjene (treći red) kao osobu. Postoje i primjeri koji 

su nažalost česti u akcijama traganja i spašavanja u kojima je osobu jako teško 

detektirati čak i istreniranom oku jer se stopila s pozadinom, i detektor je nije 

uspio detektirati (Slika 2.4, treći red). 
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Slika 2.4 Pogrešne detekcije YOLOv4(SARD) modela [14]. 

2.3.1 Rezultati detekcije YOLOv4(SARD) detektora ovisno u ulaznoj veličini 

mreže 

Arhitektura YOLO prilagođava veličinu ulazne slike, čuvajući omjer širine i visine 

prema rezoluciji definiranoj u .cfg datoteci s težinama, određenoj parametrima 

„width“ i „height“. Ovi parametri nazivaju se rezolucijom mreže. Transformacija 

rezolucije ulazne slike u YOLO arhitekturi definirana je kao: 

 
𝐼𝑚𝑔𝑡𝑟𝑎𝑖𝑛_𝑤𝑖𝑑𝑡ℎ = 𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ, 

𝐼𝑚𝑔𝑡𝑟𝑎𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ

𝐼𝑚𝑔𝑤𝑖𝑑𝑡ℎ 
𝐼𝑚𝑔ℎ𝑒𝑖𝑔ℎ𝑡     

2.4 

 

Primjerice, ako je rezolucija ulazne slike 1920 x 1080, a rezolucija mreže je 

definirana kao širina, Netwidth = 512, i visina, Netheight = 512, YOLO će promijeniti 

rezoluciju ulazne slike na postavljenu širinu, Netwidth, čuvajući izvorni omjer 
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između širine slike, Imgwidth, i visine, Imgheight. Drugim riječima, 1920 x 1080 će se 

transformirati u 512 x 288. 

Da bi se poboljšala performansa detektora, posebno za detekciju malih objekata, 

jedna od alternativa bila je korištenje veće rezolucije ulaznih slika i treniranje 

mreže na većim rezolucijama: 

 𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ + 𝑘, 𝑘 = 32𝑛, 𝑛 ∈ ℕ 2.5 

 

Vrijednosti rezolucije mreže mogu biti višekratnici broja 32, na primjer: 608 x 608 

ili 832 x 832, jer YOLO mreža smanjuje ulaznu sliku za faktor 32. 

U našem slučaju, YOLOv4 (SARD) model je treniran na rezoluciji mreže od 512 

x 512, a naše računalo nije bilo dovoljno snažno da trenira mrežu na višim 

rezolucijama od te. Stoga smo kao alternativu koristili povećanje rezolucije mreže 

tijekom testiranja [27].  

Kako bismo ispitivali utjecaj promjene rezolucije mreže tijekom testiranja 

performansi detekcije objekata, testirali smo različite rezolucije mreže ispod i 

iznad rezolucije na kojoj je model bio treniran: 320 x 320, 416 x 416, 512 x 512, 

608 x 608, 832 x 832, 1024 x 1024. Rezolucije mreže od 320 x 320 i 416 x 416 

su ispod rezolucije na kojoj je YOLOv4 (SARD) model treniran, dok su rezolucije 

608 x 608, 832 x 832 i 1024 x 1024 iznad.  

Najbolji rezultat postignut je pri rezoluciji mreže od 832 x 832, što se vidi iz Tablica 

2.2. Usporedba rezultata pokazuje da se bolji rezultati detekcije mogu postići 

povećanjem rezolucije mreže tijekom testiranja. Ovdje su postignuti bolji rezultati 

pri rezoluciji od 608 x 608 i 1024 x 1024 u usporedbi s rezolucijom od 512 x 512 

na kojoj je model treniran. Međutim, rezultati također pokazuju da postoji granica 

nakon koje se rezultati više ne poboljšavaju, kao u slučaju rezolucije mreže od 

1024 x 1024, kada su rezultati počeli opadati. 

 



19 

 

Tablica 2.2 Rezultati detekcije YOLOv4(SARD) detektora ovisno o ulaznoj veličini 
mreže [14]. 

Rezolucija 

mreže 

AP AP50 AP75 APS APM APL fps 

320x320 0,376 0,764 0,327 0,105 0,457 0,706 10,43 

416x416 0,503 0,882 0,519 0,247 0,581 0,735 9,79 

512x512 0,559 0,915 0,626 0,331 0,627 0,748 7,39 

608x608 0,581 0,937 0,653 0,382 0,642 0,740 6,64 

832x832 0,597 0,948 0,680 0,443 0,646 0,698 3,76 

1024x1024 0,572 0,937 0,649 0,436 0,618 0,642 2,46 

 

U slučaju testiranja na nižim rezolucijama od rezolucije mreže na kojoj je model 

treniran, općenito se dobivaju lošiji rezultati, osim u slučaju velikih objekata gdje 

se postižu samo blago lošiji rezultati. Također, primijećeno je da je brzina 

zaključivanja otprilike 10 sličica u sekundi (fps) za najnižu rezoluciju mreže, što 

je 2,5 puta brže nego pri rezoluciji od 832 x 832, gdje se postižu najprecizniji 

rezultati. 

Brzina detekcije važna je za detekcije uživo tijekom leta, pogotovo u operacijama 

traganja i spašavanja, ali jednako važna je i točnost detekcije i odziv. Stoga je 

prikazan usporedni graf odnosa između odziva i brzine detekcije za različite 

rezolucije mreže na Slika 2.5. Na temelju testnih podataka i uzimajući u obzir 

odnos između brzine detekcije i odziva, odabrali smo rezoluciju mreže od 832 x 

832 za daljnja istraživanja. 

Slika 2.6 prikazuje rezultate detekcije YOLOv4 (SARD) modela kao ovisnost 

prosječne preciznosti kroz različite veličine objekata (mali, srednji i veliki) u 

odnosu na rezoluciju mreže. Najbolja prosječna preciznost od 75% postignuta je 

s rezolucijom od 512 x 512 piksela za velike objekte, dok su za srednje i male 

objekte najbolje prosječne preciznosti 44% odnosno 65%, postignute s 

rezolucijom mreže od 832 x 832 piksela.  
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Slika 2.5 Odnos između odziva i brzine detekcije za različite veličine mreže [14]. 

 

Slika 2.6 Preciznosti YOLOv4 (SARD) detektora kroz različite veličine objekata za 
različite rezolucije ulazne mreže [14]. 

 

Mali objekti s rezolucijom mreže od 832 x 832 piksela postižu čak 6% bolje 

rezultate u usporedbi s rezolucijom od 608 x 608 piksela. U slučaju srednje velikih 
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objekata, rezultati su usporedivi, ali s nižom rezolucijom postiže se čak dvostruka 

brzina detekcije. S obzirom da u našem skupu većinom postoje mali objekti, a 

obrada može biti i nakon leta na računalima veće računalne snage, rezolucija 

832x832 odabrana je kao najprikladnija za naš zadatak detekcije ljudi u scenama 

traganja i spašavanja. 

 

2.3.2 Robusnost modela na zamućenost zbog gibanja i vremenske uvijete 

Kako bi se povećala robusnost modela, korištenjem skupa podataka SARD, 

računalno je generiran novi skup koji smo nazvali Corr. Skup podataka Corr 

obuhvaća slike koje simuliraju različite vremenske uvjete (koji su dodani na 

postojeće slike iz SARD skupa podataka) prisutne u stvarnim scenarijima potrage 

i spašavanja, kao što su magla, snijeg i led. Također, zamućene slike uključene 

su u Corr set za simulaciju kretanja kamere pri snimanju. 

Testiranje YOLOv4 modela s rezolucijom od 832 x 832, pragom (engl. threshold) 

od 0,25 i IoU od 0,50 izvršeno je na različitim vremenskim uvjetima (snijeg, 

magla, led) i slikama s zamućenjem zbog pokreta (engl. motion blur) na skupu 

podataka Corr . Korištenjem slika iz SARD testnog skupa, stvorili smo nove 

skupove u četiri navedene kategorije. Također su iz skupa uklonjene slike ljudi u 

šumi, što je vrlo teško detektirati. Svaki testni skup za procjenu robusnosti modela 

za određenu kategoriju sadrži 714 slika. 

Rezultati ispitivanja navedeni su u  

Tablica 2.3. s obzirom na prosječnu preciznost (AP) i prosječni odziv (AR), 

uzimajući u obzir preciznost preklapanja objekata (IoU) i veličinu objekata. 

Rezultati pokazuju nekoliko važnih činjenica.  

Značajno smanjenje performansi detekcije dogodio se u slučaju testiranja na 

slikama s lošim vremenskim uvjetima i zamućenim slikama koje nisu korištene u 

skupu za treniranje. Na primjer, smanjenje AP50 bilo je od 0,948 na 0,59 za snijeg, 

0,55 za maglu, 0,63 za led, i 0,67 za zamućenje. Kategorija navedena u Tablici 

2.3 predstavlja skup za testiranje, tj. val SARD skup podataka korišten za 

testiranje, snijeg je isti taj skup u kojem je pomoću računala na slike dodan snijeg 
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itd. Druga kolona u istoj tablici predstavlja redoslijed skupova podataka na kojima 

je model za detekciju treniran. Izvorni YOLOv4 model treniran je na COCO skupu 

podataka i on je označen kao COCO. COCO + SARD predstavlja model YOLOv4 

koji je treniran na COCO skupu podatak i nakon toga na SARD skupu podataka.    

Nakon što je Corr skup koji sadrži slike s lošim vremenskim uvjetima i 

zamućenjem korišten za treniranje modela (COCO + SARD + Corr ), postignuti 

su vrlo dobri rezultati za sve kategorije vremenskih uvjeta, slični rezultatima kada 

su korištene originalne slike iz SARD skupa. 

 

Tablica 2.3 Rezultati detekcije za različite kategorije val skupa s detektorima obučenim 
na COCO, COCO + SARD i COCO + SARD + Corr skupovima podataka [14]. 

Kategorija Treniran 

na 

COCO+ 

AP AP50 APS APM APL ARS ARM ARL 

val  0,232 0,402 0,132 0,261 0,413 0,160 0,289 0,473 

snijeg SARD 0,325 0,590 0,180 0,358 0,569 0,209 0,398 0,613 

magla SARD 0,302 0,550 0,225 0,322 0,404 0,263 0,361 0,457 

led SARD 0,359 0,629 0,225 0,393 0,508 0,269 0,433 0,549 

zamućenje SARD 0,316 0,678 0,147 0,351 0,581 0,194 0,406 0,628 

val SARD 0,597 0,948 0,433 0,646 0,698 0,511 0,703 0,741 

snijeg SARD + 

Corr 

0,503 0,885 0,334 0,547 0,651 0,413 0,607 0,700 

magla SARD + 

Corr 

0,547 0,916 0,382 0,595 0,653 0,461 0,655 0,698 

led SARD + 

Corr 

0,531 0,905 0,367 0,575 0,665 0,443 0,636 0,714 

zamućenje SARD + 

Corr 

0,439 0,849 0,244 0,494 0,616 0,320 0,557 0,667 

val SARD + 

Corr 

0,555 0,916 0,370 0,615 0,677 0,444 0,675 0,722 

 

Općenito, postignuti rezultati detektora dodatno treniranog na skupu s uključenim 

lošim vremenskim uvjetima i zamućenjem slike lošiji su na skupu za testiranje po 

vedrom vremenu, nego u slučaju kada ove transformacije nisu primijenjene, ali 
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postignuti rezultati daju nam pravo predložiti ovaj model kao pomoć u 

operacijama traganja i spašavanja zbog znatno poboljšanih rezultata u uvjetima 

lošijeg vremena. Primjeri rezultata detekcije ovog modela u svim četiri kategorije 

prikazani su na Slika 2.7. 

 

Slika 2.7 Primjer detekcije YOLOv4 modela obučenog na COCO, SARD i Corr skupu 
podataka. Gore-lijevo snijeg, gore-desno magla, dolje lijevo led, dolje desno zamućenje 
zbog pomaka kamere [14]. 

 

2.3.3 Različite metode transfera znanja 

U RADU 5. proučavane su metode transfera znanja kako bi se poboljšala 

detekcija osoba na slikama snimljenim bespilotnim letjelicama za potrebe 

operacija traganja i spašavanja. Prilagodili smo YOLOv4 model korištenjem 

različitih metoda transfera znanja na tri skupa podataka: skup SARD za misije 

traganja i spašavanja, skup snimaka bespilotnom letjelicom VisDrone u urbanim 

područjima i skup podataka Corr s sintetski dodanim vremenskim efektima na 

slikama iz SARD skupa podataka. 

Rezultati istraživanja ukazuju na to da se optimalni rezultati detekcije postižu na 

ciljanom SARD području primjenom mrežnog transfera znanja, kada  je skup na 

kojem se model fino podešava jednako distribuiran kao i skup za testiranje. 
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Najuspješniji rezultati dobiveni su korištenjem metode mrežnog transfera znanja, 

koja prenosi značajke naučene na velikim skupovima podataka, te metode 

transfera znanja zasnovane na instancama, gdje je model treniran na slikama 

domene koje odgovaraju slikama na kojima će se model testirati (Slika 2.8). 

Dodatna upotreba sintetičkih instanci slika dodatno je unaprijedila performanse 

modela. 

Također, primijećeno je da su najlošiji rezultati postignuti spajanjem skupova 

podataka, budući da se u tom slučaju model nije mogao potpuno prilagoditi 

relevantnim podacima. Unatoč tome, ovakvim spajanjem i povećanjem broja 

podataka za obučavanje moguće je postići općenitiji model. Osim toga, pokazalo 

se da redoslijed i način treniranja modela s više skupova podataka nisu 

zanemarivi faktori. 

 

Slika 2.8 Transfer znanja temeljen na instancama. Odabrane su samo relevantne slike 
za našu domenu na kojima je model treniran. U drugom koraku model se trenira na 
slikama ciljane domene [18]. 

 

2.3.4 Ovisnost detekcije o udaljenosti bespilotne letjelice od tla 

Za detekciju osoba na fotografijama iz zraka, visina na kojoj se letjelica nalazi 

igra ključnu ulogu. Let na većoj visini omogućuje brže prekrivanje područja 

pretraživanja, dok let na manjoj visini omogućava lakšu detekciju osoba. Najbolja 

visina leta letjelice ovisi o broju piksela kamere i korištenim lećama. Osoba je 

prikazana na slikama pomoću piksela, i što je veći broj piksela, osoba je lakša za 

detektiranje. S DJI Phantom 4 Advanced snimamo slike rezolucije 5472 x 3078 
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piksela s kutom kamere od 90°, a vidno polje (FOV) prema specifikaciji iznosi 

84°. U eksperimentu smo snimili slike dviju osoba (žene i dječaka od osam 

godina) na različitim visinama (15 m, 30 m, 45 m, 60 m i 75 m). Slika 2.9 prikazuje 

rezultate detekcije. Vidimo da na visini od 30 m i dalje imamo sve točne detekcije, 

zbog čega predlažemo da bespilotna letjelica leti na visini na kojoj osoba na slici 

zauzima okvir dimenzija 100 x 100 piksela. 

 

Slika 2.9 Ovisnost detekcije o položaju tijela osobe i visini snimanja [14]. 

 

2.3.5 YOLOv8 detektor 

U RAD-u 6. testirane su performanse zadnjeg YOLOv8 modela kroz sve verzije. 

Ovaj model treniran na manjem dijelu SARD podataka postiže performanse 

jednake ranijem modelu uz puno veću brzinu obrade podataka. 
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Tablica 2.4 Performanse pet verzija modela YOLOv8, dodatno treniranih na SARD 
skupu podataka, pri čemu su najbolji rezultati istaknuti podebljano. Ova provjera 
izvedena je korištenjem Google Colab platforme [20]. 

Verzija 

YOLOv8 

AP50 AP ROpti Trajanje 

obrade po 

slici [ms] 

YOLOv8n 0,868 0,549 0,71 4,6 

YOLOv8s 0,903 0,606 0,76 8,0 

YOLOv8m 0,906 0,621 0,77 17,3 

YOLOv8l 0,908 0,608 0,78 34,4 

YOLOv8x 0,913 0,638 0,79 46,5 

 

U Tablica 2.4 vidimo da je najbolje rezultate postigao YOLOv8x s AP50 91.3% i 

AP 68.8%, što ga čini najprikladnijim za naknadnu analizu materijala snimljenih 

tijekom leta bespilotne letjelice jer je točnost u tom slučaju najvažnija. Model 

YOLOv8n pokazuje značajno najbržu detekciju, svega 4,6 ms po slici, uz 

postizanje mAP50 samo 4,5% niže od najboljih rezultata. Slično tome, model 

YOLOv8s ostvaruje drugo najbolje vrijeme zaključivanja s gotovo identičnim 

performansama mAP50 kao YOLOv8x. Ovo ga čini posebno prikladnim za 

primjenu tijekom akcija traženja i spašavanja, gdje, uz preciznost detekcije, 

brzina zaključivanja u stvarnom vremenu ima ključnu ulogu, a računalni resursi 

mogu biti ograničeni na manje moćne računalne sustave. 

 

2.4 Geolokacija 

U ovom dijelu doktorskog rada prikazani su rezultati dobiveni istraživanjem 

geolokacijskih metoda poput, pojednostavljenog elipsoidnog modela Zemlje, 

algoritma koji koristi DEM (engl. Digital Elevation Model) i algoritma mjerenja 

presjeka. 

U operacijama traganja i spašavanja, bespilotne letjelice omogućuju 

pretraživanje terena na dva načina: u stvarnom vremenu (engl. online) za vrijeme 

leta i naknadno na snimljenom materijalu (engl. offline). Prilikom online 
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pretraživanja, udaljeni pilot bespilotne letjelice pregledava teren pomoću 

ugrađene kamere istovremeno s upravljanjem letjelice. Slike se prikazuju na 

zaslonu upravljača ili na većem zaslonu ako je dostupan udaljenom pilotu na licu 

mjesta (često u vozilu). Usporedno, snimke se pohranjuju na memorijsku karticu 

na letjelici u višoj kvaliteti koje je moguće analizirati naknadno nakon leta. Ako 

tražena osoba nije pronađena tijekom online pretraživanja, provodi se dodatan 

pregled snimljenog materijala, poznato kao metoda offline pretraživanja. U tom 

slučaju ako se na snimkama detektira tražena osoba, kako bi zemaljski tim 

pristupio traženoj osobi, potrebno je znati njen geografski položaj.  

Ulazni podaci za predloženu metodu offline geolokacije osobe na slici snimljenoj 

tijekom leta bespilotne letjelice su metapodaci koji su pohranjeni uz svaku 

snimljenu sliku i visina tla na mjestu polijetanja letjelice. 

Od mnogih metapodataka zabilježenih tijekom leta bespilotne letjelice za 

lokalizaciju detektirane osobe, koristili smo njihov podskup koji se sastoji od 

podataka vezanih uz putanju bespilotne letjelice, identifikaciju slike i parametre 

kamere u trenutku snimanja fotografije. Upotrijebljeni podaci i specifičan primjer 

vrijednosti prikazani su u Tablica 2.5. 

 

Tablica 2.5 Metapodaci korišteni za geolokaciju i njihove mjerne jedinice 

Varijabla Opis Primjer Mjerna 

jedinica 

Time Vremenska oznaka točke u 

letu 

2022-09-26 

19:35:42 

 

File_Name Naziv snimljene slike DJI_0265.JPG  

Img_Width Širina snimljene slike 5472 broj piksela 

Img_Height Visina snimljene slike 3648 broj piksela 

FOV Dijagonalno vidno polje 

kamere 

84 stupnjeva 
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Relative_Altitude Visina letjelice u letu u odnosu 

na točku polijetanja 

30.1 metar 

Gimbal_Pitch_Degree Nagib kamere -45.8 stupnjeva 

Gimbal_Yaw_Degree Horizontalni kut kamere 15 stupnjeva 

Gimbal_Roll_Degree Rotacija kamere 0 stupnjeva 

GPS_N Geografska širina 45.5107911388 stupnjeva 

GPS_E Geografska dužina 16.7602712222 stupnjeva 

 

Kako bismo pojednostavili problem detekcije/praćenja osobe na slikama, skup 

podataka u analiziranom slučaju oblikovan je tako da u slikama koje predstavljaju 

objekt za detekciju postoji samo jedna osoba. 

 

Tablica 2.6 Izračun koordinata osobe koja stoji na poznatoj lokaciji. 

Skup 
podataka 

Broj 
sni

mak
a 

Pojednostavljen 
elepsoidni model 

Zemlje 

DEM Algoritam 
mjerenja presjeka 

MeanError MaxError MinError MeanError MaxError MinError MeanError MaxError MinError 

PhantomLP1 10 8,96 10,54 7,87    13,45 14,38 12,71 

PhantomLP2 10 8,70 11,6 6,212    8,44 8,83 7,59 

PhantomVP1 4 18,37 29,26 8,412 10,94 15,83 5,630 4,79 5,45 4,00 

PhantomVP2 7 50,49 73,03 14,43 23,60 34,68 7,327 10,53 11,14 10,35 

PhantomVP3 9 51,31 98,20 22,82 29,91 66,89 14,76 12,39 14,47 9,73 

 

Za ocjenu metoda lokalizacije i predviđanja kretanja osoba provedeno je nekoliko 

eksperimenata u realnim uvjetima koji uključuju ove odnose kretanja osobe i 

bespilotne letjelice: 

1. osoba i bespilotna letjelica miruju 

2. osoba miruje, a bespilotna letjelica se giba 

3. osoba se giba dok bespilotna letjelica miruje/lebdi 

4. osoba i bespilotna letjelica se gibaju 
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Cilj eksperimenta u kojemu osoba i bespilotna letjelica miruju je provjeriti točnost 

metode tj. koliko je odstupanje od stvarne prostorne koordinate osobe. 

Eksperiment je izveden na dvije lokacije, terenu bez nagiba (livada) i s nagibom 

(vinograd). Na livadi su snimljena tri seta dok u vinogradu dva, u svakom setu se 

nalazi po 10 snimaka. U slučaju snimaka s letjelicom Phantom 4 Advance [28] 

FOV kamere je 84° dok je rezolucija slike 5472 x 3648 px, letjelica je lebdjela na 

visini od 30 m, Letjelica Mavic 2 Enterprise Advanced [29] letjela je također na 

visini od 30 m iznad točke uzlijetanja, rezolucija slika snimljenih ovom letjelicom 

je 8000 x 6000 dok je FOV kamere 84°. Iz dobivenih rezultata prikazanih u [19] 

vidljivo je da u slučaju snimaka na livadi srednja pogreška mjerenja iznosi 2,2 m 

zašto smatramo da je dovoljno precizan rezultat kako bi mogli locirati osobu na 

terenu. U slučaju vinograda pogreška iznosi 17 m dok se korištenjem DEM 

algoritma ta pogreška smanjuje na 8 m. 

Za eksperiment u kojemu osoba miruje a bespilotna letjelica se giba snimanje je 

također napravljeno na dvije lokacije. Na livadi su snimljena dva seta dok su u 

vinogradu snimljena tri. U setu primijenjen je realni scenarij u slučaju potrage za 

nestalom osobom ovakvim tipom letjelice, što znači da je letjelica letjela iznad 

terena snimajući slike u vremenskom razmaku od dvije sekunde. I u ovom 

eksperimentu kao i u prethodnom na livadi dobivamo preciznije rezultate u 

odnosu na vinogradi kao i korištenjem DEM algoritma, za set Phantom VP1 

poboljšanje iznosi 40%, Phantom VP 2 53% i Phantom VP3 46% u odnosu na 

rezultate kada ne nije koristio DEM.  

Slučaj u kojemu se osoba giba dok bespilotna letjelica lebdi na mjestu, snimljen 

je u dva seta na livadi i dva seta u vinogradu. Ovakva metoda traganja tipična je 

za velike letjelice gdje se letjelica nalaze na visinama između 100 i 300 m te 

prostor pregledavaju pomicanjem kamere. U ovom eksperimentu s letjelicom 

Mavic2 EA dobivena je srednja pogreška od 6,82 m za sve snimljene setove. 

U četvrtom eksperimentu giba se i osoba i bespilotna letjelica. Tri su seta 

snimljena na livadi a dva u vinogradu. U ovom slučaju osoba koja nosi Garmin 

GPSMAP 78 (kod snimanja s Phantom 4 Advanced) ili GPSMAP 65s ručni 
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navigacijski uređaj s podrškom za više frekvencijske sustave / višestruki GNSS 

(kod snimanja s Mavic 2 Enterprise Advanced) koji snima poziciju na kojoj se 

nalazi osoba svake sekunde i te podatke sprema u .gpx datoteku. Ova datoteka 

služi nam za određivanje točnosti našeg izračuna. Na isti način praćena je 

pozicija gibanja osobe u slučaju gibanja osobe dok letjelica miruje. Ovaj realan 

scenarij, pogotovo u početnoj fazi potrage. Srednja pogreška kreće se od 2,29 m 

do 13,95 m, što je dobar rezultat ako uzmemo u obzir da terenske ekipe za 

statistički krug u kojemu je vjerojatnost 75% da se osoba nalazi trebaju pretražiti 

19.625.000 m2. 

Peti eksperiment bavi se brzinom gibanja osobe, tj. izračunom iznosa brzine i 

smjera kretanja osobe što nam služi kao podloga za određivanje novog potražnog 

područja. 

Tablica 2.6 prikazuje rezultate (rada [19] i RAD 6.) procjene udaljenosti između 

izračunate GPS lokacije osobe pomoću navedena tri algoritma i točne GPS 

lokacije na kojoj se osoba nalazila. Algoritmi su testirani na pet različitih vlastitih 

skupova podataka, od kojih su PhantomLP1 i PhantomLP2 snimljena na livadi 

(ravan teren), dok su tri (PhantomVP1-PhantomVP3) snimljena u vinogradu 

(nagnuti teren). U skupovima podataka snimljenim na livadi nije primijećeno veće 

odstupanje između algoritama (npr. razlika srednje pogreške od 4,5 m za skup 

PhantomLP1), međutim, na terenima s različitim nagibima, algoritam mjerenja 

presjeka pokazuje značajno bolje rezultate od drugih algoritama. Najprecizniji 

rezultat ostvaren je u prvom setu snimljenom u vinogradu (PhantomVP1), s 

prosječnom pogreškom od 4,8 metara. U slučaju modela Zemljinog elipsoida i 

modela DEM, točnost je provjerena za svaku sliku u skupu podataka. 

Na temelju provedenih istraživanja preporuka je da se u akcijama traganja i 

spašavanja tijekom offline pregleda snimljenog materijala, u slučaju pozitivne 

detekcije tražene osobe koristi DEM model, ukoliko je osoba detektirana na samo 

jednoj snimci ili je iz snimaka vidljivo da se osoba giba. To je zato što DEM model 

pokazuje veću preciznost na terenima s nagibom u usporedbi s 

pojednostavljenim elipsoidnim modelom. Kod detekcije nepokretne osobe, 
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detektirane na više slika, predlaže se korištenje algoritma mjerenja presjeka, 

čime se postižu najbolji rezultati. 

Kada se osoba detektira na dvije ili više slika [19], iz dobivenih lokacija moguće 

je odrediti brzinu osobe ako se osoba giba. Ova informacija sužava područje 

potrage i skraćuje vrijeme potrebno zemaljskim timovima da pronađu osobu. Uz 

iznos brzine određuje se i smjer gibanja kao azimut između početnog i konačnog 

položaja na kojemu je osoba detektirana. Iz navedenog pomaka osobe kreira se 

novo potražno područje u koje se šalju zemaljski timovi za traganje. 

 

Tablica 2.7 Detektirane brzine kretanja osobe [19]. 

Skup podataka Broj 
snimaka 

Detektirana brzina  
(m/s) 

Brzina prema Garmin 
GPSMAP 78/ Garmin 
GPSMAP 65s (m/s) 

Phantom LM 1 DEM 13 1,172 1,085 

Phantom LM 2 DEM 20 1,639 0,799 

Phantom LM 3 DEM 10 1,199 1,257 

Mavic LM 1 DEM 10 1,088 1,344 

Mavic LM 2 DEM 5 1,172 1,259 

Mavic LM 3 DEM 7 1,617 1,284 

Mavic LM 4 DEM 3 1,141 1,166 

Phantom VM 1 DEM 6 2,571 1,096 

Phantom VM 2 DEM 5 1,053 1,192 

Mavic VM 1 DEM 5 2,062 1,029 

Mavic VM 2 DEM 6 0,421 0,854 

Mavic VM 3 DEM 5 0,563 0,371 

Mavic VM 4 DEM 12 1,386 1,250 

  

Tablica 2.7 prikazuje usporedbu detektirane i referentne brzine kretanja 

detektirane osobe na slici. Detektirana brzina predstavlja srednju brzinu 

određenu kao kvocijent prijeđenog puta (udaljenost između dvije detektirane 

GPS koordinate) i vremena (vrijeme proteklo između nastanka slika). Garmin 

brzina određena je korištenjem točaka izmjerenih pomoću ručnog GPS uređaja 

(u slučaju Phantom skupa podataka to je GPSMAP 78 dok je za Mavic2 EA skup 
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korišten GPSMAP 65). Broj snimaka u skupu podataka predstavlja broj slika na 

kojima je osoba detektirana.  

Paralelno s ovim istraživanjima, u suradnji s članovima tima Laboratorija za 

računalni vid, Fakulteta informatike i digitalnih tehnologija Sveučilišta u Rijeci, 

rađena su istraživanja određivanja geolokacije pomoću raycast metode koja daje 

rezultate velike preciznosti [30][31]. Nakon niza eksperimenata na terenima 

različitih konfiguracija i složenosti, korištenjem prilagođenog 3D generatora 

terena i raycast metodu, zajedno s detektorom osoba temeljenim na dubokoj 

neuronskoj mreži obučenoj na našem prilagođenom skupu podataka, definirali 

smo metodu za geolokaciju detektiranih osoba. Naša metoda prevladava 

probleme s kojima su se suočavale prethodne metode i postiže visoku 

pouzdanost, čak i uz samo 4 uzastopne detekcije. Također, kratko vrijeme obrade 

omogućuje učinkovitu analizu podataka snimljenih tijekom leta bespilotne 

letjelice, dokazavši da se predložena metoda može uspješno koristiti u stvarnim 

SAR misijama. 

 

2.5 Prototip sustava za detekciju i geolokalizaciju 

Sustav za detekciju i geolokalizaciju osoba u akcijama traganja i spašavanja 

primjenom bespilotnih letjelica zamišljen je kao sustav koji ima integriran 

YOLOv8m detektor objekata podešen za detekciju osoba snimljenih bespilotnom 

letjelicom u scenama traganja i spašavanja i algoritam za geolociranje na 

snimkama iz zraka. Sustav pomaže pilotu bespilotnog sustava da pronađe 

nestalu osobu na način da označi detektirane osobe na ekranu tijekom leta ili na 

snimkama tijekom naknadne pretrage na snimljenome materijalu. Jedan od 

ciljeva je da ovakav sustav bude jednostavan za korištenje, posebno u otežanim 

uvjetima izvan urbanog područja. 

Na Slika 2.10 vidimo prikaz sustava za traganje i spašavanje. Sustav je podijeljen 

u tri modula: modul u kojemu se vrši potraga i sakupljanje terenskih podataka, 

modul za detekciju i modu za geolokalizaciju. U fazi online pretrage terena , 

ukoliko udaljeni pilot bespilotne letjelice uoči nestalu osobu, šalje spasilačkom 
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timu lokaciju koju očita na upravljaču letjelice te tim pristupa osobi i završava dio 

potrage. Paralelno uz pretragu terena prikupljaju se podaci (slike i metapodaci). 

Sateliti povremeno snimaju digitalne karte nadmorske visine (DEM) i opskrbljuju 

bespilotnu letjelicu GPS podacima tijekom leta. Metapodaci uključuju položaj i 

orijentaciju bespilotne letjelice i podatke kamere. Slike i metapodaci snimaju se 

na SD memorijsku karticu i postaju dostupni za offline obradu nakon povratka 

bespilotne letjelice u bazu. 

 

 

Slika 2.10 Prikaz sustava za traganje i spašavanje 

 

U fazi offline obrade podataka za analizu slika snimljenih tijekom leta bespilotne 

letjelice, koristi se modul za automatsku detekciju osoba. Taj modul koristi 

prethodno obučen i fino podešen model Yolov8x duboke konvolucijske 

neuronske mreže za automatsku detekciju osoba, posebice ozlijeđenih i nestalih 

osoba. U geolokacijskom modulu, dobiveni podaci detekcije kombiniraju se s 

podacima o položaju bespilotne letjelice u jednoj CSV datoteci i DEM podacima 

terena na kojemu je vršena potraga. Korištenjem tih podataka i ranije 

predloženim algoritmima određuje se položaj detektirane osobe. Podaci o 
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geolokaciji prosljeđuju se spasilačkom timu koji pristupa osobi na zemlji i 

uspješno završava SAR misiju. 

Da bismo demonstrirali i testirali primjenu predloženih metoda, razvijen je prototip 

desktop aplikacije (Slika 2.11) namijenjen za upotrebu u operacijama traganja i 

spašavanja. Tijekom terenskog rada, upravljač bespilotne letjelice povezan je 

putem HDMI kabela (ili bežično putem WiFi-ja) s računalom na kojem se izvršava 

detektor, koji obavlja detekciju na slikama dobivenim iz videa tijekom leta (Slika 

2.12). Drugi dio aplikacije namijenjen je offline detekciji i detekciji na snimljenom 

videu ili na snimkama napravljenim tijekom leta na terenu. 

 

 

Slika 2.11 Korisničko sučelje aplikacije "OBS detektor". Aplikacija prikazuje detektiranu 
osobu zajedno s GPS koordinatama lokacije osobe. 
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 a)  b)  

Slika 2.12 Komponente sustava spremnog za pretragu terena. a) Kontroler bespilotne 
letjelice Phantom 4 Advanced je povezan s računalom putem HDMI kabela, na kojem 
je prikazana slika s ekrana kontrolera. b) Kontroler bespilotne letjelice Mavic 2 
Enterprise Advanced povezan je s računalom bežičnim putem. 

 

Na Slika 2.13 prikazan je primjer početne faze potrage za nestalom dementnom 

osobom na području Moslavine. Krugovi na slici označavaju statistička područja 

dosadašnjih pronalaska osoba istog tipa, poput demencije, djeteta, planinara, 

gljivara i sl. Prvi krug, prema statističkim podacima, predstavlja područje s 25% 

vjerojatnosti pronalaska nestale osobe (što iznosi 300 m), zeleni krug s 50% 

vjerojatnosti (radijus 1000 m), dok je plavi krug s 75% vjerojatnosti za pronalazak 

nestale osobe (radijus 2400 m). Crvenom linijom označena je zona subjektivne 

pretrage, koju će zemaljski timovi pretraživati, a zatim je podijeljena na zone 

označene slovima A, B, C i D. Zona A dodatno je podijeljena na segmente A1 - 

A10, gdje se šalju timovi za potragu. Zvjezdica na Slika 2.13 označava IPP (engl. 

Initial Planning Point), koji je obično točka posljednjeg viđenja ili zadnja poznata 

lokacija nestale osobe. U slučaju pronalaska nestale osobe u offline načinu 

traganja, njena lokacija na karti se izračunava (žuta točka na slici 16 unutar 

segmenta A3) te na temelju izračunate brzine, proteklog vremena od nastanka 

slike i azimuta kretanja osobe, kreira se novi segment pretrage (crveni trokut na 

Slika 2.13) 
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Slika 2.13 GIS u akcijama traganja i spašavanja [19]. 
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3 ZAKLJUČAK 

Ovaj doktorski rad istražuje mogućnosti, uspješnost i pouzdanost metoda 

umjetne inteligencije, konkretno dubokih konvolucijskih neuronskih mreža u 

detekciji osoba na snimkama iz zraka napravljenim pomoću bespilotnih letjelica 

na neurbanim područjima. U tu svrhu odabran je YOLOv4 model koji je postigao 

odlične rezultate prepoznavanja osoba na RGB snimkama iz zraka. Glavni 

eksperiment, a to je detekcija osoba u ne tipičnim pozama osoba, proveden je na 

prilagođenom vlastitom skupu podataka SARD snimljenom na području 

Moslavačke gore. Uz navedeni skup podataka kreiran je i skup podataka koji je 

služio za procijene algoritama za određivanje geolokacije prepoznate osobe.  

Yolov4 duboka konvolucijska neuronska mreža trenirana na MS COCO skupu 

podataka korištena je kao osnovna mreža koja je dodatno trenirana na SARD 

skupu podataka i sa proširenim Corr skupom podataka. Iako je osnovni model na 

skupu SARD imao prosječnu preciznost od 23% poslužio je kao dobra polazna 

točka za treniranje novog modela koji je dodatno treniran na snimkama bespilotne 

letjelice. 

Model YOLOv4(SARD) postigao je preciznost od 59,7% što je 37% bolji rezultat 

od osnovnog modela tj. ovaj model točno je prepoznao je 2512 osoba od mogućih 

2611 u skupu uz samo 88 netočnih prepoznavanja. Kako bi se provjerio rad 

modela u otežanim uvjetima model je testiran na Corr skupu podataka. Corr skup 

podataka sadrži slike koje dodatno simuliraju različite vremenske uvjete koji se 

mogu dogoditi u stvarnim situacijama traganja i spašavanja kao što su magla, 

snijeg i led. Također, zamućene slike su uključene u Corr set koje simuliraju 

zamućenje nastalo zbog kretanja kamere tijekom snimanja iz zraka. Korištenjem 

SARD i Corr skupova podataka postignuti su vrlo dobri rezultati za sve kategorije 

vremenskih uvjeta. 

Rezultati istraživanja transfera znanja pokazuju da su najuspješniji rezultati 

dobiveni korištenjem metode mrežnog transfera znanja, koja prenosi značajke 

naučene na velikim skupovima podataka, te metode transfera znanja zasnovane 

na instancama, gdje je model treniran na slikama domene koje odgovaraju 

slikama na kojima će se model testirati. Što znači da skup podataka kojim se 
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obučava konvolucijska neuronska mreža treba odgovarati području u kojemu će 

se vršiti potraga tj. učinkovitije je imati dva odvojena modela (primjerice, jedan za 

kontinentalnu Hrvatsku i drugi za obalni dio) umjesto jednog koji bi pokrivao čitavo 

područje Republike Hrvatske. 

Posljednja verzija YOLOv8 modela pokazala je iznimne performanse unatoč 

tome što je model trenirana na dijelu SARD skupa podataka. Verzija modela 

YOLOv8x postigla je srednje preciznosti od 63,8%, odnosno 91,3% za AP50 što 

ju čini najprikladniju za naknadnu analizu snimaka. Model YOLOv8s ostvaruje 

slične performanse srednje preciznosti od 60,6% i 90,3% AP50 ali značajno kraće 

vrijeme zaključivanja od 8 ms za jednu sliku (YOLOv8x treba 46,5 ms) što ga čini 

posebno prikladnim za primjenu tijekom akcija traženja i spašavanja. 

Ispitivanjem preciznosti geolokalizacije detektiranih osoba na zračnim snimkama 

provedeno je korištenje dva modela bespilotnih letjelica. Rezultati su pokazali da 

se primjenom algoritma presjeka postiže točnost unutar radijusa od 5 metara na 

terenima s nagibom, što se smatra dovoljno preciznim za lokalizaciju osoba od 

strane ljudskih timova na terenu. 

Osim spomenutih doprinosa, eksperimenti iz ovog rada pokazali su da 

kombinacija bespilotnih letjelica i duboke neuronskih mreža otvara širok spektar 

novih mogućnosti implementacije u različitim područjima. 

3.1 Znanstveni doprinos 

Doktorski rad temeljen je na predviđenim znanstvenim doprinosima, koji su 

prethodno navedeni u odjeljku 1.3. U ovom kontekstu, želimo ih ponovno 

istaknuti, pružajući dodatna pojašnjenja za svaki pojedinačni doprinos uz dokaze 

o ostvarenim rezultatima. 

Sukladno navedenom, očekivani znanstveni doprinosi su bili: 

• izrada baze slika i snimaka bespilotnom letjelicom 

nestalih/ozlijeđenih osoba na neurbanom području pripremljene za 

obučavanje nadziranog modela strojnog učenja. 
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U radovima RAD 3 i RAD 4 predstavljena je baza slika snimaka 

bespilotnom letjelicom (SARD) s pripadajućim proširenjem u smislu Corr 

skupa podataka, te je ista korištena u eksperimentalnom dijelu istraživanja 

u okviru radova objavljenih tijekom ovog doktorskog studija. 

Kreirana baza javno je objavljena i koristi se u znanstvenoj zajednici za 

definiranje novih modela za detekciju osoba i druga povezana istraživanja. 

 

• model sustava za detekciju osoba na snimkama snimljenih 

bespilotnom letjelicom u akcijama traganja i spašavanja 

 

Model za detekciju osoba na snimkama snimljenim bespilotnom letjelicom 

predstavljen je u RAD 4 i RAD 6, dok je u RAD 5 predstavljeno kako 

postojeći model tehnikama transfera znanja dodatno učiniti robusnijim i 

preciznijim u smislu detekcije osoba na snimkama snimljenim bespilotnom 

letjelicom.  

 

• metoda za procjenu udaljenosti detektirane osobe od položaja 

bespilotne letjelice 

 

U radu [19] opisana je metoda za geolokalizaciju detektirane osobe, što 

se pokazalo korisnijim timovima na terenu u usporedbi s udaljenošću 

detektirane osobe od letjelice. Svi algoritmi korišteni za određivanje 

geolokacije koriste neku od metoda za određivanje udaljenosti detektirane 

osobe od položaja letjelice. Uz poznatu GPS lokaciju letjelice i njenu 

orijentaciju, izračunava se azimut detektirane osobe koji, uz udaljenost, 

omogućuje dobivanje GPS koordinate osobe. 

 

• prototip sustava za detekciju osoba u akcijama traganja i spašavanja 

bespilotnim letjelicama  

Prototip sustava predstavljen je u poglavlju 2.5 te je testiran u realnim 

operacijama gorske službe spašavanja. Sustav poput ovog, uz detekciju i 

geolokalizaciju može pomoći u planiranju akcije traganja i spašavanja npr. 
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kroz segmentaciju potražnog područja na područja koja su pokrivena 

šumom, livadama, vodom i sl. Također ovakvi sustavi mogu na temelju 

detekcije osobe u pokretu predlagati novo potražno područje što može 

dovesti u bržeg pronalaska nestale osobe. Ove primjene su također 

testirane na terenu u realnim okolnostima. 

 

3.2 Buduća istraživanja 

Znanstveni doprinosi, proizašli iz ovog doktorskog rada kao početne točke, 

usmjereni su na eksperimentiranje i istraživanje mogućnosti primjene detektora 

objekata temeljenih na dubokim konvolucijskim neuronskim mrežama u akcijama 

traganja i spašavanja za detekciju nestale osobe. U daljnjem radu, fokus će biti 

na obučavanju modela dubokog učenja za detekciju osoba na RGB i termalnim 

snimkama. S obzirom na rastuću dostupnost bespilotnih letjelica s termo vizijskim 

kamerama, ovakav pristup pretrazi mogao bi dodatno ubrzati pronalazak, 

posebice u dijelu godine kada je vegetacija u mirovanju. 

U daljnjem istraživanju namjeravamo temeljito ispitati robusnost modela na 

različite vremenske uvjete, posebice noćno snimanje. Također, planiramo 

provesti eksperimente s više skupova podataka kako bismo poboljšali robusnost 

i sposobnost generalizacije našeg modela. Dodatno, planiramo istražiti 

mogućnosti stalnog obučavanja modela kako bismo model prilagodili novim 

situacijama. 

U cilju nastavka istraživanja koja su provedena u ovom doktorskom radu 

prijavljena su dva projekta, od kojeg je jedan dobio financiranje, a za drugi 

čekamo rezultate evaluacije: 

- NPOO projekt transfera tehnologije pod nazivom: „SAR-DAG: Sustav nadzora 

za pomoć u akcijama traganja i spašavanja temeljen na umjetnoj 

inteligenciji“ čiji je cilj razvoj sustava SAR-DAG za detekciju i geolokaciju osoba 

u neurbanim područjima pomoću modela računalnog vida i bespilotne letjelice 

koji će, u realnom vremenu ili naknadno offline, automatski detektirati unesrećene 
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osobe kao i njihovu preciznu lokaciju i/ili smjer te brzinu kretanja. Čekamo 

rezultate evaluacije. 

- UNIRI projekt, „SAR-DAG: Automatska detekcija i geolokacija osoba 

snimljenih dronom u akcijama traganja i spašavanja“, uniri-iskusni-drustv-23-

278, kojem je cilj poboljšati rezultate detekcije i geolokacije osoba snimljenih 

dronom u različitim realnim uvjetima.  
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4 SAŽETAK RADOVA 

4.1 RAD 1. Detekcija igračaka vojnika snimljena iz ptičje perspektive 

pomoću konvolucijskih neuronskih mreža / Detection of toy soldiers 

taken from a bird’s perspective using convolutional neural networks 

Ovaj rad opisuje upotrebu dva različita pristupa dubokom učenju za detekciju 

objekata kako bi se prepoznao vojnik igračka. Koristimo snimke igračaka vojnika 

u različitim pozama pod različitim scenarijima kako bismo simulirali izgled osoba 

na snimci snimljenoj bespilotnom letjelicom. Snimke iz ptičje perspektive danas 

se masovno koriste u potrazi za nestalim osobama u neurbanim područjima, 

graničnoj kontroli, kontroli kretanja životinja i slično. Usporedili smo single-shot 

multi-box detektor (SSD) s MobileNet ili Inception V2 kao okosnicom, SSDLite s 

MobileNet i Faster R-CNN u kombinaciji s Inception V2 i ResNet50. Rezultati 

pokazuju da Faster R-CNN uspješnije detektira male objekte kao što su vojnici 

od SSD-a, a vrijeme treninga Faster R-CNN-a mnogo je kraće od SSD-a. 

 

Dostupno na: https://link.springer.com/chapter/10.1007/978-3-030-33110-8_2  

 

Sambolek, S., and Ivašić-Kos, M., 2019. Detection of toy soldiers taken from a 

bird’s perspective using convolutional neural networks. In ICT Innovations 2019. 

Big Data Processing and Mining: 11th International Conference, ICT Innovations 

2019, Ohrid, North Macedonia, October 17–19, 2019, Proceedings 11 (pp. 13-

26). Springer International Publishing. 

  

https://link.springer.com/chapter/10.1007/978-3-030-33110-8_2
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4.2 RAD 2. Detekcija objekata na slikama s bespilotnih letjelica: kratki 

pregled napretka / Detecting objects in drone imagery: a brief 

overview of recent progress 

Detekcija objekata na snimkama bespilotnih letjelica (dronova) zahtjevan je 

zadatak i nedovoljno istražen problem koji u posljednje vrijeme dobiva sve više 

pažnje u istraživačkoj zajednici. Kod snimanja bespilotnom letjelicom ne mijenjaju 

se samo vrijeme i svjetlosni uvjeti, već se mijenjaju i visina i kut snimanja jer 

položaj kamere nije fiksan tijekom snimanja. Rad ima za cilj opisati mogućnosti 

korištenja bespilotnih letjelica u operacijama traganja i spašavanja te dati cjelovit 

pregled područja vezanog za detekciju osoba na snimkama bespilotnih letjelica. 

Rad uključuje opis javno dostupnih skupova podataka i usporedbu 

najsuvremenijih modela detekcije osoba na snimkama bespilotnih letjelica te 

završava prijedlogom budućih istraživanja. 

 

Dostupno na: https://ieeexplore.ieee.org/abstract/document/9245321  

 

Sambolek, S., and Ivašić-Kos, M., 2020. Detecting objects in drone imagery: a 

brief overview of recent progress. In 2020 43rd International Convention on 

Information, Communication and Electronic Technology (MIPRO) (pp. 1052-

1057). IEEE. 

  

https://ieeexplore.ieee.org/abstract/document/9245321
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4.3 RAD 3. Detekcija osoba na slikama s bespilotne letjelice / Person 

Detection in Drone Imagery 

Korištenje bespilotnih letjelica u operacijama traganja i spašavanja postalo je 

standard gotovo svugdje u svijetu. Poseban izazov u tim operacijama je 

automatska detekcija osoba u različitim terenima, situacijama, položajima tijela, 

vremenskim uvjetima te s različitih visina snimanja tijekom leta bespilotne 

letjelice. Ovaj rad istražuje točnost detekcije ljudi na slikama snimljenim 

bespilotnom letjelicom na postojećim skupovima podataka VisDrone, Okutama-

Action te na prilagođenom skupu podataka SARD, izrađenom kako bi simulirao 

scene traganja i spašavanja. Kao detektor korišten je Faster R-CNN s FPN kao 

osnovom, prethodno obučen na COCO skupu podataka. Detektor osoba dodatno 

je treniran na SARD skupu podataka koji sadrži 1,981 slika i na podskupu 

VisDrone skupa podataka. Nakon transfera znanja postignuto je značajno 

poboljšanje rezultata detekcije osoba na slikama snimljenim bespilotnom 

letjelicom, posebno u pogledu srednje preciznosti i odziva. 

 

Dostupno na: https://ieeexplore.ieee.org/abstract/document/9243737  

 

Sambolek, S., and Ivasic-Kos, M., 2020. Person detection in drone imagery. In 

2020 5th International Conference on Smart and Sustainable Technologies 

(SpliTech) (pp. 1-6). IEEE. 

  

https://ieeexplore.ieee.org/abstract/document/9243737
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4.4 RAD 4. Automatska detekcija osoba u operacijama traganja i 

spašavanja pomoću dubokih konvolucijskih neuronskih mreža / 

Automatic Person Detection in Search and Rescue Operations Using 

Deep CNN Detectors 

Zbog sve većeg broja ljudi koji se bave raznim adrenalinskim aktivnostima ili 

avanturističkim turizmom i borave u planinama i drugim teško pristupačnim 

mjestima, raste potreba organizacije operacija traganja i spašavanja (SAR) radi 

pružanja pomoći i zdravstvene skrbi ozlijeđenima. Cilj SAR operacije je pretražiti 

najveće područje teritorija u najkraćem mogućem vremenu i pronaći izgubljenu ili 

ozlijeđenu osobu. Danas su dronovi (bespilotne letjelice ili UAV) sve više 

uključeni u operacije traženja, budući da mogu brzo snimiti veliko, kontrolirano 

područje. Međutim, detaljna analiza velike količine snimljenog materijala ostaje 

problem. Čak i za stručnjaka nije lako pronaći tražene osobe koje su relativno 

male u odnosu na područje gdje se nalaze, često skrivene vegetacijom ili 

stopljene s tlom te u neobičnim pozama zbog padova, ozljeda ili iscrpljenosti. 

Stoga je automatska detekcija osoba i objekata na slikama i videozapisima 

snimljenim bespilotnim letjelicama u ovim operacijama vrlo značajna. U ovom 

radu istraživana je pouzdanost postojećih detektora najnovije generacije poput 

Faster R-CNN, YOLOv4, RetinaNet i Cascade R-CNN na skupu podadataka 

VisDrone i prilagođenom skupu podataka SARD, izrađenom kako bi simulirao 

scenarije spašavanja. Nakon treniranja modela na odabranim skupovima 

podataka, rezultati detekcije uspoređeni su. Zbog visoke brzine, preciznosti i 

malog broja lažnih detekcija, detektor YOLOv4 odabran je za daljnje ispitivanje. 

Analizirani su rezultati modela YOLOv4 u vezi s različitim veličinama mreže, 

različitim točnostima detekcije te postavkama transfera znanja. Također je 

ispitana robusnost modela na vremenske uvjete i zamućenje uzrokovano 

pokretom. Rad predlaže model koji se može koristiti u SAR operacijama zbog 

izvrsnih rezultata u detekciji ljudi u scenarijima traganja i spašavanja. 

 

Dostupno na: https://ieeexplore.ieee.org/abstract/document/9369386  

 

https://ieeexplore.ieee.org/abstract/document/9369386
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Sambolek, S., and Ivasic-Kos, M., 2021. Automatic person detection in search 

and rescue operations using deep CNN detectors. IEEE Access, 9, 37905-

37922.  



47 

 

4.5 RAD 5. Metode transfera znanja za treniranje detektora osoba na 

slikama s bespilotnih letjelica / Transfer Learning Methods for 

Training Person Detector in Drone Imagery 

Duboke neuronske mreže ostvaruju izvrsne rezultate na različitim zadacima 

računalnog vida, ali obučavanje tih modela zahtijeva velike količine označenih 

slika koje često nisu dostupne. Kao alternativno rješenje za postizanje boljih 

rezultata i veće sposobnosti generalizacije modela, a bez potrebe za velikim 

brojem podataka, koristi se pristup transfera znanja, odnosno prilagodbe 

prethodno naučenih modela zadatku koji je pred nama. 

Cilj ovog rada je poboljšati rezultate detekcije ljudi u scenama traganja i 

spašavanja primjenom detektora YOLOv4. Budući da je izvorni skup podataka 

SARD za treniranje detektora ljudi u scenama traganja i spašavanja ograničen, 

razmatraju se različiti pristupi transfera znanja. Dodatno, koristi se skup podataka 

VisDrone koji sadrži slike s bespilotnih letjelica u urbanim područjima kako bi se 

povećao skup podataka za treniranje i time poboljšali rezultati detekcije osoba. 

 

Dostupno na: https://link.springer.com/chapter/10.1007/978-3-030-82196-8_51  

 

Sambolek, S., and Ivašić-Kos, M., 2022. Transfer learning methods for training 

person detector in drone imagery. In Intelligent Systems and Applications: 

Proceedings of the 2021 Intelligent Systems Conference (IntelliSys) Volume 2 

(pp. 688-701). Springer International Publishing. 

  

https://link.springer.com/chapter/10.1007/978-3-030-82196-8_51
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4.6 RAD 6. Detekcija osoba i procjena geolokacije na zračnim slikama s 

bespilotnih letjelica: Eksperimentalni pristup / Person Detection and 

Geolocation Estimation in UAV Aerial Images: An Experimental 

Approach 

Upotreba bespilotnih letjelica u operacijama traganja i spašavanja postala je 

neophodna za pomoć u pronalasku i spašavanju nestale ili ozlijeđene osobe, 

budući da smanjuje vrijeme i troškove pretrage, povećava područje nadzora i 

sigurnost ekipe za spašavanje. Detekcija ljudi na zračnim slikama izazovna je i 

zamorna zadaća kako za obučene ljude, tako i za algoritme detekcije zbog 

varijacija u položaju, preklapanju, razmjeru, veličini i lokaciji na kojoj se osoba 

može nalaziti na slici, kao i zbog loših uvjeta snimanja, smanjene vidljivosti, 

zamućenosti zbog kretanja i slično. U ovom radu, generički model detekcije 

objekata YOLOv8, prethodno obučen na COCO skupu podataka, prilagođava 

se na prilagođenom SARD skupu podataka koji se koristi za optimizaciju 

modela za detekciju osoba na zračnim slikama planinskih krajolika snimljenih 

bespilotnom letjelicom. Različiti modeli algoritama obitelji YOLOv8 prilagođeni 

SARD skupu eksperimentalno su testirani, a pokazano je da model YOLOv8x 

postiže najvišu srednju prosječnu preciznost (mAP@0,5:0,95) od 63,8%, uz 

vrijeme zaključivanja od 4,6 ms, što pokazuje potencijal za stvarnu upotrebu u 

operacijama traganja i spašavanja. Testirali smo tri algoritma za geolokaciju u 

stvarnim uvjetima te predložili izmjene i preporuke za korištenje u misijama 

traganja i spašavanja kako bi se odredila geolokacija osobe snimljene 

bespilotnom letjelicom nakon automatske detekcije s modelom YOLOv8x. 

 

Dostupno na: 

https://www.scitepress.org/PublicationsDetail.aspx?ID=ptBwsiKhlSk=&t=1 

 

Sambolek Saša and Marina Ivašić-Kos. "Person Detection and Geolocation 

Estimation in UAV Aerial Images: An Experimental Approach." Proceedings of 

the 13th International Conference on Pattern Recognition Applications and 

https://www.scitepress.org/PublicationsDetail.aspx?ID=ptBwsiKhlSk=&t=1
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Methods - ICPRAM; ISBN 978-989-758-684-2; ISSN 2184-4313, SciTePress, 

pages 785-792. DOI: 10.5220/0012411600003654 
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4.7 Ostali radovi koji su rezultat istraživanja u okviru doktorata 

 

4.7.1 Lokalizacija osobe i određivanje udaljenosti pomoću raycast 

metode / Person localization and distance determination using the 

raycast method 

Korištenjem bespilotnih letjelica u akcijama traganja i spašavanja (SAR), 

detekcija nestalih osoba moguća je tijekom ili nakon leta analizom snimljenog 

materijala. Međutim, jednako važan je i proces lokalizacije osobe kako bi 

spašavatelji mogli brzo pristupiti osobi koja treba pomoć. Predlažemo upotrebu 

metode raycastinga za precizno određivanje lokacije osobe i njezine udaljenosti 

od bespilotne letjelice, koristeći niz monokularnih slika snimljenih letjelicom. 

Predloženu metodu smo testirali in silico, koristeći proceduralni simulator 

prilagođen specifičnim uvjetima leta, uključujući i situacije s vjetrom. Naši rezultati 

ukazuju da višestruki raycasting rješava problematične telemetrijske podatke te 

da postoji optimalan broj iteracija potrebnih za preciznu lokalizaciju, ovisno o 

telemetrijskom šumu specifičnom za svaku bespilotnu letjelicu. 

 

Dostupno na: https://ieeexplore.ieee.org/abstract/document/9566329  

 

Paulin, G., Sambolek, S., & Ivasic-Kos, M. (2021, September). Person 

localization and distance determination using the raycast method. In 2021 6th 

International Conference on Smart and Sustainable Technologies (SpliTech) (pp. 

1-5). IEEE. 

  

https://ieeexplore.ieee.org/abstract/document/9566329
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4.7.2 Primjena metode raycast za geolokalizaciju osoba i određivanje 

udaljenosti pomoću slika snimljenih bespilotnom letjelicom u 

realnim scenarijima traganja i spašavanja na kopnu / Application of 

raycast method for person geolocalization and distance 

determination using UAV images in Real-World land search and 

rescue scenarios 

Ljudi vole provoditi vrijeme u divljini iz mnogo razloga. No, povremeno se izgube 

ili ozlijede, a njihovo preživljavanje ovisi o brzom pronalaženju i spašavanju. 

Nakon dojave o nesreći, pokreće se akcija traganja i spašavanja (SAR), 

mobilizirajući sve dostupne resurse. Uključivanjem bespilotnih letjelica u SAR 

operacije omogućena je primjena računalnog vida za automatsku detekciju 

osoba na snimkama iz zraka. Pri pretraživanju bespilotnom letjelicom, prednost 

se daje fotografijama koje obuhvaćaju veće površine unutar jedne slike, što 

smanjuje vrijeme pretraživanja. No, s takvim fotografijama dolazi i promjena 

mjerila, što otežava lokalizaciju osobe u stvarnom svijetu i određivanje udaljenosti 

od letjelice. Kako bismo riješili ovaj izazov, inspirirani našim prethodnim 

simulacijama, istražili smo primjenu metode raycasta za geolokalizaciju osoba i 

određivanje udaljenosti u stvarnim scenarijima. U ovom radu predstavljamo 

sustav koji precizno geolocira osobe automatski detektirane na offline obrađenim 

slikama snimljenim tijekom SAR misije. Nakon niza eksperimenata na terenima 

različitih konfiguracija i složenosti, korištenjem prilagođenog 3D generatora 

terena i raycastera, zajedno s detektorom osoba temeljenim na dubokoj 

neuronskoj mreži obučenoj na našem prilagođenom skupu podataka, definirali 

smo metodu za geolokaciju detektiranih osoba pomoću raycast metode. Naša 

metoda prevladava probleme s kojima su se suočavale prethodne metode i 

postiže visoku pouzdanost, čak i uz samo 4 uzastopne detekcije. Također, kratko 

vrijeme obrade omogućuje učinkovitu analizu podataka snimljenih tijekom leta 

bespilotne letjelice, dokazavši da se predložena metoda može uspješno koristiti 

u stvarnim SAR misijama. Predložili smo i novu metriku procjene (ErrDist) za 

geolokalizaciju osoba te dali preporuke za korištenje predloženog sustava u 

stvarnim scenarijima. 
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Dostupno na: 

https://www.sciencedirect.com/science/article/abs/pii/S0957417423019978  

 

Paulin, G., Sambolek, S., & Ivasic-Kos, M. (2024). Application of raycast 

method for person geolocalization and distance determination using UAV 

images in Real-World land search and rescue scenarios. Expert Systems with 

Applications, 2024, 237, 121495. https://doi.org/10.1016/j.eswa.2023.121495.  

  

https://www.sciencedirect.com/science/article/abs/pii/S0957417423019978
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4.7.3 Određivanje geolokacije osobe detektirane na slici snimljenoj 

bespilotnom letjelicom / Determining the geolocation of a person 

detected in an image taken with a drone 

Detekcija osoba pomoću bespilotnih letjelica postaje sve popularnija u 

operacijama traganja i spašavanja, upravljanju katastrofama ili praćenju osoba. 

Međutim, detekcija i geolociranje osobe koja stoji ili se kreće u neurbanom 

području na temelju slika iz zraka ima problema s malim objektima, složenim 

scenama i senzorima niske točnosti. Za rješavanje ovih problema, ovaj rad razvija 

okvir za detekciju i geolociranje osobe te određivanje smjera i brzine kretanja ako 

je osoba detektirana na više fotografija, korištenjem monokularne kamere, GPS 

prijamnika i senzora ugrađenih u letjelici. Prvo, metoda temeljena na YOLOv4 

modelu dubokog učenja, trenirana na skupu podataka SARD, korištena je za 

detekciju osoba zbog svoje učinkovitosti i djelotvornosti u detekciji malih objekata 

u složenim scenama. Zatim je predstavljena metoda pasivne geolokacije za 

izračunavanje GPS koordinata osobe. Na kraju, na temelju dobivenih podataka, 

sustav predlaže novo potražno područje. Predloženi sustav testiran je pomoću 

dva drona DJI Phantom 4 Advanced i DJI Mavic 2 Enterprise Advanced. 

Eksperimentalni rezultati pokazuju da se na ovaj način može detektirati i 

geolocirati osobu sa zadovoljavajućom točnošću čak i u slučaju nagnutog terena, 

koristeći DEM datoteke područja pretraživanja. Sustav pokazuje svoju 

sposobnost u stvarnom svijetu, sugerirajući njegovu potencijalnu primjenu u 

operacijama traganja i spašavanja. 

 

Dostupno na: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4373987  

Poslano na recenziju: 1. ožujka 2023. još nije stigla recenzija 

Sambolek, Sasa and Ivasic-Kos, Marina, Determining the Geolocation of a 

Person Detected in an Image Taken with a Drone. Available at SSRN: 

https://ssrn.com/abstract=4373987 or http://dx.doi.org/10.2139/ssrn.4373987 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4373987
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1. Introduction 

Convolutional neural network (CNN) [21] is a particular architecture of artificial 

neural networks, proposed by Yann LeCun in 1988. The key idea of CNN is that 

the local information in the image is important for understanding the content of 

the image so a filter is used when learning the model, focusing on the image, part 

by part, as a magnifying glass. The practical advantage of such approach is that 

CNN uses fewer parameters than fully-connected neural networks, which 

significantly improves learning time and reduces the amount of data needed to 

train the model.  

Recently, after AlexNet [22] popularized deep neural networks by winning 

ImageNet competitions, convolutional neuronal networks have become the most 

popular model for image classification and object detection problems. Image 

classification predicts the existence of a class in a given image based on a model 

that is learned on a set of labeled images. There are several challenges 

associated with this task, including differences between objects of the same 

class, similarities between objects of different classes, object occlusions, different 

object sizes, various backgrounds. The appearance of an object on the image 

might change due to lighting conditions, position (height, angle) of the camera 

and distance from the camera and similar [19]. The detection of an object beside 

the prediction of the class to which the object belongs, provides information about 

its location in the image, so the challenge is to solve both the classification and 

location task. The detected object is most often labeled with the bounding box 

[23], but there are also detectors that segment objects at the pixel level and mark 

the object using its silhouette or shape [14, 5]. 

Some of today's most widely used deep convolution neural networks are Faster 

R-CNN, RFCN, SSD, Yolo, RetinaNet. These networks are unavoidable in tasks 

such as image classification [22] and object detection [26], analysis of sports 

scenes and activities of athletes [6], disease surveillance [25], surveillance and 

detection of suspicious behavior [2019], describing images [17], development 

and management of autonomous vehicles in robotics [10], and the like. 
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In this paper, we have focused on the problem of detecting small objects on 

footage taken by the camera of a mobile device or drones from a bird's eye view. 

These footages are today widely used when searching for missing persons in 

non-urban areas, border control, animal movement control, and the like. 

In [1], drones were used to locate missing persons in search and rescue 

operations. Authors have used HOG descriptors [8]. In [3] the SPOT system is 

de-scribed. It uses an infrared camera mounted on an Unmanned Aerial Vehicle 

and Faster R-CNN to detect villains and control animals in images. A modified 

MobileNet architecture was used in [9] for body detection and localization in the 

sea. Images were shot both with an optical camera and a multi-spectral camera. 

In [33] YOLO was used for detection of objects on images taken from the air. In 

[2424], three models of deep neural networks (SSD, Faster R-CNN, and 

RetinaNet) were analyzed for detection tasks on images collected by crewless 

air-craft. The authors showed that RetinaNet was faster and more accurate when 

detecting objects. The dependence analysis of Faster R-CNN, RFCN, and SSD 

speed and precision in case of running on different architectures was given in 

[18]. 

In this paper, we will approximate the problem of detecting small objects on bird-

eye viewings or drone shots with the problem of detecting toy soldiers captured 

by the camera of a mobile device.  

The rest of the paper is organized as follows: in Section II. we will present the 

architecture of CNN networks, ResNet50, Inception and MobileNet with Faster R-

CNN and SSD localization methods that are used in our research. We have 

examined their performance on a custom toy soldiers’ dataset. The comparison 

of the detector performance and discussion are given in Section III. The paper 

ends with a conclusion and the proposal for future research. 

2. Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are adapted to solve the problems of 

high-dimensional inputs and inputs that have many features such as in cases of 

image processing and object classification and detection. The CNN network 
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consists of a convolution layer, after which the network has been named, 

activation and pooling layers, and at the end is most often one or more fully 

connected layers. 

The convolution layer refers to a mathematical operator defined over two 

functions with real value arguments that give a modified version of one of the two 

original functions. The layer takes a map of the features (or input image) that 

convolves with a set of learned parameters resulting in a new two-dimensional 

map. A set of learned parameters (weights and thresholds) are called filters or 

kernels. The filter is a 2D square matrix, small in size compared to the image to 

which it is applied (equal depths as well as the input). The filter consists of real 

values that represent the weights that need to be learned, such as a particular 

shape, color, edge in order to give the network good results. 

The pooling layer is usually inserted between successive convolution layers, to 

re-duce map resolution and increase spatial invariance - insensitivity to minor 

shifts (rotations, transformations) of features in the image as well as to reduce 

memory requirements for the implementation of the network. Along with the most 

commonly used methods (arithmetic mean and maximum [44]), there are several 

pooling methods used in CNN, such as Mixed Pooling, Lp Pooling, Stochastic 

Pooling, Spatial Pyramid Pooling and others [13]. 

The activation function propagates or stops the input value in a neuron depending 

on its shape. There is a broader range of neuron activation functions such as 

linear activation functions, jump functions, and sigmoidal functions. The jump 

functions and sigmoidal functions are a better choice for neural networks that 

perform classification while linear functions are often used in output layers where 

unlimited output is required. Newer architectures use activation functions behind 

each layer. One of the most commonly used activation functions in CNN is the 

ReLU (Rectified Linear Unit). In [13], the activation functions used in recent works 

are presented: Leaky Relu (LReLU), Parametric ReLU (PReLU), Randomized 

ReLU (RReLU), Exponential Linear Unit (ELU) and others. 

A fully connected layer is the last layer in the network. The name of the fully 

connected layer indicates its configuration: all neurons in this layer are linked to 
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all the outputs of the previous layer. Fully connected layers can be viewed as 

special types of convolution layers where all feature maps and all filters are 1 x 

1. 

Network hyperparameters are all parameters needed by the network and set 

before the network provides data for learning [2]. The hyper-parameters in 

convolution neural networks are learning rate, number of epochs, network layers, 

activation function, initialization weight, input pre-processing, pooling layers, error 

function. 

Selecting the CNN network for feature extraction plays a vital role in object 

detection because the number of parameters and types of layers directly affect 

the memory, speed, and performance of the detector. In this paper, three types 

of networks have been selected for feature extraction: ResNet50, Inception, and 

MobileNet. 

2.1 ResNet  

ResNet50 is a 50-layer Residual Network. There are other variants like 

ResNet101 and ResNet152 also [15]. The main innovation of ResNet is the skip 

connection. The skip connection in the Fig. 1 is labeled “identity.” It allows the 

network to learn the identity function that allows passing the input through the 

block without passing through the other weight layers. This allows stacking 

additional layers and building a deeper network, as well as overcoming the 

vanishing gradient problem by allowing network to skip through layers if it feels 

they are less relevant in training. Vanishing gradients often occurs in deep 

networks if no adjustment is performed because during backpropagation gradient 

gets smaller and smaller and can make learning difficult. 
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Figure 1. A residual block, according to [15] 

2.2 Inception 

GoogLeNet has designed a module called Inception that approximates a sparse 

CNN with a normal dense construction, Fig. 2. The idea was to keep a small 

number of convolutional filters taking into account that only a small number of 

neurons are effective. The convolution filters of different sizes (5x5, 3x3, 1x1) 

were used to capture details on varied scales. In the versions Inception v2 and 

Inception v3, the authors have proposed several upgrades to increase the 

accuracy and reduce the computational complexity [28, 29]. 

 

Figure 2. Inception module, according to [28] 

2.3 MobileNet 

MobileNet is a lightweight architecture designed for use in a variety of mobile 

applications [16]. It filters the input channels by running a single convolution on 
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each color channel instead of combining all three channels and flattening them 

all. 

2.4 Faster R-CNN 

In the earlier version of R-CNN [11] and Fast R-CNN [12], region proposals are 

generated by selective search (SS) [31] rather than using convolutional neural 

network (CNN). The SS algorithm was the "bottleneck" in region proposal 

process, so in the Faster R-CNN a separate convolution network (RPN) is used 

to propose regions. The RPN network then checks which location contains the 

object. Appropriate locations and bounding boxes are sent to the detection 

network that determines the class of the object and returns the bounding box of 

that object. This kind of design has speed up the object detection. 

2.5 Single Shot Detector 

The Single Shot Detector (SSD) method for objects detection uses deep network 

that omits the stage of bounding box proposal and allows features extraction 

without losing accuracy. The approach assumes that potential objects can be 

located within the predefined bounding box of different size and side ratios 

centered in each location of feature map. The network for each bounding box 

determines the probability measure for the presence of each of the possible 

categories and adjusts the position of the box to frame the object better. In order 

to overcome the problems inherent in the difference in object sizes, the network 

makes decisions by combining prediction from several feature maps of different 

dimensions [23]. 

3. Comparison of SSD and Faster RCNN detection performance on 

scenes of toy soldiers 

We have tested and compared the accuracy of the object detector for a class of 

person (toy soldier) at different scene configurations, changing the number of 

objects, their position, background complexity and lighting conditions. The goal 

is to select the appropriate model for future research on the detection of missing 

persons in rescue operations. 
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We used publicly available pre-trained models with corresponding weights 

learned on the Microsoft's common object and context (COCO) dataset [7] by 

transfer learning and fine-tune the model parameters on our data set. 

We used the Tensorflow implementation [30] of the CNN model and the Python 

programming language in the Windows 10 x64 environment. All models were 

trained on a laptop with the i5-7300HQ CPU and the Ge-Force GTX 1050Ti 4GB 

GPU. The number of epochs and the training time differs among models and 

depends on loss. The parameters of each model have not been changed and 

were equal to the parameters of the original model. 

3.1 Data Preprocessing 

The data set contains 386 images shot by a mobile device camera (Samsung 

SM-G960F) at a 2160x2160px resolution, without using a tripod. Each image 

contains multiple instances of toy soldiers, taken under different angles and 

different lighting conditions with a different background type from a uniform to 

complex (such as grassy surfaces). The images are divided into a learning and 

test set in a cutoff of 80:20, and their resolution is reduced to 720x720px. In total, 

there are 798 toy soldiers in the images, of which 651 are in learning set and 147 

in test. 

The LabelImg tool was used to plot bounding box and create responsive XML 

files with stored xmin, xmax, ymin, ymax position for each layout. Images and 

corresponding XML files are then converted to TFRecord files that are 

implemented in the Tensorflow environment. TFRecord files merge all the images 

and notes into a single file, thus reducing the training time by eliminating the need 

of opening each file. 

3.2 Methods 

SSD with MobileNet 

This method uses SSD for detection while the MobileNet network is used as a 

feature extractor. The output of MobileNets is processed using the SSD. We have 

tested the detection results of two versions of the MobileNet network (V1 and V2), 

referred to as ssd_mobilenet_v1 and ssd_mobilenet_v2. Both networks were pre-
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trained (ssd_mobilenet_v1_coco_2018_01_28 and 

ssd_mobilenet_v2_coco_2018_03_29) on COCO dataset of 1.5 million objects 

(80 categories) in 330,000 images. We trained the network using toy soldier’s 

images width bounding box as input to the training algorithm. The network 

parameters include: prediction dropout probability 0.8, kernel size 1 and a box 

code size set to 4. The root mean square propagation optimization algorithm is 

used for optimizing the loss function with learning rate of 0.004 and decay factor 

0.95. At the non-maximum suppression part of the network a score threshold of 

1×10−8 is used with an intersection of union threshold of 0.6, both the 

classification and localization weights are set to 1. Ssd_mobilenet_v1 was trained 

for 17,105 steps and ssd_mobilenet_v2 for 10,123 steps. 

SSD with Inception-V2 

The combination of SSD and Inception-V2 is called SSD-Inception-V2. In this 

case, SSD is used for detection while Inception-V2 extracts features. We trained 

the network using predefined ssd_inception_v2_coco_2018_01_28 weights. The 

training process uses similar hyperparameters as SSD with MobileNet, except in 

this case of the kernel size that is set to 3. The network was trained for 6,437 

steps. 

SSDLite with MobileNet-V2 

SSDLite [27] is a mobile version of the regular SSD, so all regular convolutions 

with detachable convolutions are replaced (depthwise followed by 1 × 1 

projection) in SSD layers. This design is in line with the overall design of 

MobileNet and is considered to be much more efficient. Compared to SSD, it 

significantly reduces the number of parameters and computing costs. We trained 

the network using pre-trained ssdlite_mobilenet_v2_coco_2018_05_09 weights. 

Similar hyperparameters were used as before, and the network was trained for 

14,223 steps. 

Faster R-CNN with ResNet50 

Faster R-CNN detection involves two phases. The first phase requires a region 

proposal network (RPN) that allows simultaneous prediction of object anchors 
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and confidence (objectiveness) from some internal layers. For this purpose, a 

residual network with a depth of 50 layers (ResNet50) is used. The grid anchor 

size was 16 x 16 pixels with scales [0.25, 0.5, 1.0, 2.0], a non-maximum-

suppression-IoU threshold was set to 0.7, the localization loss weight to 2.0, 

objectiveness weight to 1.0 with an initial crop size of 14, kernel size was 2 with 

strides set to 2. The second phase requires information from the first phase to 

predict the class label and the bounding box. We trained the network using pre-

trained faster_rcnn_resnet50_coco_2018_01_28 weights. The IoU threshold for 

prediction score was set to 0.6; the momentum (SGD) optimizer for optimizing 

the loss functions has initial learning rate set to 0.0002 and momentum value 0.9. 

The network was trained for 12,195 steps. 

Faster R-CNN with Inception-V2 

Faster R-CNN uses the Inception V2 feature extractor to get features from the 

input image. The middle layer of the Inception module uses the RPN network 

component to predict the object anchor and confidences. As in previous cases, 

the network was trained with pre-trained fast-

er_rcnn_inception_v2_coco_2018_01_28 weights. Simi-lar hyperparameters 

were used as in case of Faster R-CNN with ResNet50 and the learning process 

lasted for 33,366 steps. 

3.3 Results and discussion 

We compared the results of the SSD model and the Faster RCNN object detector 

based on CNNs on our toy soldiers test set concerning mean average precision 

(mAP) [32]. A detection is considered as true positive when more than half of the 

area belonging to the soldier is inside the detected bounding box. Detectors 

performance are also evaluated in terms of recall, precision and F1 score. 

 
𝐹1 =

2 ∙ Recall ∙ Precision

(Recall + Precision)
 (1) 

Fig. 3. shows a comparison of results of models that were additionally learned on 

our learning set with original models trained on the COCO dataset. The results 

show a significant increase in the average precision of all models after training 

on our dataset. The best results of over 96% were achieved with the faster_rcnn 
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network. The implementation of faster_rcnn with Resnet50 proved to be 

somewhat successful than architecture with the Inception Network. Faster_rcnn 

has also shown the best classification results concerning F1 score and Recall 

[19], Fig. 4. All classification result of all models in terms of precision, recall and 

F1 score are shown in Fig. 4. 

 

Fig. 3. Comparison of the evaluation result of the toy soldier's detection 

 

Fig. 4. Comparison of the results of the trained model detection concerning the F1, 

Precision and Recall metrics 

Fig. 5. shows the time required to train the model on our learning set. The least 

amount of time was needed to learn the faster_rcnn model. The longest, more 

than 3.5 times longer than learning the fast_rcnn model, was needed to learn the 

ssdlitle-mobilenet_v2 model. 
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Fig. 5. Comparison of model learning time on the custom dataset 

Model performances are additionally presented in two scenarios: simple and 

complex. The simple scenario has a uniform background color and up to 8 visible 

objects near the camera, which may overlap. A complex scenario is considered 

when the number of objects in a scene is equal to and greater than 9, away from 

the camera and with occlusions. A Fig. 6. shows an example of the detection 

results in the case of a simple scenario. The images marked A through F show 

the same scenarios with a uniform background with a wooden pattern and five 

soldiers in different poses such as walking with a gun, shooting, crawling and 

lying down. 

 

Figure 6. The detection results in the case of a simple scenario 
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In all the images, the results of individual models are indicated in the following 

way: 

• A – ssd_mobilenet_v1, 

• B – ssd_mobilenet_v2, 

• C – ssdlite_mobilenet_v2, 

• D – ssd_inception_v2, 

• E – faster_rcnn_resnet_50, 

• F – faster_rcnn_inception_v2. 

In figure A, no soldier was detected, B has 3 of 5 true positive (TP) detections, C 

and D only one detected soldier, while E has 4 TP with one false positive (FP) 

detection, and F all positive detections with one FP. 

In the case of a uniform background with higher contrast to soldiers, as in Fig. 7. 

all models have detected with greater success in comparison to the previous 

case, even though in this example, we have a higher number of soldiers and at a 

greater distance. There were 11 soldiers on the scene, but no model detected a 

soldier on a tank of the identical color. The best results were achieved in E and F 

images with 10 successful detections, then model B with 7, and then models A 

and C follow. The sequence of the success of the model is similar to the one in 

the previous example. 
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Figure 7. The case of a uniform background with higher contrast to soldiers 

Fig. 8. shows a complex scene in which soldiers are partially covered with grass. 

The camera's position is not as in the previous cases from the top, but from the 

side. The models in Figures A and D did not have any detection, while B detected 

almost the entire image as a soldier. C has one positive and two false detections, 

E has repeatedly detected the same object, but with different rectangle size and 

has a false detection, and F has an accurate, true positive detection. 

 

Figure 8. A complex scene in which soldiers are partially covered with grass 
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Fig. 9. shows two scenes with a camera positioned from a bird’s perspective at a 

greater distance than in earlier cases and with 8 soldiers on a uniform blue 

background. Model A detected only one soldier (Fig. 9.a) whereas B, C, and D 

had no detection (Fig. 9.b). Model E detected all soldiers (9.d), while F detects all 

soldiers plus three false detections (9.e). 

In the second scene recorded from a greater distance on the grass, Fig. 9.c and 

9.f, only F detects one soldier out of 7 possible. Examples show that all models 

have prob-lems with object detection when an object is less than 50px in height 

or width, espe-cially when the contrast of the subject and background is not 

significant, and when the background is more complex than in the case of grass. 

Fig. 10 is an example of a scene with two soldiers with a cluttered background. E 

and F models detected both soldiers with a probability of detection of 100% (Fig. 

10.a, Fig. 10.c, and Fig. 10.e), while model B detected only one soldier (Fig. 10.b, 

Fig. 10.d.) and other models failed to detect anything. Fig. 10.e shows a higher 

contrast between the soldiers and the background, but this did not help models 

A, B, C, D to have a successful detection. Fig. 10.f shows the occlusion of 

soldiers; however, models B, D, E, and F were able to detect them. 

 

Figure 9. Two scenes with a camera positioned from a bird’s perspective 
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Figure 10. A scene with a cluttered background and the occlusion of soldiers 

 

4. Conclusion 

Recordings taken from the air today are used mainly in search of missing 

persons, in mountain rescue, in the control of animal movement, and the like. The 

ability to automatically detect persons and objects on the images taken from a 

bird’s perspective would greatly facilitate the search and rescue of people or the 

control of people and animals. 

CNN networks have proven successful in classification and object detection tasks 

on general-purpose images, and in this paper, we have tested their performance 

in detecting toy soldiers taken from the bird's eye view. On the custom dataset, 

we compared the performance of ResNet50, Inception, and MobileNet networks 

with Faster RCNN and SSD methods of localization. The analysis of the obtained 

results shows that Faster RCNN is more suitable for detection because it detects 

toy soldiers more successfully. The configuration with the Inception network is 

more successful than the configuration with ResNet50. The problem with this 

method is that it requires more time and computation power. 
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The examples also show the background effect on detection accuracy. With a 

uniform background and higher color contrast, detection of all models is 

significantly successful than in case of detection at a greater distance, on the 

grass, and with semi-hidden objects. In future work, we will try to find a way to 

solve this problem. 

This paper provides a promising base ground for further research in real-time 

detection of missing persons in search and rescue operations. We plan to 

investigate the further use of different detection methods (speed, accuracy) on 

the android system. 
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1. Introduction 

With the development of technology, unmanned aerial vehicles (UAVs, drones) 

equipped with cameras find their application in industry, agriculture, surveillance, 

and search and rescue operations. Detecting objects on drone images is an 

extremely useful and still under researched problem. 

When flying at low altitudes, drone records more details on objects of interest, 

while larger altitudes cover a larger area. Detecting objects in drone imagery 

creates greater challenges than traditional panorama detection. One of the 

reasons is the change in shooting height which significantly affects the size of the 

desired object or change of the shooting angle [1]. In a single video, in a very 

short time, a drone can record an object from the front, side, or a bird's eye view. 

Changes in lighting (day, night) and weather (sunny, cloudy, foggy, or rainy) 

drastically affect the visibility and display of an object [1]. In addition to all of the 

above, the challenge in detecting and monitoring is also posed by the rapid 

movements of the camera, the occlusion, and the relative movement between the 

camera and the object. 

As objects captured by a drone are often too small to be detected by the human 

eye on a drone control screen, object detection needs to be automated. In recent 

years, considerable progress has been made in detecting objects using deep 

learning (convolutional neural networks). The most popular deep learning-based 

detectors are Faster R-CNN [1], SSD [4], YOLO [5], and RetinaNet [6] trained on 

datasets like PASCAL VOC [7] or MS COCO [8]. However, it turns out that they 

are not equally successful when applied to drone-recorded images. 

In order to improve the results of object detection on drone imagery, it is 

necessary to include these images in a training set. However, until recently, there 

were no publicly available datasets recorded by the drones. With datasets like 

Campus [9], UAV123 [10], CARPK [11], Okutama-action [12], UAVDT [13] and 

VisDrone [14], images taken with the drones are available, but there are tailored 
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to specific issues such as parking control, traffic monitoring, or movement of 

people across pedestrian zones. 

This paper aims to provide a simple but comprehensive overview of object 

detection on imagery recorded by drones to study existing databases and models 

that could be used in the detection of persons in search and rescue operations. 

During the search and rescue operation, it is important to find the missing person 

as quickly as possible, as the survival of the missing person declines 

exponentially over time [15]. The weather and light conditions vary greatly 

between different search and rescue operations, which is an additional challenge 

in detecting a missing or injured person. 

Today, almost all search and rescue services have integrated the use of drones 

in their search. This is due to the increasing availability of drones with quality 

high-resolution cameras. It takes approximately 25 seconds for a video analyst 

to detect a victim on a drone recording [20]. The benefit of video analytics is 

knowing the context of the image and predicting where the person may be based 

on previous experiences, but the analyst focuses only on a small portion of the 

image so the assistance of an automated detector can be of great use. 

The rest of the paper is organized as follows: in Section II. we will present public 

available drones datasets. An overview of methods using drones in search and 

rescue missions is given in Section III with an overview of the state-of-the-art 

object detector algorithms in drone imagery. The paper ends with a conclusion 

and a proposal for future research. 

2. Public available drones datasets 

A comparison of publicly available sets of images taken with a drone and 

prepared for deep learning tasks is given in Table 1. 

Table 1. Comparison of publicly available drone datasets 

 Campus UAV123 CARPK Okutama-

action 

UAVDT VisDrone 

Year 2016 2016 2017 2017 2018 2018 
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D   x x x x 

S  x   x x 

M x    x x 

Frames 929,5k 112 578 1 448 77 365 80 000 189 473 

Boxes 19,5k 110k 90k 422,1 841,5k 2 500k 

Categories 6 6 1 1 1 10 

Resolution 1400x1904 1280x720 1280x720 3840x2160 1080x540 3840x2160 

 

A. Campus 

The Campus is a large dataset containing images and videos of different classes 

such as pedestrians, bicyclists, cars, skateboarders, golf carts, buses, taken 

inside the campus from a bird's eye view (see Figure 1. a). 

The footage was taken with a 4K drone-mounted camera (3DR solo) flying at a 

height of approximately 80 meters. The dataset contains about 19,000 objects at 

a resolution of 1400 x 1904 px, [9]. 

B. UAV123 

The UAV123 dataset contains a set of scenes ranging from urban landscapes, 

roads, fields, and beaches with objects such as cars, trucks, boats, and persons. 

Persons are additionally tagged for object tracking. Activities such as walking, 

cycling, swimming, car driving are also labeled. 

The data are divided into 3 sub-groups [10]: 

• 103 video clips taken with the DJI S1000 drone tracking different objects 

between 5m and 25m in height, 720p, and 4K resolution at 30 and 96 fps. 

• 12 videos shot with images of lower quality and resolution 

• 8 synthetic video clips recorded using a drone simulator of the Unreal4 

Game Engine. 

C.  CARPK 

The CARPK is according to authors [11], the first and largest database of drone 

recordings that supports object counting, and provides the bounding box 

annotations. More specifically, there are 89 777 tagged cars on the dataset. The 
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cars were shot by drones in four different parking lots. The dataset is tailored to 

deep learning algorithms for object count and localization scenarios. 

 

Figure 1. Examples of the scenes captured in a) Campus, b) CarPK 

D.  Okutama-action 

The Okutama-action database contains 43 fully labeled drone video clips for 

training and testing models when detecting multiple simultaneous actions within 

different categories (reading, handling, carrying different items), [11]. 

The videos were recorded using two DJI Phantom 4 drones in 4K baseball court 

and at 30 fps at 10m to 45m height, while the camera angle is 45 or 90 degrees. 

The dataset for each video contains metadata such as camera angle, speed, and 

height. The shots were taken with two different lighting conditions (sunny and 

cloudy) 

E.  UAVDT 

The UAVDT consists of 100 drone videos in multiple urban locations such as 

streets, squares, intersections, etc [11]. The videos were shot at 1080 x 540 px 

with 30 fps in different weather conditions (day, night, fog), and in three different 

altitude ranges (low: 10m to 30m, medium: 30m to 70m high: more than 70m) 

and different camera views (front view, side view, and bird's eye view). An 

example of the scene captured in the UAVDT dataset is given in Figure 2.a. 

F.  VisDrone 
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VisDrone is a set of data shot in different scenes focusing on four basic problems 

in the field of computer vision (object detection in images, object detection in 

videos, single object tracking and multiple object tracking). 

The dataset consists of 263 video clips and an additional 10.209 images [11]. 

Videos/images were recorded on different drone platforms (DJI Mavic, DJI 

Phantom Series 3, 3A, 3SE, 3P, 4, 4A, 4P) in 14 different cities in China. The 

dataset covers different weather and light conditions of maximum video resolution 

(3840 x 2160 px) and images (2000 x 1500 px). 

 

Figure 2. Examples of the scenes captured in a) UAVDT, b) VisDrone 

Each of the datasets presented here is important for the development of computer 

vision research in the field of UAV images. However, it is clear from the 

descriptions of each image database and examples that they are intended for a 

specific task and tailored to a particular problem. For a specific problem, such as 

searching and rescuing people, there are missing appropriate scenarios where 

people in non-standard poses appear (e.g. injured persons during a fall), so they 

need to be recorded and included in the set. 

3. Computer vision tasks in search and rescue operations 

Detection of people in images and videos plays a significant role in various 

applications, but in this section, we focus on search and rescue applications using 

drone recordings. The search and rescue problem can be divided into four 

application areas: in combat, on water, in urban and non-urban areas [16]. The 

use of drones in search and rescue operations has been discussed in [18][19][20] 

[17]. In this review, we will focus on non-urban areas and water areas. 
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In [20] image segmentation and contrast enhancement were applied and then 

convolution neural networks (multiple single shot detector SSD) for the detection 

of persons ranging from 5 to 50 px, on drone imagery. They also used a 3D game 

editor to generate synthetic search and rescue datasets. 

The Inception model with the Support Vector Machine (SVM) classifier is used in 

[21] for detecting people trapped in an avalanche using drone imagery. In [23] 

the focus is on detecting humans on sea recorded using an unmanned aerial 

vehicle equipped with a multi-spectral camera. A modified MobileNet convolution 

neural network architecture is used for detection. 

In [24], authors have developed a system for detecting people and action 

recognition on the Okutama-action dataset while calculating GPS locations. For 

object detection, a model that was upgraded to MobileNetv2 and called POINet 

was used. Another example of the use of GPS signals in search and rescue 

actions is given in [25]. The assumption is that the injured person has a mobile 

device switched on, so a GSM radio signal of the mobile device is used to log the 

position of the injured person from the strength of the single and GPS position of 

the drone. 

A platform for the detection of persons in water with the Tiny YOLO V3 

architecture integrated on the NVIDIA Jetson X1 computer was introduced at [26]. 

The model was trained on the COCO dataset and swimmer's custom dataset 

recorded with a drone equipped with a GoPro camera in HD resolution. For the 

detection of sea surface objects, the use of a drone thermal camera and a real-

time onboard algorithm was proposed in [27] to detect and track objects on the 

ocean surface. 

The strategy of using semi-supervised and supervised machine learning 

approaches for the classification of aerial imagery and object detection along with 

the suggestion of hardware and software architecture for the UAV platform is 

given in [28]. An algorithm for planning a search path for a UAV and using 

unmanned ground vehicles (UVG) to verify the identity of an object detected by 

the UAV is given in [29]. In [30] the authors classify drone imagery on human and 

non-human images and provide classification results using several CNN 
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architectures. According to [31], it was the first paper that applies multiple object 

visual tracking to aerial imagery for search and rescue purposes, invariant to 

scale, translation and rotation, and with the ability to re-identify persons. Person 

detection is based on color and depth data and the use of the Human Shape 

Validation Filter that uses the locations of human joints obtained from the 

Convolutional Pose Machine [32]. The purpose of the filter is to study the shape 

of the human skeleton on detections to avoid false detections. 

According to the results of the Vision Meets Drones competition, VisDrone 2019 

[33], the Cascade R-CNN [34] model and models derived from it are most 

commonly used to detect objects such as pedestrians, cars and bicycles in 

largescale benchmark dataset covering a wide range of aspects including 

location (taken from 14 different cities), environment (urban and country), objects 

(pedestrian, vehicles, bicycles, etc.), and density (sparse and crowded scenes). 

Cascade R-CNN is a multi-stage object detector framework, which aims to 

increase the quality of detection by constantly increasing the intersection over 

union (IoU) thresholds [35]. Cascade R-CNN was used in different applications 

including agricultural, aerial photography, fast delivery, and surveillance, followed 

by CenterNet [36] and RetinaNet [37]. 

CenterNet is a one-stage highly efficient detector for exploring the visual patterns 

within each bounding box. For detecting an object, this approach uses a triplet, 

rather than a pair, of keypoints. Paying attention to the center information, 

RetinaNet has a feature pyramid network (FPN) [37] attached to its backbone to 

generate multi-scale pyramid features. Then, pyramid features go into 

classification and regression branches, whose weights can be shared across 

different levels of the FPN. The focal loss is applied to compensate for the 

accuracy drop, which improves performance. The most used detectors in the 

VisDrone competition, as the backbone mainly use ResNet- 101, ResNet 101, 

ResNet 50, and SEResNeXt50. 

The performance that object detectors achieve on images captured with a drone 

is much lower than that achieved on images that are not a bird's eye view in 

different application domains [38, 40, 40]. The top three detectors in the VisDrone 
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2019 competition (DPNet-ensemble, RRNet [41], and ACM-OD) in the image 

detection category reach an average precision (AP) of about 29% with an IoU> 

50%. For person detection a maximum of 16% AP is achieved (BetterFPN, 

16.45% AP, DPNet ensemble [35], 15.97% AP, ACM-OD [35], 15.50% AP). 

Slightly lower object detection results than in the case of images were achieved 

in the object detection category on video [44]. The three best results were 

achieved by the following algorithms: DBAI-Det with 29.22% AP, AFSRNet with 

24.27% AP, and HRDet+ with 23.03% AP. As in the case with the images, 

positive detection was counted if IoU is greater than or equal to 50%. In the case 

of detection of persons, the best results were achieved with DBAI-Det, VCL-

CRCNN, and AFSRNet, with pedestrian detection results being different from the 

detection of a person in general. 

The success of the best algorithms is attributed to the combination of many 

recently proposed powerful networks, including DCNv2 [45], FPN, and Cascade 

R-CNN, and detection performance is significantly enhanced by the benefits of 

anchor-based RetinaNet and anchorless FSAF. 

4. Conclusion 

The paper provides an overview of the object detection on imagery recorded by 

unmanned aerial vehicles (drones). The first part of the paper gives an overview 

of the current state of publicly available datasets with their characteristics and 

appropriate tasks. The following section shows the research activities using 

drones in search and rescue operations and computer vision methods for 

missing person detection. Finally, the models that currently show the best 

detection results on images made by unmanned systems are listed. 

In future work, it is necessary to create a dataset of drone recordings for better 

detection of injured persons. Such a dataset would contain people in atypical 

poses that are not contained in existing datasets. Combining knowledge 

transfer from existing datasets and the new custom set, it is necessary to test 

the state-of-the-art models and analyze their performance in a new set of 

scenes characteristic for search and rescue operations. If necessary, adaptation 
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and enhancement of existing models will be proposed to achieve the best 

possible detection results for disabled and missing persons in non-urban and 

off-water areas. 
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1. Introduction 

In the case of searching for a missing person, it is of great importance to find the 

person in the shortest possible time as this increases the likelihood of survival. 

In the past few years, unmanned aerial vehicles (drones) have been included in 

the search and rescue operations in addition to existing resources such as search 

dogs, human resources, helicopters. During a drone flight, the operator must 

simultaneously operate the drone and search for the missing person, who, due 

to the distance, is generally small in size, very often in a lying or crouching 

position, in inaccessible terrain, obscured by vegetation, which further 

complicates the detection of missing persons. Ground forces can check the 

terrain well, but they progress very slowly and have a small view field, especially 

in the case of dense vegetation so the assistance of the aircraft is necessary. 

An ideal search and rescue system would be one that would include drones that 

could autonomously fly and detect objects of interest in real-time, and then alarms 

ground teams and forwards them the location and the image of detected objects. 

At lower altitudes, the drone can capture more details about objects of interest, 

while at higher altitudes it covers a larger area but the objects are extremely small 

on them. 

The drone footage is being analyzed by video analysts today. In [1] is described 

that the human video analyst was able to detect the victim within 25 seconds in 

the drone recording (4K image, with target size 5 – 50 pixels), focusing on the 

small part of the image that, according to previous experience, is the most likely 

to be the person being sought. High concentration is required for that task and 

the help of an automated detector can be of great benefit. 

In recent years, considerable progress has been made in automatic object 

detection in images using deep learning (convolutional neural networks). 

However, it has been shown that popular detectors such as SSDs [2], YOLO [3], 

and RetinaNet [4] do not achieve equally good detection results from a bird's eye 

view or on images captured by drones [5]. 
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Automatic detection of objects on drone imagery poses greater challenges than 

the same task on stationary camera images. One reason is the change in 

shooting height, which causes a significant change in the size of the object, a 

change in the shooting angle and the position of the object towards the camera, 

and a change in perspective. In the case of a search and rescue operation, the 

visibility of the object is also affected by changes in lighting (daytime, nighttime) 

and weather conditions (sunny, cloudy, foggy or rainy). With all of the above, the 

challenge of detecting an object captured by a drone is very often very small 

object size that is hard to see in a cluttered background with frequent occlusions. 

In this paper, the performance of a popular state-of-the-art object detector, a 

Faster R-CNN for detecting persons in drone-captured images was investigated. 

Two publicly available sets of images taken with a drone and prepared for deep 

learning tasks, the VisDrone and Okutama – Action datasets have been selected. 

Each of these datasets includes scenes designed for a specific task and tailored 

to a specific problem. For a specific problem, such as a search and rescue 

operation, they do not have proper scenarios with people lying in the grass, 

crouching behind a stone, leaning against a tree or other atypical poses for urban 

scenes, so our own custom set of images called SARD (Search And Rescue 

Dataset) was created. 

The rest of the paper is organized as follows: in Section II, an overview of the 

drone-related research is given with an emphasis on image datasets and 

commonly used detection methods. Section III describes the experiment and 

training of the Faster RCNN model for person detection on the custom dataset 

SARD containing typical scenes for the rescue operation and two public datasets 

of drone imagery. Obtained results and discussion are given in Section IV. The 

paper ends with a conclusion and a proposal for future research. 

2. Related work 

The detection of persons in drone images and videos is of increasing relevance 

and has a significant role to play in the safety of persons and the surveillance in 

urban and non-urban areas. 
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A.  Datasets 

A prerequisite for the use of models in various applications, and so is in the field 

of UAV imaging, is the preparation of appropriate image databases used for 

supervised model learning. Publicly available datasets that have contributed to 

the development of computer vision research in the field of drone images are 

Campus [6], UAV123 [7], CARPK [8], Okutama – Action [9], UAVDT [10], and 

VisDrone [11]. 

Each of the image databases is intended for a specific purpose and is tailored to 

a specific problem. They usually contain different classes taken from a bird's eye 

view that are present in urban scenes such as pedestrians and skateboarders on 

the streets or squares, cyclists, cars, buses, and trucks on roads, crossings, or 

parking lots [6]. There are also examples containing non-urban landscapes such 

as fields and beaches with objects such as boats and bathers [11]. In some 

cases, activities of the people such as walking, running, reading, hugging, and 

the like are also indicated [9]. 

In this work, VisDrone, and Okutama – Action datasets have been used, so they 

were described in more detail. 

1) VisDrone 

The VisDrone dataset contains 288 videos and 10,209 images captured on 

different drone platforms (DJI Mavic, DJI Phantom Series 3, 3A, 3SE, 3P, 4, 4A, 

4P) in 14 different cities in China. The set covers different weather and light 

conditions of maximum video resolution (3840 x 2160 px) and images (2000 x 

1500 px). Within the set are 10 categories of objects (pedestrian, person, car, 

van, bus, truck, motor, bicycle, awning-tricycle, and tricycle). 

2) Okutama-Action 

The dataset contains 43 drone-recorded video clips for training and testing 

models to detect multiple simultaneous actions within different categories, human 

to human interaction: handshaking, hugging, human to object interaction: 

reading, drinking, pushing/pulling, carrying, calling, non-interaction: running, 

walking, lying, sitting, standing. Using the open-source tool to annotate objects 
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VATIC [12], they manually annotate every tenth frame, and the tags were linearly 

interpolated to 30 fps. 

The videos were shot using two DJI Phantom 4 drones on a baseball court in 4K 

resolution with 30 fps, at a height of 10 m to 45 m, with a camera angle of 45 or 

90 degrees. The dataset for each video contains metadata such as camera angle, 

speed, and height. The shots were taken with two different lighting conditions 

(sunny and cloudy). 

Analyzing the available databases of drone images, the conclusion was that there 

is still no publicly available dataset containing scenes captured by a drone during 

search and rescue operations, so in this paper, our dataset for this purpose has 

been created. 

B. Methods used to detect persons in rescue operations 

In recent years, drones have been increasingly used, and methods for the 

automatic detection of drone imaging objects have been increasingly developed. 

We are particularly interested in detection methods used to detect persons in 

search and rescue operations. One of the earlier works is [13] where drones are 

used to find injured persons in search and rescue operations using HOG 

descriptors [14]. 

The advantages of using deep learning for computer vision tasks using drones 

are presented in [15], where authors have analyzed three models (SSD, Faster 

R-CNN, and RetinaNet) and showed that RetinaNet is faster and more accurate 

model than others analyzed, in object detection task on drones imagery. 

In [16] multi-spectral and visible-spectrum cameras are used, with modified 

MobileNet architecture to detect and localize bodies in the sea. The upgraded 

version of the MobileNetv2 model and the Okutama-Action dataset is used in [17] 

for person detection. In [18] for detection of persons in the water, a Tiny YOLO 

V3 Architecture integrated on NVIDIA Jetson TX1 computer is used. The model 

was trained on a COCO dataset and a custom swimmer's dataset recorded with 

an unmanned aerial vehicle. 
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The use of drones to detect avalanche casualties is described in the [19], where 

the Inception model with the Support Vector Machine classifier is used for 

detection. 

The YOLO detector was used to detect aircraft in real-time on videos obtained 

from the UAV during the flight [20] while the aircraft were grounded. The YOLO 

detector has also proven to be a good solution for people detection from a bird's 

eye view in quite demanding shooting conditions [21] with a large number of 

objects on the scene [22], with occlusion among people and indoors [23]. 

In [24] image segmentation, contrast enhancement, and convolution neural 

networks are applied for the detection of persons (range 5 to 50 px) on drone 

imagery. They have also used ARMA3 a 3D game editor to generate synthetic 

search and rescue datasets and data augmentation (flip, rotation, zoom in/out). 

An approach that increases a relatively modest set of real-world data with 

synthesized images has also been applied in [25] to influence the improved 

performance of object detectors. The size and position of the persons or object 

in general in the synthesized images should be adjusted to the actual situations, 

e.g. in these works persons was set on 5-30 px. 

For search and rescue operations to be carried out even when there is no more 

daylight, the use of IR light should also be considered. A Yolo detector was used 

to detect humans on thermal images recorded at night in [26] and in [27] to 

recognize humans while sneaking through the woods and animals during bad 

weather. In [28] an infrared camera was mounted on an unmanned aerial vehicle 

to detect poachers and control animal movements using Faster R-CNN. 

The [29] describes applying multiple object-based visual tracking to aerial 

imagery for search and rescue purposes. Person detection was based on color 

and depth information and the use of the Human Shape Validation Filter that uses 

the locations of the human joints detected by the Convolutional Pose Machine 

[30] to avoid false detections. During the tracking of persons, the method used 

must be invariant for the scale, movement, and rotation of the object and also 

that has the ability to re-identify persons. For that purpose, in [31] a DeepSort 

method was used to track people on the sports field. When monitoring objects, 
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especially when the objects are very far from the cameras and often in occlusion, 

as is the case with drone imagery, satisfactory results are not yet achieved. 

Something that certainly goes in favor of solving this challenge is more precise 

object detection. 

3. Experiment setup 

The experiment aimed to detect people in scenes appropriate to search and 

rescue cases. 

For detection, Faster R-CNN [32] was decided to use, which has become the de 

facto standard after proving to be a multi-purpose detector that enables high 

accuracy of detecting small and large objects [33]. The original implementation 

of the Faster R-CNN model was used with Feature Pyramid Network - FPN [34] 

as a backbone without changing the hyperparameters of the model. The model 

was trained on the COCO [35] dataset. According to results reported in [36], 

average precision (AP) of the faster_rcnn_R_50_FPN_3x model for person 

detection on COCO (val2017) dataset was 54.46%. 

 

Figure 1. Some example of drone images from VisDrone dataset [11] (top), Okutama-

Action [9] (middle) and SARD dataset (bottom) 

Our goal was to apply the knowledge from the pre-trained model and features 

and weights learned on a COCO-dataset for person detection to the new but 

related problem of person detection on images captured by drones. The goal was 
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to use transfer learning to overcome the isolated learning paradigm for only one 

task and to avoid learning models from scratch. 

The key motivation was that learning a deep learning model for a complex task 

requires a large amount of data that is not easy to collect and can be very time-

consuming and arduous to label and prepare data for supervised learning. An 

additional motivation to use transfer learning was to learn a model that goes 

beyond specific tasks and tries to use knowledge from pre-trained models to 

solve new problems and to avoid the bias problems the most models have, that 

can be successfully used only on the specific domain for which they were 

specialized. 

Three datasets have been used in this experiment: VisDrone, Okutama - Action, 

and our dataset SARD. 

From the VisDrone dataset, 2,000 images containing person class (Fig 1, top 

row) were selected. Objects that represent a person are labeled either as 

pedestrians or as persons in the VisDrone dataset. The set was divided into two 

subsets, a training set containing 1,598 images with 29,797 labeled persons, and 

a test set containing 402 images with 7,329 person objects. A model trained on 

images from the VisDrone dataset is called a CV model. 

A custom dataset has been built and prepared, referred to as SARD, containing 

images recorded by the DJI Phantom 4A drone in the area of Moslavacka Gora, 

Croatia (Fig. 1, bottom row). The footages were taken in a non-urban area along 

the road, lake, meadow, quarry, forest. The flight altitude of drones during the 

shooting was 5 m to 50 m, with a camera angle of 45° to 90° and lens FOV 84°. 

Different people were recorded while performing various actions such as walking, 

running, sitting, lying down according to scenarios depicting the injured person. 

The aim was to capture different situations in which the people being searched 

may find themselves. 

The dataset was obtained from 8 videos in 1920px x 1080px resolution, 50fps 

with a total of 115,767 frames, by selecting 1,981 images and manually tagging 

the person on them. The set was divided into two subsets, a training set 



105 

 

containing 1,579 images with 5,160 tagged individuals and a test set of 402 

images containing 1,317 tagged persons. To prepare ground truth data, the 

boxes to each person in the images using the LabelImg tool was ticked. 

A model trained on the SARD dataset is called CS. 

Besides, the data from the VisDrone dataset and the SARD dataset have been 

merged to train the model that is referred to as CVS. 

The modes were trained on a laptop with an i5-7300HQ CPU and GeForce GTX 

1050Ti 4GB GPU on Ubuntu 18.04.4 64-bit. Detectron2, the open-source object 

detection system from Facebook AI Research, was used as the software. The CV 

model was trained in 36,000 iterations for 5 hours on the VisDrone subset, and 

the CS model 5.5 hours on the SARD dataset. The CV model was additionally 

trained for 5.5 hours on the SARD dataset (CVS label). 

For additional testing of the generality of CV, CS, and CVS models, images from 

the Okutama - Action dataset have been used (Fig.1, middle row). The set 

consists of 290 selected frames with 2,066 persons that were manually labeled. 

The image resolution was reduced to 1280px x 720px for this experiment. 

4. Results and Discussion 

The model performance was compared concerning average precision (AP). The 

detections are considered true positive when the intersection over union (IoU) of 

the detected bounding box and the ground truth box exceed the threshold of 0.5. 

The IoU is defined as the ratio of the intersection of the detected bounding box 

and the ground truth (GT) bounding box and their union (Fig. 2) 
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Figure 2. Visual representation of intersection over union (IoU) criteria equal to or 

greater than 50% [21] 

First, we have tested all the models on the SARD dataset. The original model 

trained on the COCO dataset, with no additional training (referred to as COCO 

model) achieved AP of 36.84%, much lower than reported on the COCO dataset. 

The CV model, re-trained on images from the VisDrone dataset achieved 35.88% 

AP for person detection on SARD data. That is even lower than the original model 

and represents a negative knowledge transfer probably because images in the 

VisDrone dataset used for re-training were taken at higher altitudes than in the 

SARD dataset on which the model was tested. 

The CS and CVS models were both re-trained using images from the SARD 

training dataset, and were more successful, achieving 95,84% AP and 96.40% 

AP, respectively. The huge difference in detection results is due to the large 

difference in training sets compared to the test set. In the COCO dataset, there 

are no images from a bird's eye view and in the VisDrone dataset, the distance 

of the person from the camera is much greater. On the other hand, images from 

the SARD training set had an important impact on more accurate adjustment of 

feature maps and better detection results, since were shot under the same 

conditions, at the same distance, and from the same perspective as in the case 

of the SARD test dataset. The graphical representation of the results on the 

SARD dataset is shown in Fig. 3 (blue columns). 
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Figure 3. Person detection mAP results of COCO, CV, CS, and CVS models on SARD, 

Okutama-action and VisDrone test datasets 

In the next case, we have tested all the models on the VisDrone dataset. The 

person detection results on the VisDrone test set are shown in Fig. 3 (green 

columns) and are as follows: COCO has an AP of 17.37%, CS: 9%, CV: 40.3% 

and CSV: 12.88%. 

All the models not trained on the images of the VisDrone training set (COCO, CS, 

CSV), achieve significantly worse results than in the first case. The probable 

reason is that the images in the VisDrone dataset were taken from a much higher 

shooting height and the objects are tiny, so models that did not have such 

examples in the learning set cannot detect them. 

Finally, all the models were tested on selected images from the Okutama - Action 

database. This dataset is not used for the training of any of the models. The 

results are shown in Fig. 3 (orange columns) and are as follows: COCO: 45.97%, 

CV: 61.31%, CS: 56.12%, and CVS: 65.33%. The best results were achieved by 

models that had images from the VisDrone database in the training set. The CV 

model achieved more than 15% better accuracy, and CVS almost 20% better 

accuracy than the base COCO model. This shows that the initial model is much 

better trained for detecting persons in drone images after transfer learning on 

drone datasets. 
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Figure 4. Detection results of: a) COCO, b) CV, c) CS, d) CVS models 

The performances of the COCO, CV, CS, and CVS models on different test 

datasets in terms of the average precision and recall are shown in Fig. 5. 

 

Figure 5. Average precision and recall of COCO, CV, CS and CVS models on different 

test datasets 
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Overall, the highest precision and recall of over 90% is achieved by the CS and 

CVS models on the SARD dataset. That provides a promising base ground for 

further research when we can investigate the results of precision and recall in the 

case when the IoU decreases because the goal is to find the lost person and not 

to detect it completely. On Okutama – Action dataset the best result of 82.15% of 

precision has the COCO model that was also the best with respect of the highest 

precision on VisDrone dataset (74.65%) but with a rather low recall of 18%. CV 

models on the VisDrone dataset get a precision of 58.76%, but with the highest 

recall of 48%. CS and CSV performed much better on the Okutama - Action 

dataset in terms of both precision and recall. 

A Fig. 5. shows an example of detection results for all four models. There are 

seven people in the scene, one standing, one running, and five lying down (three 

on each other - an occlusion example). COCO model has detected running kid 

and one person lying down, CV model only running kid while CS and the CVS 

models have detected all persons on the image. 

 

Figure 6. Detection results from bird’s perspective of; a) COCO, b) CV, c) CS, d) CVS 

models 
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In a case with a camera positioned from a bird’s perspective Fig. 6., COCO and 

CV models have detected the same two pedestrians, while CS and CVS models 

have detected all persons on the image. 

5. Conclusion 

Recordings taken from the drones today are used mainly in search of missing 

persons, in mountain rescue, in the border control, and the like. The ability to 

automatically detect persons and objects on the images taken from a bird’s 

perspective would greatly facilitate the search and rescue of the people. 

In this paper, we have tested the performance of the Faster R-CNN detector for 

a person detection task on three datasets: SARD, custom dataset built to simulate 

search and rescue operations, and freely available drone datasets 

Okutamaaction and VisDrone. In experiment we have used publicly available 

Faster R-CNN model implementation with corresponding weights learned on the 

COCO data set. 

We have additionally trained the Faster R-CNN model on VisDorone and SARD 

datasets to fine-tune the model parameters for person detection on drone-

captured images. In the experiment, we showed a positive impact of transfer 

learning so that the model that was re-trained on SARD images and VisDrone 

images achieved the best results of person detection in drone-captured images 

concerning both mAP precision and recall metrics. 

In future work, we will expand our database with additional drone imagery and 

focus on changes in detector architecture to achieve even better results in object 

detection. 
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1. Introduction 

Many people are included in sport tourism to actively spend leisure time such as 

skiing, hiking, or nautical, which motivate them to stay in nature. Adrenaline or 

adventure tourism such as hiking, free climbing, mountain biking, paragliding, and 

rafting is gaining popularity, therefore the need to protect human life in hard-to-

reach areas such as mountains, forests, canyons, caves, bodies of water and, 

karst phenomena is growing. 

Due to a growing number of people living and carrying out various activities in the 

mountains and other inaccessible places, and because of the very nature of these 

activities and the physical and mental lack of preparedness for such activities, 

there is an increasing number of injuries, fractures and various accidents such as 

slipping, burying, etc. Risks that increase the insecurity of hikers, climbers, and 

other adrenaline athletes are, in addition to the occurrence of injury or illness, 

their skills and experience in coping with possible emergencies. Emergencies can 

arise, for example, due to incorrect assessment of the distance of the destination, 

incorrect assessment of the difficulty of the road, due to changes in weather 

conditions, inadequate clothing or equipment, non-compliance with information 

and warnings, or insufficient preparation and overestimation of one's capabilities 

or knowledge. Reports of missing persons due to disorientation, illness, or 

suicidal intentions are also common. 

To aid and health care to the injured in these circumstances, it is necessary to 

organize a search and rescue operation. The search action refers to a situation 

when the position and condition of the missing person are unknown, so the goal 

of the action is to locate the position of the missing person in nature. The rescue 

operation refers to a situation in which it is known that it is necessary to intervene 

and organize a person's rescue. If the accident's location is unknown in advance, 

this action includes search elements, too [1], [2]. 

The organization of assistance and health care in inaccessible areas is very 

complex, whatever the reason for the intervention. It is necessary to conduct 

demanding searches of large and complex terrains, especially when searching 

for a missing person. Besides, time is also an important factor in the search. As 
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time goes on, the probability of a missing person's survival decreases and the 

searching area grows exponentially [3]. 

Search and rescue operations (SAR) require great human potential and material 

resources because they usually involve a large number of members of the 

mountain rescue service, search dogs, police and air forces, and more recently, 

crewless aerial vehicles (drones). Drones are now used for various purposes [4]-

[10] and have become a standard in all SAR services globally. Except for 

searches in urban and non-urban areas, drones are used for searches on water 

(sea, rivers, floods [11]) or from avalanches. Their compactness, mobility, 

relatively low cost, and high-resolution real-time video recording are important 

when making quick decisions during actions and performing tasks that are 

potentially dangerous to humans, e.g., cliff search. The use of drones has 

increased the probability of finding a person, and due to ''scanning'' a larger area 

in one flight, the search time is shortened. 

During search and rescue operations, the operator must analyze real-time 

images on a small screen while operating the aircraft. As the searching person is 

relatively small compared to the environment, they often take up only a few pixels 

on the screen. It is challenging to maintain long-term concentration and attention, 

even for people trained for it, to search for people in a large mountainous area or 

an area covered with vegetation. Persons searched for are often sheltered by 

vegetation, hidden behind a stone, or fused to the ground, further complicating 

the search even during favorable weather conditions. During rain, fog, and snow, 

the challenge of searching for a person is even more significant. Also, the 

searching person is very often in unusual places, most often due to loss of 

orientation, fall or dementia, in atypical postures and body positions due to injury, 

such as lying with unnaturally placed limbs or kneeling and sitting on the ground 

due to exhaustion or sudden disease or covered with stones due to slipping or 

landslides and the like and are very difficult to spot even in these selected parts 

of the image (Figure 1). 
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In SAR operations, operators could be greatly assisted by automatic person 

detection methods that would mark the persons in the images in real-time, i.e., 

their position and movement direction. 

In recent years, deep convolutional neural networks such as Faster-RCNN [12], 

Cascade R-CNN [13], RetinaNet [14], SSD [15], YOLOv3 [16] have become 

successful in detecting people in images of mainly urban scenes and achieve 

even greater accuracy than humans. To achieve such good performances, deep 

network models had to be trained on large data sets such as MS COCO [17], 

Pascal VOC [18], ImageNet [19]. Then, to achieve good detection results or 

significant improvements in specific domains such as thermal images of the 

monitored area, some sports scenes, etc., not included in large data sets, it is 

necessary to additionally train deep networks on the image set from the selected 

domain [20]-[23]. 

In SAR operations, the key object is the person, however, recorded from a bird's 

eye view, and such recordings are not contained in the large data sets on which 

these state-of-the-art detectors are trained. To achieve the highest possible 

accuracy of the detection model, the data set on which the model is trained must 

have similar conditions to those that appear when testing the model, so it is 

necessary to train the model with a bird's eye view data. Recently, datasets that 

include images taken by a drone such as Visdrone [24], Okutama-action [25], 

UAVDT [26] have emerged. Those images are collected for various purposes [24] 

- [30], such as detecting objects in images and videos, tracking one or more 

persons, detecting an action, predicting a person's movement, or recognizing 

events in images. On the other hand, each dataset is tailored to a specific 

purpose and generally does not include scenes and rescue operations cases. 

The most similar scenarios shot by a drone to those in search and rescue are 

those involving people in a park while walking or running, standing in a square, 

walking down a street, or lying on a beach. Nevertheless, in these cases, persons' 

poses differ significantly from those who are injured, exhausted, or lost. For this 

reason, our dataset called SARD was created. 
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In this work, the SARD dataset was used for transfer learning of the selected 

state of the art person detectors: Faster R-CNN, YOLOv4, RetinaNet, and 

Cascade R-CNN and for fine-tuning for person detection in search and rescue 

scenes. We compared the model results on the SARD dataset. TheYOLOv4 

model was selected for further research because of achieving the highest 

accuracy and detection speed. To improve the detection results of the YOLOv4 

model, we have analyzed the influence of different network resolutions, detection 

accuracy, and transfer learning settings on detection performance. The 

robustness of the YOLOv4 model to weather conditions and motion blur was also 

tested. Finally, after comprehensive testing and analysis of the results, we 

propose a model for person detection in search and rescue scenarios that can be 

of great help in SAR operations. 

The main contributions of the paper are:  

a) a novel dataset (SARD) of drone imagery in search and rescue operation, with 

statistics of the occurrence of small, medium and large object, annotated and 

prepared for supervised machine learning,  

b) comparison of the performance of selected CNN detectors (Cascade R-CNN, 

Faster R-CNN, RetinaNet, Yolov4) for use in SAR operations,  

c) analyses of the influence of different network resolutions, detection accuracies 

and confidence values on YOLOv4 performance,  

d) analysis of different transfer learning strategies considering the impact on 

model results, e) proposal of ROpti metrics for evaluating detector performances 

for SAR operations taking into account that there are as many positive detections 

as possible and as few false detections as possible,  

f) proposal of YOLOv4 model to be used for person detection in SAR actions 

taking care to achieve the highest possible accuracy, with a few false detections 

as possible, with a network configuration that allows a person's online location 

and a configuration for off-line analysis, robust to different weather conditions. 
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Figure 1. Some of the unusual places and atypical positions of the people being 
searched for, cut from images taken by a drone. 

The rest of the paper is organized as follows: Section 2 provides an overview of 

the research related to the commonly used methods for person detection in 

search and rescue operations assisted by drones and drone datasets. In Section 

3, the SARD dataset was described, which was built and prepared for training 

models for person detection in SAR operations as well as CNN architectures used 

for person detection. Section 4 describes in detail the experiments and analyzes 

the obtained results. The paper ends with the conclusion and direction for future 

research. 
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2. Related work 

Today most object detectors consist of two parts, the backbone of the detector 

as a CNN network trained to extract features and a head that predicts the class 

and boundary box of the detected objects. Networks such as VGG [31], ResNet 

[32], ResNeXt [33] or MobileNet [34, 35, 36] pre-trained on the ImageNet [19] or 

OpenImages [37] dataset, are most commonly used as backbones. The head of 

a detector can be divided into two types: one-stage and two-stage detectors.  

YOLO [38, 39, 16, 40], SSD [15] and RetinaNet [14] are examples of the one-

stage detector. The most representative two-stage detectors are R-CNN 

detectors [41] including Fast R-CNN [42], Faster R-CNN [12] and, R-FCN [43]. 

Two-stage detectors are usually more accurate in terms of localization and 

classification accuracy. On the other hand, they are slower in processing than 

one-stage detectors. Many detectors add extra layers between the backbone and 

head (neck), like e.g. Feature Pyramid Network (FPN) [44] whose layers are 

typically used to collect multiple feature maps each with a different resolution, 

which is useful for recognizing objects at different scales. 

A. Deep CNN detectors in search and rescue operations and drone 

imagery 

According to [45], search and rescue operations can be divided into four areas: 

search in military operations, search on water, in urban and non-urban areas. The 

use of drones in search and rescue operations has been discussed in [46 – 49]. 

The domain of our interest is the non-urban area and water. 

In [49], image segmentation and contrast enhancement were applied, followed 

by an SSD detector to detect persons in drone images. They also used a 3D 

game editor to generate synthetic datasets depicting search and rescue actions. 

The Inception model with the Support Vector Machine (SVM) classifier was used 

in [50] to detect people trapped in an avalanche by searching with drones. In [51] 

the focus is on detecting people at sea recorded by unmanned aerial vehicles 

equipped with a multi-spectral camera and a modified MobileNet architecture is 

used for detection. 



122 

 

The authors in [52] developed a system for detecting people and recognizing 

actions on the Okutama-action dataset with GPS location calculation. A model 

upgraded to MobileNetv2 and named POINet was used to detect objects. Another 

example of the use of GPS signals in search and rescue operations is given in 

[53]. It is assumed that the injured person has a mobile device switched on, so 

the position of the injured person is determined by combining the strength of the 

GSM signal and the GPS position of the drone. 

A platform for detecting a person in the water with the Tiny YOLO V3 architecture 

was presented in [54]. The model is trained on the MS COCO dataset and dataset 

recorded by a drone equipped with a GoPro camera in HD resolution. A real-time 

algorithm for detecting and tracking ocean surface objects has been proposed in 

[55]. 

A strategy for using semi-supervised and supervised machine learning 

approaches to classify aerial imagery and object detection, along with a proposed 

hardware and software architecture for the UAV platform, is given in [56]. 

An algorithm for planning a search path for unmanned aerial vehicles (UAVs) and 

using unmanned ground vehicles (UVGs) to verify the identity of the object 

detected by the UAV is given in [57]. In [58], the authors compare several CNN 

architectures for the binary classification task to classify drone images as with or 

without persons. According to [59], it was the first work to apply multiple visual 

tracking of objects on aerial photographs for search and rescue purposes. Person 

detection is based on color and depth data and the use of a human shape filter 

that uses human joint locations derived from the Convolutional Pose Machine 

[60]. The purpose of the filter is to investigate the shape of the human body on 

the proposed detections to avoid false detections. 

B. Drone image datasets for CNN training 

Recently, an increasing number of datasets have been made using a drone as 

well as prepared for the training of deep neural networks. These datasets include 

footage containing scenes of urban areas such as squares, streets, playgrounds, 

parking lots, etc. (Figure 2). 
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Figure 2. Examples of images from existing datasets. Top-left Campus [28], top-middle 
CARPK [17], top-right UAV123 [29], bottom-left VisDrone [24], bottom-middle 
Okutama-action [25], bottom-right ERA [30]. 

VisDrone [24] data set contains 263 video clips and additional 10,209 images 

related to detection tasks and tracking of one or more objects. Videos/images 

were taken on different drone platforms (DJI Mavic, DJI Phantom Series 3, 3A, 

3SE, 3P, 4, 4A, 4P) in 14 different cities in China. The set covers different weather 

and light conditions of maximum video (3840 x 2160 px) and image (2000 x 1500 

px) resolution.  

Okutama-action [25] contains videos that tag people and the actions of those 

people such as walking, running, sitting, or lying down. Also, interaction with other 

objects is annotated such as reading, drinking, carrying, pushing, and interactions 

between people such as hugging and handling. For counting the objects, there is 

a CARPK dataset [27] which contains 89,777 marked cars recorded by a drone. 

Campus [28] is the largest set of data recorded from a bird's eye view, which 

includes pedestrians, cyclists, cars, buses, etc.  

The UAV123 [29] dataset, in addition to drone images, also contains synthetic 

video recordings made by a drone simulator on the Unreal 4 Game Engine. 

UAVDT [26] contains drone-recorded videos of an urban area such as streets, 

squares, intersections, taken in different weather conditions (day, night, fog). 
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ERA [30] dataset has 24 event classes that can occur on aerial video footage 

such as fire, flood, traffic jam, concert, etc. 

None of the above datasets contain recordings specific to search and rescue 

operations, so although there are object detectors who achieve excellent results 

in detecting people on urban scenes, the question is how successful they would 

be in SAR operations in rural/ mountainous areas? How to test the performance 

of detectors in the SAR domain if there is no appropriate test set? What 

performance can be achieved after training the model on examples of SAR 

scenes and with which model and learning parameters? 

3. Experiment workflow 

A. Problem formulation 

The experiment automatically detects persons using object detectors in images 

taken by a drone in non-urban areas during search and rescue operations. 

Guided by the experience from previous work [61], [62], we have analyzed state-

of-the-art object detectors such as Faster-RCNN [12], YOLOv4 [40], RetinaNet 

[14], and Cascade R-CNN [13]. The aim was to select the one that achieves the 

best results in terms of accuracy and inference speed and best fits our task. 

All considered detectors were pretrained on the MS COCO dataset, and the 

feature maps learned on that dataset are expected to be useful for detecting 

persons for our task, too. However, to improve the detection results in SAR 

applications, the models should be re-trained on an appropriate dataset that 

contains scenes typical for search and rescue operations. 

We searched the available databases of drone images and found out that 

appropriate publicly available datasets for this purpose did not exist. The existing 

[24]-[30] do not fully coincide with the intended goal of detecting 

(injured/exhausted) persons in the non-urban area. However, we decided to use 

the VisDrone dataset for transfer learning since it contains images of people in 

the urban scenes that are the closest scenario to our task. Also, we decided to 

build a dataset of images with scenes that simulate the poses of 
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injured/exhausted people in the non-urban area taken by drones. Also, to 

simulate different weather conditions and increase the generality of the model, 

we will use the available algorithms and generate new images to increase the 

data set. 

We re-train the models on the built dataset, and the model that achieves the best 

results was selected for further testing and adjustments to improve the detection 

result further. 

B. Dataset creation 

SARD database was built to detect casualties and persons in search and rescue 

scenarios in drone images and videos. The actors in the footage have simulate 

exhausted and injured persons and "classic" types of movement of people in 

nature, such as running, walking, standing, sitting, or lying down. Since diverse 

terrain and backgrounds determine possible events and scenarios in captured 

images and videos, the shots include persons on macadam roads, quarries, low 

and high grass, forest shade, and similar. 

1) Collection and preprocessing of SARD dataset 

During the daylight, the shooting was carried out in the fall, with a high-

performance camera of the DJI Phantom 4A drone with a 3-axis solo gimbal 

stand. Videos were recorded at an FHD resolution of 1920 x 1080 pixels at a 

frequency of 50 frames per second. The drone flew at different altitudes from 5 

m to 50 m and different camera angles (ranging from 45° to 90°). All videos were 

shot in the area of Moslavacka gora, in Croatia, outside the urban area. Positions 

of persons in the images range from standard (standing position, sitting, lying, 

walking, running) to positions typical of exhausted or injured persons 

reconstructed by actors at their discretion, Figure 3. The actors were nine people 

of different ages and genders, aged 7 to 55 years, to include differences in 

movement and postures associated with age and different body constitutions. 

Also, actors are in various locations, from clearly visible (to the eye) to locations 

in the woods, tall grass, shade, and similar, which further complicates detection. 
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Figure 3. Actors, different ages and genders who participated in the recording of the 
SARD dataset. 

From the recordings with a total length of about 35 minutes, 1,981 single frames 

with people on them were singled out. In the selected images, the persons were 

manually tagged by a horizontal bounding box typically used for object annotation 

in remote sensing images and natural scene images [63] so that annotated 

images could be used to train a supervised model. Tags are stored as XML files 

in PASCAL VOC format and the YOLO format. 

2) Generation of Corr dataset 

An extension of the SARD set called Corr was created to increase the robustness 

of the SARD data. Corr dataset includes images that further simulate various 

weather conditions that may occur in actual search and rescue situations such 

as fog, snow, and ice. Also, blur images are included in the Corr set to simulate 

camera movement and aerial shooting in motion. 

The Corr train set was generated from images of the SARD train set, and likewise, 

the Corr test set was generated from the images of the SARD test set using the 
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same methods [64]. To achieve an even distribution of data with different weather 

conditions in the set, we generated the images sequentially by adding the effect 

of snow, fog, frost, and blur in turn. Each of the effects was added at four levels 

of concentration to simulate the range of possible weather conditions and motion 

effects that may occur in actual SAR missions, e.g., light snow and heavy snow, 

snowstorms, rain, and showers, and the like. For the maximum level of 

concentration of an effect, we chose the level at which objects, which are 

relatively small in most images, could still be visually recognized. To test the 

detection results for specific weather conditions, we created four subsets for 

testing Corr-snow, Corr-fog, Corr-frost, Corr-fogging, each containing 714 

images. The image tags remained the same as in the SARD dataset, so no 

additional tagging was required. An example of generated images of the Corr 

dataset is given in Figure 7. 

 
Figure 4. Marked persons according to the size of the bounding box area for the SARD 

dataset. 

3) Statistics of datasets used for transfer learning 

The SARD set images were divided 60:40 into a train set and a test set so that 

they were evenly distributed according to the scenes (background, lighting, 

person pose, camera angle). The training set contains 1189 images, on which 

3921 persons are marked, while the test set contains 792 images, on which 2611 

persons are marked. The bounding boxes' dimensions in the SARD set range 

from 7px for the smallest width and 8px for the smallest height, while the 

maximum width is 353px and the maximum height is 337px. The area of the 
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smallest object bounding box is 7 x 12px while the largest is 322 x 231px, and 

the average bounding box size is 47px x 58 px. The SARD set contains 1883 

small person objects (objects whose boundary box area is less than 322), 4180 

medium person objects (322 < boundary box area < 962), and 469 large objects 

(boundary box area > 962). The frequency of occurrence of persons in the SARD 

dataset concerning the size of the object bounding box is graphically shown in 

Figure 4. 

The Corr train set's size corresponds to the SARD train set in terms of the number 

of images and the number and size of objects. There are 1,903 images in the set, 

which show 6,265 persons, of which 1,775 are small objects, 4,026 are medium-

sized objects, and 464 are large objects. The Corr test set is slightly smaller than 

the SARD test set because the images on which the persons were not visible 

after adding blur, rain, snow were deleted. These are mostly images in which 

people were in the shadows, took up very few pixels, or were occluded. The 

number of persons in the Corr dataset is shown in Figure 5. 

Another 2,129 images from the VisDrone image set, which includes a person or 

pedestrian tag, were selected for model training to generalize the learning data 

set. For selected images, person or pedestrian tags are merged into one class: 

person. This set is referred to as VisDrone2000. The VisDrone2000 drone image 

dataset was divided into a training set consisting of 1,598 images with 29,797 

tagged persons and a test set containing 531 images with 13 969 persons. 

The set contains 36,951 small person objects, 6,719 medium-sized objects, and 

only 96 large person objects. A VisDrone2000 data statistic shows that the 

VisDrone dataset recordings were made at higher altitudes than the SARD 

dataset (Figure 6.). 

Combinations of used sets and learning methods are described in Section 4. 
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Figure 5. Marked persons according to the size of the bounding box area for the Corr 

dataset. 

 
Figure 6. Marked persons according to the size of the bounding box area for the 

VisDrone2000 dataset. 

C. Selected object detectors 

We have tested the state-of-the-art object detectors on a custom-made SARD 

dataset and selected drone images from the VisDrone benchmark dataset to 

select the best-suited detector for our task of detecting persons in search and 

rescue scenes. 

In the experiment, we have compared the performance of the CNN-based 

detectors: Faster R-CNN, YOLOv4, RetinaNet, and Cascade R-CNN. All selected 

detectors were previously trained on the MSCOCO [17] dataset. All detector 
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models are further trained on bird's eye view images from a part of the VisDrone 

and a SARD custom dataset to improve their performances. 

Below is a brief description of the architecture of examined detectors. 

1) Faster R-CNN 

The Faster R-CNN detector from the R-CNN series [12], [41], [42], detectors is a 

two-phase region-based detector. These detectors' basic idea is to select the 

regions of interest from the image in the first phase. In the second phase, the 

classification and correction of the coordinates of the object will be performed. 

In our case, ResNet50 [32], a pre-trained deep neural network, is used as a 

backbone, which receives an image at the input and provides feature maps at the 

output that predicts regions of interest using the Region Proposal Network (RPN). 

RPN for feature maps of any dimensions, as an output gives a list of RoI's with a 

certain probability that the object is in the default RoI. The tested Faster R-CNN 

detector uses FPN to collect multiple feature maps of different resolutions. In this 

experiment, the implementation of a faster_rcnn_r50_fpn_1x detector from a 

MMDetection codebase [65] was used. 

2) YOLOV4 

The YOLO architecture seeks to merge localization and classification problems 

into one deep convolutional neural network. It divides the image into a grid of 

dimensions S x S in which each cell provides frames for the object. The 

probability, which is calculated for each frame, tells us how sure the model is 

when there is an object inside the frame and how sure it is of the boundaries’ 

accuracy. 

For the latest version of the YOLO detector, the authors explored typical 

algorithms used in deep learning models and further designed and improved 

some modules. 
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Figure 7. SARD Corr set with the added effect of bad weather and camera shift on the 
image, examples of generated images: A) original image, B) snow, C) fog, D) ice, E) 
motion blur. 

This model uses CSPDarkNet53 as the backbone [66]. DarkNet53 is a deep 

residual network with 53 layers, while in the case of YOLOv4, CSPNet (Cross 

Stage Partial Network) is added to the basic DarkNet53. The authors added 

Spatial Pyramid Pooling (SPP) [67] as a neck to increase the receiving (receptive) 

field without causing a decrease in velocity. Instead of the Feature Pyramid 

Network (FPN) used in the YOLOv3 version, the authors chose the Path 

Aggregation Network (PAN) [68] while using the original YOLOv3 [16] network 

for the head. 

In addition to the new architecture, the authors also use training optimization to 

achieve greater accuracy without additional hardware costs, which the authors 

call ''Bag of Freebies.'' Bag of Freebies includes CutMix, Mosaic, CIoUloss, 
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DropBlock regularization, etc. On the other hand, the authors propose a ''Bag of 

Specials,'' a set of modules such as Mish activation, SAM-block, Cross-stage 

partial connections (CSP), etc., that only slightly increase the hardware cost with 

a significant increase in detection accuracy. 

We used the Darknet framework to train and evaluate the YOLOv4 model. 

3) RetinaNet 

RetinaNet is a single-phase detector composed of a backbone and two sub-

networks specific to the task. The ResNet-FPN network, as the RetinaNet 

detector's backbone, is responsible for calculating the input image's feature map. 

The first sub-network performs the classification while the second regresses the 

boundary frames. 

A sub-classification network predicts the probability of an object's presence in 

each spatial position for each class. This subnetwork is a small FCN associated 

with each FPN level; this sub-grid parameter is shared at all pyramids levels. 

Unlike RPN [12], the RetinaNet sub-network for object classification is deeper, 

uses only 3 x 3 convolutions, and does not share parameters with the frame 

regression network. 

In parallel with the sub-network of object classification, they attach another small 

FCN to each level of the pyramid for regression of the boundary frame. In 

experiments, the implementation of the retinanet_r50_fpn_1x detector in the 

MMDetection codebase [69] was used. 

4) Cascade R-CNN 

Cascade R-CNN is a multi-phase extension of the Faster R-CNN architecture 

that aims to increase detection quality by constantly increasing IoU values. The 

focus is on the detection subnet, adopting an RPN to detect suggestions. 

However, Cascade R-CNN is not limited to this proposed mechanism since other 

choices are possible. The goal is to simultaneously increase the quality of 

hypotheses and improve detection results by combining cascade boundary frame 

regression and cascade detection. The implementation of a 

cascade_rcnn_r50_fpn_1x detector in a MMDetection codebase [70] was used. 
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D. Evaluation metrics 

Detector performance (bounding box of detected objects, the class assignment, 

and a reliability value) was assessed on unseen images using standard 

evaluation measures such as precision, recall, and mean average precision 

(mAP). In our case, only the class person is considered, so the mAP is equal to 

the average precision (AP). 

In the case of SAR operations finding a person as soon as possible is key to a 

successful SAR operation, so it is essential to detect missing people if they exist 

on the scene. Equally important is to have a few false detections as possible so 

that human resources are not wasted. Precision measures how accurate the 

detection results are, i.e., the percentage of true positive detections to the total 

number of detections. In contrast, recall measures how many true positive 

detections there are concerning the number of all possible detections [62]. 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (1) 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (2) 

 

TP = True Positive, TN = True Negative, FP = False Positive, FN = False 

Negative. 

The detection is considered positive if the intersectional ratio of the detected 

bounding box and the corresponding ground truth bounding box and their union 

is 50% or higher. This measure is referred to as intersection-over-union (IoU). An 

example of positive and negative person detection considering IoU >= 0.5 is 

shown in Figure 8. 

To precisely evaluate and characterize the performance of the detector, taking 

into account not only the accuracy of detection but also the size of objects in the 

image, six average precision measures in MS COCO format were considered 
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using the original script1: 

• AP overall 10 IoU thresholds (0.5: 0.05: 0.95), 

• AP50 at IoU = 0.50, 

• AP75 at IoU = 0.75. 

Average precision across different object scales is evaluated as: 

• APS for small objects with an area of less than 322 px, 

• APM for medium objects with an area between 322 and 962px, 

• APL for large objects with an area of more than 962px. 

 
Figure 8. Visual representation of positive (left) and negative (center and right) 

representation of intersection over union (IoU) criteria equal to or greater than 50% 
[71]. 

4. Experiments 

A.  Preliminary detection results 

Preliminary detection results of models of selected state-of-the-art CNN-based 

object detectors pre-trained on MS COCO dataset on our custom-made SARD 

test set andVisDrone2000 are given in Table 1. The best results are marked in 

bold. YOLOv4 achieved significantly better overall results on both test sets 

considering precision accuracy and object scales. 

Table 1. Comparative preliminary detection results on SARD and VisDrone datasets 
(%). 

Test set 
Model 

AP AP50 AP75 APS APM APL 

V
is

D
ro

n
e

 

Cascade R-CNN 8 18 6 4 25 48 

Faster R-CNN  8 19 6 5 26 43 

                                            
1 https://github.com/cocodataset/cocoapi 
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RetinaNet  7 15 4 3 22 43 

YOLOv4  13 30 1 11 36 80 
S

A
R

D
 

Cascade R-CNN  19 35 18 9 21 43 

Faster R-CNN  20 39 18 10 22 42 

RetinaNet  17 34 14 5 19 47 

YOLOv4 23 40 25 13 26 41 

 

B. Detection performance after training on domain images 

To achieve better person detection in the search and rescue scenes, we have 

also trained the original detectors on the Visdrone data set and on the SARD 

data set and compared the models' performances. 

The MMDetection codebase was used to train the Cascade R-CNN, Faster R-

CNN, and RetinaNet models, and the darknet framework model was used to 

train the YOLOv4 model. The learning rate (lr) was set to 0.005 as the training 

was performed on a single GPU computer. All other settings are the same as 

the original model settings. YOLOv4 models are trained on Google Colab with 

batch = 64 and subdivision = 32, with the network resolution set to 512 x 512. 

All models are tested on a laptop with one 1660Ti GPU. 

After training the model on the selected dataset, each model is referred to in the 

text as a model(dataset) to make it easier to compare the models' performances. 

For example, Cascade R-CNN (VisDrone2000) means a Cascade R-CNN 

detector trained on the VisDrone2000 dataset. 

 

 

Table 2. Comparative results of models trained and tested on VisDrone2000 dataset 
(%). 

Model 
AP IMP AP50 AP75 APS APM APL 

Cascade R-CNN 

(VisDrone2000) 

17 8,80 38 13 12 39 38 
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Faster R-CNN 

(VisDrone2000) 

13 4,70 34 8 9 33 28 

RetinaNet (VisDrone2000) 8 1,80 26 3 6 20 18 

YOLOv4 (VisDrone2000) 23 10,2 55 15 21 40 34 

 

1) Transfer learning with the VisDrone dataset 

The Cascade R-CNN(VisDrone2000), Faster R-CNN (VisDrone2000) and 

RetinaNet(VisDrone2000) models were trained in 6 epochs with batch_size set 

to 1, while the YOLOv4(VisDrone2000) model was trained with max_batches = 

6000 and batch = 64. 

The detection results on the VisDrone2000 test set for AP are shown in Table 2. 

The Imp column shows the progress of the model relative to the pre-trained model 

tested on the same data set. 

YOLOv4 (VisDrone2000) achieves an average score of 23% AP which is the best 

result compared to other tested detectors. Yolo proved to be equally the best in 

all AP measures related to object size and detection accuracy. By far, the best 

results of 55.1% AP YOLOv4 achieved on IoU = 0.50. 

Cascade R-CNN(VisDrone2000) achieves the second-best results but still 

significantly worse results than YOLOv4(VisDrone2000). Similar conclusions 

were reached in [72], [73]. 

2) Transfer learning with the SARD dataset 

When training the models on the SARD set, the same model learning parameters 

were used as at the Visdrone2000 set. The detection results on the SARD test 

set are given in Table 3. The best results were obtained with YOLOv4 (SARD), 

while the results of Cascade R-CNN (SARD) and Faster R-CNN (SARD) 

detectors are very similar but significantly worse than YOLOv4. All detectors 

achieve the best results for the case of AP50, with the best results of over 96% 

achieved by YOLOv4 (SARD). If higher detector precision is required, AP75, all 

detectors perform significantly worse, with the highest mean accuracy of 71% 

being achieved again by YOLOv4 (SARD). All detectors' results are significantly 
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higher on the SARD set than on the VisDrone set and significantly better than the 

original model when no additional training on domain images was performed. 

 

Table 3. Comparative results of models trained and tested on the SARD 

dataset (%). 

Model 
AP IMP AP50 AP75 APS APM APL 

Cascade R-CNN (SARD) 49 30,0 88 51 31 54 63 

Faster R-CNN (SARD) 50 29,9 91 51 30 56 65 

RetinaNet (SARD) 34 17,2 73 25 13 41 53 

YOLOv4 (SARD) 61 37,9 96 71 45 66 73 

 

 
Figure 9. The precision vs. recall ratio for models YOLOv4 (SARD), Cascade R-CNN 

(SARD), Faster R-CNN (SARD), and RetinaNet (SARD). 

When comparing the detection results concerning the objects' size, it is clear from 

Table 3 that all detectors achieve significantly better results for large objects than 

for medium and small objects. The best average accuracy of 73% is achieved by 

YOLOv4 (SARD) large objects, followed by 66% for medium objects. Faster R-

CNN (SARD) and Cascade R-CNN (SARD) perform similarly but score 10% 
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lower in the case of large and medium objects. For small object detection (APS), 

YOLOv4 (SARD) proved to be the best with an accuracy of 45%, while Faster R-

CNN (SARD) and YOLOv4 (SARD) achieved comparative results, for about 15% 

lower. 

Figure 9. shows the precision and recall ratio for all tested models. The best ratio 

of precision and recall, with 96% of precision for recall greater than 91% was 

achieved by YOLOv4 (SARD), which means that it was the most precise in the 

detection and has detected the most significant number of objects that exist in 

the image (ground truth). The best recall was achieved by Faster R-CNN (SARD) 

but with a precision of 67% and much more false positive detections than 

YOLOv4 (SARD). RetinaNet (SARD) had the lowest precision and the lowest 

recall. 

In search and rescue operations, the goal is to detect all persons present on the 

scene. Still, on the other hand, the detector's precision is also important so that 

resources are not wasted on false detections. For this reason, based on the 

achieved results of average precision and the ratio of precision and recall, the 

YOLOv4 detector was selected for further research. 

Examples of person detection results with models trained on the SARD dataset 

are shown in Figure 10. The columns in Figure 10 represent the detection results, 

respectively, in column A) Cascade R-CNN (SARD) model, in column B) Faster 

R-CNN (SARD) model, C) RetinaNet (SARD), D) YOLOv4 (SARD), and in E) 

ground truth. All possible detection outcomes appeared in Figure 10.: a positive 

detection where a person is detected, and IoU of bounding box and person's 

ground truth is more or equal than 50%, then a negative detection where a person 

is not detected, or IoU of the bounding box and person's ground truth is less than 

50% and a false-positive detection where a part of the image that does not 

contain a person was marked as a person. 
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A) B) C) D) 

Figure 10. Examples of person detection results of different models retrained on the 
SARD dataset: A column: Cascade R-CNN (SARD), B column: Faster R-CNN (SARD), 
C column: RetinaNet (SARD), D column: YOLOv4 (SARD), E column: ground truth. 

 

The first row in Figure 10 shows a quarry case with one person on a pile of rocks 

while two people are on a dusty road. All detectors successfully detect a person 

on the road, while only Cascade R-CNN (SARD) and YOLOv4 (SARD) also 

detect a person sitting on rocks. Faster R-CNN (SARD) has one false detection 

and multiple detections of a person on the road. 

The second row shows an example of three people with an overlap (occlusion) 

on low grass. All detectors successfully detected the standing person on the top 

right. Faster R-CNN (SARD) gives multiple detections of overlapping persons. At 

the same time, Cascade R-CNN (SARD) and RetinaNet (SARD) have occlusion 

problems and did not detect a person kneeling behind a moving person. YOLOv4 

(SARD) successfully detects all persons. 

The third scene with eight people was shot from a greater height than the first 

two examples. Cascade R-CNN (SARD) detects seven individuals with one false 

detection, Faster R-CNN (SARD) has five accurate detections as well as 

RetinaNet (SARD), which also has three false detections. YOLOv4 (SARD) 

precisely detects all persons in the image. 
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In the last case, taken from an even greater height and distance from the object, 

nine people are in the tall grass and macadam road. The Cascade R-CNN (SARD 

and the Faster R-CNN (SARD) accurately detect seven persons while the 

RetinaNet (SARD) detects only five of them. YOLOv4 (SARD) successfully 

detects all subjects in the image. 

From the qualitative analysis of the selected examples, it is clearly shown that 

YOLOv4 (SARD) was the most successful in detecting persons in SAR scenarios. 

However, there are also examples where the YOLOv4 (SARD) model was not 

successful, Figure 12. The most common examples of false detection are the 

cases when two people are standing very close to each other or overlap (Figure 

12, first row) and when the detector detects darker parts of vegetation (Figure 12, 

second row) or shadows (Figure 12, third row) as a person. It is almost typical for 

a person to merge with the background in search and rescue operations 

practically. In that case, it is challenging to detect a person even for a trained 

person, so it is not unexpected that the detectors have the most missed 

detections in that case (Figure 12, third row). 

 
Figure 11. Comparison of different images resolution. 

We try to adjust the model parameters and learning conditions to achieve even 

better detection results with the YOLOv4 detector in the experiment's 

continuation. 
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Figure 12. Miss detections of the YOLOv4 (SARD) model (cropped images to make it 
easier to notice the persons in the image): two people are standing very close to each 
other or overlapping (first row); darker parts of vegetation detected as a person 
(second row); shadows detected as persons (third row). 

 

C. Detection results regarding the network resolution 

The YOLO architecture resizes the input image, preserving the aspect ratio to the 

resolution defined in the .cfg weights file, defined by the width and height 

parameters. These parameters are called network resolution. Transformation of 

input image resolution in Yolo architecture is given by: 

 

 𝐼𝑚𝑔𝑡𝑟𝑎𝑖𝑛_𝑤𝑖𝑑𝑡ℎ = 𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ, 

𝐼𝑚𝑔𝑡𝑟𝑎𝑖𝑛_ℎ𝑒𝑖𝑔ℎ𝑡 =
𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ

𝐼𝑚𝑔𝑤𝑖𝑑𝑡ℎ 
𝐼𝑚𝑔ℎ𝑒𝑖𝑔𝑡ℎ 

(3) 

For example, if the input resolution of an image is 1920 x 1080 and the network 

resolution is defined as width, Netwidth = 512 height, Netheight = 512, YOLO will 
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change the resolution of the input image to the set width, Netwidth, preserving the 

original ratio between image width, Imgwidth and height, Imgheight e.g., 1920 x 1080 

will be transformed to 512 x 288. Comparison of different images resolution is 

shown in Figure 11. 

When done in both train and test sets of the model, this subsampling of image 

resolution does not violate the general rule of model training since the model was 

trained on similar object sizes as those that appear in the test set. 

To improve the detection performance, especially the detection of small objects, 

one alternative was to use the higher resolution of input images and train the 

network at higher resolutions, e.g.: 

 𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑁𝑒𝑡𝑤𝑖𝑑𝑡ℎ + 𝑘, 𝑘 = 32𝑛, 𝑛 ∈ ℕ (4) 

Values Netwidth and Netheight that are multiples of 32 can be used, such as 608 x 

608 or 832 x 832, because the YOLO network down-samples the input image by 

32. 

In our case, the input images size is (Imgtrain_width) 1920 x 1080, and the YOLOv4 

(SARD) model was trained on (Nettrain_width) 512 x 512 network resolution. Our 

computer was too weak to train the network at higher resolutions than that, so 

the alternative was to increase the network resolution during testing (Nettest_width) 

[74]. The idea was always to use input images of the same resolution of 1920 x 

1080 when training and to test the model on higher resolution images without 

compromising the sizes and ratio among the objects learned during training: 

 𝑁𝑒𝑡𝑡𝑒𝑠𝑡𝑤𝑖𝑑𝑡ℎ

𝐼𝑚𝑔𝑡𝑒𝑠𝑡𝑤𝑖𝑑𝑡ℎ

=  
𝑁𝑒𝑡𝑡𝑟𝑎𝑖𝑛𝑤𝑖𝑑𝑡ℎ

𝐼𝑚𝑔𝑡𝑟𝑎𝑖𝑛𝑤𝑖𝑑𝑡ℎ

; 

 

𝐼𝑚𝑔𝑡𝑒𝑠𝑡𝑤𝑖𝑑𝑡ℎ

𝐼𝑚𝑔𝑡𝑟𝑎𝑖𝑛𝑤𝑖𝑑𝑡ℎ

=  
𝑁𝑒𝑡𝑡𝑒𝑠𝑡𝑤𝑖𝑑𝑡ℎ

𝑁𝑒𝑡𝑡𝑟𝑎𝑖𝑛𝑤𝑖𝑑𝑡ℎ

 

 

(5) 

To preserve the ratio (5) for higher image resolution during testing, it was 

necessary to increase the network resolution. To examine the effect of changing 

the network resolution during testing (Nettest_width) on object detection 

performance, we have tested different network resolutions below and above the 

resolution at which the model was trained: 320 x 320, 416 x 416, 512 x 512, 608 
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x 608, 832 x 832, 1024 x 1024. The network resolutions 320 x 320 and 416 x 416 

are below the resolution at which the YOLOv4 (SARD) model was trained, while 

the resolutions 608 x 608, 832 x 832, 1024 x 1024 are above. The detection 

results are given in Table 4. 

Table 4. YOLOv4 (SARD) detection performance depending on the network resolution 
(%). 

Network 

resolution,𝑁𝑒𝑡𝑡𝑒𝑠𝑡 AP AP50 AP75 APS APM APL fps 

320x320 37 77 31 11 44 68 10.3 

416x416 51 88 54 26 59 75 9.73 

512x512 57 93 63 34 63 77 7.37 

608x608 60 95 67 39 63 77 6.61 

832x832 61 96 71 45 66 73 3.73 

1024x1024 60 95 64 46 65 66 2,50 

 

The best accuracy results are achieved for a network resolution of 832 x 832, 

Table 4, except in the case of large objects (APL). A comparison of the results 

shows that better detection results can be obtained by increasing the network 

resolution when testing. Better results are achieved at resolutions 608 x 608 and 

1024 x 1024 than at a resolution of 512 x 512 at which the model was trained. 

However, results also show that there is a limit after which the results no longer 

improve, such as in the case of network resolution of 1024 x 1024, when the 

results started to decrease. 

In the case of testing at the lower resolutions than the network resolution on which 

the model was trained, in general, worse results are obtained except in the case 

of the large object where just slightly worse results are achieved. It can be noted 

that the inference speed is about 10 fps for the lowest network resolution, which 

is 2.5x faster than at a resolution of 832 x 832, at which the most accurate results 

are obtained. 

The best average precision of 77% is obtained with 512 x 512 pixels and 608 x 

608 pixels for large objects. For medium objects, the best average precision is 
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66% with a network resolution of 832 x 832, and for small objects, the best 

average precision of 46% is got with a network resolution of 1024 x 1024 pixels. 

When approving the resolution of the most suitable model for SAR operations, 

we were guided by the fact that detection can be performed on-site during flight 

operations and off-line on the recorded materials since the drone's flight time is 

limited to the battery life. 

In real-time detection on a video received while the drone was flying over the area 

being searched, the detection speed is important, as well as the model's 

accuracy. There is also a need to transfer as little data as possible from the drone 

to the tablet control console. For this mode of use, the most suitable would be a 

network resolution of 416 x 416 at which the model has 10 fps with an accuracy 

of only 2% less than the same model at a network resolution of 832 x 832 for 

larger objects that are likely to be directly detectable in the field, and about 10% 

less for other cases. 

Off-line detection is performed on the recorded materials using a computer with 

a higher power CPU + GPU. The required detection speed is not crucial in that 

case, especially if we compare it with about 25 seconds needed for a human 

video analyst to detect a victim on drone images [50]. In that case, the best model 

is the one that achieves greater accuracy, and that would be with a resolution of 

832 x 832 or 608 x 608 since the differences in performance are negligible. 

D. Detection results as a function of TP-FP 

We mentioned earlier that in search and rescue operations, the crucial is the 

accuracy of detection and the speed of finding the missing person. Therefore, it 

is important to build a model with a few false detections (FP) as possible because 

they consume human resources and take valuable time. 

For this reason, we introduced additional metrics that we called ROpti, computed 

as the ratio of the difference between true (TP) and false positive (FP) detections 

and possible detections (TPCFN) in the dataset: 

 
𝑅𝑂𝑝𝑡𝑖 =  

(𝑇𝑃 + 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑁)
 (6) 



145 

 

 

For perfect precision (no false positive), ROpti is equal to recall, and with perfect 

recall (no false negative), ROpti is equal to 1, and this is a perfect score. As the 

number of FPs grows, ROpti decreases. In case TP is equal to FP, then ROpti is 

equal to zero, ROpti becomes negative, while TP is less than FP. 

The detection results considering ROpti measure, e.g., true and false-positive 

detections out of a total of 2611 objects for different network resolutions with 

default thresh of 0.25, are given in Table 5. 

Considering the ROpti measure, the resolution 832 x 832 surpass all other tested 

network resolutions as it has only 88 FP and the highest ROpti value of 0.928. 

Therefore, we propose a model for detection of persons in SAR actions shown in 

Figure 13, with 416 x 416 network resolution for on-board detections on videos 

received from the drone to the control console-tablet (or using RTMP server to 

live stream from a drone to laptop) and 832 x 832 for further off-line analyses. 

Table 5. YOLOv4 (SARD) detection results in terms of a true positive, false negative, 
and ROpti for different network resolutions. 

Model TP FP ROpti 

320x320 2088 295 0,687 

416x416 2346 184 0,828 

512x512 2438 147 0,877 

608x608 2485 133 0,901 

832x832 2512 88 0,928 

1024x1024 2491 102 0,915 
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Figure 13. Proposed model for person detection in SAR mission. 

E. Detection results as a function of confidence (thresh) value 

In the case of searching for a particular object, any detection that recognizes the 

object and its location can be taken as a positive detection, regardless of the 

percentage of the IoU between the ground truth bounding box and the detected 

bounding box, i.e., precision in terms of the bounding box which is the smallest 

closure of the object is not so important, so in our case, an IoU of 10% is also 

acceptable. Decreasing the IOU value and confidence value of the model affects 

the accuracy of the detection, and this, in turn, affects the model usability for 

automatic detection of persons in SAR missions. On the other hand, the goal is 

to achieve as few false-positive detections as possible, i.e., achieve the highest 

possible ROpti value, so the limit to which it is still effective to decrease the 

confidence or threshold value needs to be determined. 

By default, YOLO detects objects with a confidence (threshold) of 0.25 or more. 

This value directly affects the number of marked objects in the set, so we 

examined how the thresh value changes affect the ROpti value. 

Figure 14. shows detection results for thresh in the range from 0.10 to 0.90 with 

a step of 0.10 in two network resolutions 832 x 832 and 416 x 416. The best 

results were achieved when the network resolution was 832 x 832, and the thresh 
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was 40%, so this is the configuration we would recommend for the model for 

person detection in SAR scenes. 

 
Figure 14. The ROpti value for the YOLOv4(SARD) model with network resolutions 832 

x 832 and 416 x 416 considering different confidence values (thresh). 

With a network resolution of 416 x 416, results are 1 to 8% worse than with 832 

x 832, but with 2.5 times shorten detection times, so this network setting with 

thresh = 0.10 can be recommended as a reasonable solution in on-board online 

detection when speed and a small amount of data are important. To improve the 

ROpti results and reduce the number of FP detections in real-time, the drone pilot 

can "remove" false-positive detections by lowering the drone to a lower altitude 

when necessary to capture larger objects. 

F. Detection dependence of recording height 

The altitude at which the drone is located plays a major role in detecting people 

in aerial photographs. The higher the altitudes at which the drone flies, the smaller 

the captured material and fewer pixels are used to represent them. However, at 

higher altitudes, the drone can capture a larger terrain area. In the case of SAR 

operations, it makes no sense to increase the flight altitude above the level at 

which persons can be detected. Obviously, it is easier to detect a person 

represented in the image with a larger number of pixels, so it will be more suitable 
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for detecting people when the drone is flying at a lower altitude. But this extends 

the time required to cover the target search area. Therefore, the goal is to 

determine the highest possible altitude at which the drone should fly so that 

people on the scene can still be detected automatically by a detector. 

 
Figure 15. Detection results on different drone heights (15 m, 30 m, 45 m, 60 m, and 75 

m) show that below or equal to 30 m of height all detections are accurate. 

Flight altitude recommendations depend on the number of pixels in the camera 

and the lenses used, and the area being monitored. With DJI Phantom 4 

Advance, we record images at a resolution of 5472 x 3078 px with a camera angle 

of 90°, Field of View (FOV) by specification is 84°. 

In the experiment, we took images of two persons (women and a boy) at different 

heights (15 m, 30 m, 45 m, 60 m, and 75 m). Figure 15. shows detection results, 

and it can be seen that all detections are accurate at the height of 30 m. 

Therefore, considering that there are different specifications of drone cameras, 

we suggest that the drone flies at a height from which it can capture images in 

which people occupy an area of 100 x 100 px. 

G. Robustness to weather conditions and motion blur 
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To test the YOLOv4 (SARD) model's performance with a network resolution of 

832 x 832 in conditions that can occur in search and rescue operations, we have 

tested the model's performance on the Corr test set. The Corr test set includes 

images with various weather conditions such as snow, fog, frost (Corr-Snow, 

Corr-Fog, Corr-Frost), and motion blur that may occur during recording, e.g., due 

to moving and camera shake (Corr-M. Blur). 

Table 6. Comparative results of YOLOv4(sard) and YOLOv4(sardCcorr) on corr 
dataset and its parts concerning different weather conditions (%). 

Model 
TEST AP IMP AP50 AP75 APS APM APL 

Y
O

L
O

v
4
(S

A
R

D
) 

SARD 61  96 71 45 66 73 

Corr 35,5  65,7 34,7 20,8 39,4 53,3 

Corr-Snow 32,5  59,0 32,9 18,0 35,8 56,9 

Corr-Fog 30,2  55,0 30,4 22,5 32,2 40,4 

Corr-Frost 35,9  62,9 37,1 22,5 39,3 50,8 

Corr-M. blur 31,6  67,8 24,7 14,7 35,1 58,1 

Y
O

L
O

v
4
(S

A
R

D
+

C
o
rr

) 

SARD 59,4  94,7 67,4 42,2 64,7 72,8 

Corr 51,9  89,5 53,0 32,7 57,1 69,0 

Corr-Snow 50,3 17,8 88,5 51,5 33,4 54,7 65,1 

Corr-Fog 54,7 24,5 91,6 60,2 38,2 59,5 65,3 

Corr-Frost 53,1 18,2 90,5 57,8 36,7 57,5 66,5 

Corr-M. blur 43,9 12,3 84,9 41,0 24,4 49,4 61,6 

 

The examination results are given in Table 6 in terms of average precision (AP), 

respecting IoU precision and the object size. The results show several important 

facts. 

A significant decrease in detection performance occurred in the case of testing 

on images with bad weather conditions and blur images that did not exist in the 

training set. e.g., the decrease in AP50 was from 96% on SARD set to 66% on the 

Corr dataset that contains the same images but with bad weather conditions. The 
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drop in performance is not the same for all bad weather conditions, e.g., AP50 is 

59% for snow, 55% for fog, 63% for frost, and 68% for motion blur. 

To improve the YOLOv4 (SARD) model results in bad weather, we additionally 

trained the model on the Corr train set, referred to as the YOLOv4 (SARD+Corr) 

model. The YOLOv4 (SARD+Corr) model achieves similar or slightly worse 

results than the YOLOv4 (SARD) model on the SARD test set and significantly 

better results on the Corr test set. Detection results are presented in Table 6. 

Examples of detection results of the YOLOv4 (SARD+Corr) model for all different 

weather categories and motion blur are shown in Figure 16. 

 
Figure 16. Example of detection of YOLOv4 (SARDCCorr) model. Up-left snow, up-

right fog, down left ice, down right motion blur. 

H. Transfer learning strategy 

To improve model training, we wanted to investigate further how different transfer 

learning strategies regarding different combinations of datasets affect the 

detection result. We examined the possibility of learning the models successively, 

on one training set and then on the other, taking into account the order of sets 

used for training or in one step but using the images taken from both training sets. 
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Table 7. Detection results for YOLOv4 model trained on different sets and tested on 
SARD test set and mixture of SARD and VisDrone2000 test sets (%). 

TRAIN 
TEST AP IMP AP50 AP75 APS APM APL ARS ARM ARL ROpti 

SARD SARD 61,3 37,90 95,7 71,1 45,0 66,4 72,6 52,3 72,1 77,8 92,8 

VisDrone2000 SARD 18,9 -4,5 33,2 20,5 13,2 21,6 17,4 14,8 23,6 19,5 30,0 

Corr SARD 54,9 31,5 90,5 61,9 35,1 61,3 66,8 42,8 67,2 73,1 85,9 

S+V SARD 22,8 -0,6 41,7 23,7 16,4 25,5 23,0 19,1 28,3 25,8 35,4 

V+S SARD 61,3 37,9 95,8 70,6 46,2 66,3 71,5 53,1 71,8 76,6 93,5 

V+C+S SARD 62,0 38,6 95,9 71,9 46,9 66,9 72,1 53,9 73,2 77,1 92,6 

SC SARD 59,4 36,0 94,7 67,4 42,2 64,7 72,8 49,5 69,9 76,7 90,9 

SV SARD 55,4 32,0 92,5 60,8 38,4 60,6 67,1 46,0 66,0 71,7 86,2 

SVC SARD 56,4 33,0 93,6 63,1 39,9 61,5 67,3 47,5 66,8 71,7 88,2 

S+V SV 23,7 8,3 52,9 17,4 21,0 32,9 24,8 28,6 38,3 28,1 33,1 

V+S SV 18,7 3,3 35,7 17,5 9,9 48,2 96,9 12,9 53,6 74,6 26,3 

SV SV 29,7 14,3 61,7 24,6 22,3 52,4 65,8 30,0 58,3 70,3 40,3 

 

The goal was to get the best possible results of the YOLOv4 model at the SARD 

test set. Firstly, to train the model, SARD, VisDrone, and Corr sets were used 

separately, and then combinations of them. The results achieved by training the 

models at different training sets using one by another in a different order, or 

mixed, are shown in Table 7. In addition to the accuracy values, the improvement 

(Imp) of the model concerning the initial weights (original model) and ROpti value 

are also shown. 

The S + V means that the model is first trained on the SARD train set and then 

on the VisDrone train set, V + S that it is first trained on VisDrone, then on the 

SARD train set, and for V + C + S, the model is trained on VisDrone2000, and 

then on Corr and finally on SARD train set. 

The SV refers to a mixture of SARD and VisDrone2000 train sets when images 

are used randomly from both of them for training, while for testing purposes, the 

SV test refers to a combination of SARD and VisDrone test images. Similarly, the 
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SC is a mixture of SARD and Corr set, and SVC is a mixture of SARD, 

VisDrone2000, and Corr test set. 

It can be observed that the improvement of the results is achieved in the case 

when the last trained set is the closest to the tested set (S + V vs. V + S). Also, 

training models with more data from multiple sets ultimately contribute to a better 

result, especially if the sets are compatible, i.e., contain similar images. In this 

experiment, the best results (AP 62%, APS 46.9%) were achieved when learning 

the model on sets in the order V + C + S, but this is an improvement of only 1% 

than in the case when the model was trained only on the SARD set of images, 

which is certainly not a significant improvement. 

The V + S model achieves the same results on the SARD test set as the model 

trained only on the SARD set for all cases except for smaller objects. The V + S 

model gets better results since a larger number of smaller objects from 

VisDrone2000 train set were included in the V + S training set. 

Training the model on data from a mixture of sets (SV, SC, SVC) had given worse 

results than when the model was trained only on the SARD set or on a series of 

sets ending with SARD so that the weights of the model are last adjusted to the 

set being tested. 

The same conclusion applies when the model is tested on images from multiple 

sets, e.g., the SV set. The best results are achieved when the model is trained 

on a particular combination of these sets. 

5. Conclusion 

The ability to detect people on drone images using computer vision methods 

automatically is a significant help in SAR operations. In this paper, we explored 

the state-of-the-art person detectors in drone images and proposed a model for 

detecting persons in SAR actions. 

We have re-trained and tested CNN-based object detectors, Cascade R-CNN, 

Faster R-CNN, RetinaNet, and YOLOv4 on selected drone images in the 

VisDrone set and our custom-made set of SAR-s scenes. 
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YOLOv4 has achieved the best detection performances on the SARD dataset in 

terms of average precision (AP) considering IoU precision and the object size as 

well as the least false detection (FP), so it was further used in the experiment, 

referred to as YOLOv4 (SARD). When the model was trained on 512 x 512 image 

resolution, the best AP of 60% was achieved for a network resolution of 832 x 

832. 

In SAR operations, the model must have a few false detections (FP) as possible 

that resources are not wasted unnecessarily, so we introduced an additional 

metric called ROpti, calculated as the ratio of the difference between true and 

false positive detections and possible detections in a dataset. 

In searching for a missing person, the most important thing is that the detector 

locates that person, and it is less important how accurate the detection is. We 

experimentally selected parameters as a trade-off between accuracy and recall 

so that the model can be helpful in SAR actions. The results showed that the 

YOLOv4 (SARD) model in a network resolution of 832 x 832, IoU = 0.1, achieved 

the best results for thresh of 0.4, namely AP of 97.15% (TP: 2538, FP: 46). 

The model's robustness was tested on images with artificially generated bad 

weather conditions and image blur, and the results show a severe decrease in 

AP in more than 30%. After the model was also trained on the part of the images 

with bad weather effects, the model achieves significantly better results (AP 

50.3% for snow, 54.7% fog, 53.1% ice, 43.8% motion blur). 

In future work, the plan is to use a thermal camera to increase detection 

performance and develop a model for recognizing human activity (running, 

walking, standing, sitting, lying down) and tracking people in SAR scenes. 

References 

[1] M. Šuperina and K. Pogačić, "Učestalost Hrvatske gorske službe spašavanja 

u traganju za nestalim osobama," Policija i sigurnost, 16(3-4), 2007, 235-256. 

[2] G. Milani, M. Volpi, D. Tonolla, M. Doering, C. Robinson, M. Kneub¨uhler, 

and M. Schaepman, “Robust quantification of riverine land cover dynamics 



154 

 

by high-resolution remote sensing,” Remote Sensing of Environment, vol. 

217, pp. 491–505, 2018. 

[3] S. Ren, K. He, R. Girshick, J. Sun, “Faster R-CNN: Towards real-time object 

detection with region proposal networks,” in Advances in neural information 

processing systems, 2015, pp. 91-99. 

[4] Z. Cai and N. Vasconcelos, "Cascade r-CNN: Delving into high-quality object 

detection," in Proceedings of the IEEE conference on computer vision and 

pattern recognition, 2018, pp. 6154-6162. 

[5] T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, “Focal loss for dense object 

detection,” in Proceedings of the IEEE international conference on computer 

vision, 2017, pp. 2980-2988. 

[6] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, A. C. Berg, 

“SSD: Single shot multi-box detector,” in European conference on computer 

vision, Springer, Cham, 2016, pp. 21-37. 

[7] J. Redmon and A. Farhadi, "YOLOv3: An incremental improvement." arXiv 

preprint arXiv:1804.02767, 2018. 

[8] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, 

and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV, 

2014. 

[9] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, A. 

Zisserman, “The pascal visual object classes challenge: A retrospective,” 

International journal of computer vision, 2015, 111(1), 98-136. 

[10] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, 

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, `ImageNet 

large scale visual recognition challenge,'' Int. J. Comput. Vis., vol. 115, no. 3, 

pp. 211252, Dec. 2015. 

[11] M. Pobar, M, Ivasic-Kos, Mask R-CNN, and Optical flow-based method for 

detection and marking of handball actions, 2018 11th International Congress 

on Image and Signal Processing, BioMedical Engineering and Informatics 

(CISP-BMEI), 2018. 



155 

 

[12] M. Ivasic-Kos and M. Pobar, “Building a labeled dataset for recognition of 

handball actions using mask R-CNN and STIPS,” in 2018 7th European 

Workshop on Visual Information Processing (EUVIP), 2018, pp. 1–6. 

[13] M. Ivasic-Kos, M. Kristo, and M. Pobar, "Human Detection in Thermal 

Imaging Using YOLO," in Proceedings of the 5th ACM International 

Conference on Computer and Technology Applications, ICCTA 2019, NY, 

USA, 2019, pp.20-24. 

[14] M. Ivasic-Kos, M. Kristo and M. Pobar, "Person Detection in thermal videos 

using YOLO," Proceedings of SAI Intelligent Systems Conference. Springer, 

Cham, 2019. 

[15] P. Zhu, L. Wen, D. Du, X. Bian, Q. Hu, and H. Ling, "Vision Meets Drones: 

Past, Present, and Future," arXiv preprint arXiv:2001.06303, 2020. 

[16] M. Barekatain, M. Martí, H. F. Shih, S. Murray, K. Nakayama, Y. Matsuo, H. 

Prendinger, “Okutama-action: An aerial view video dataset for concurrent 

human action detection,” In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition Workshops, 2017, pp. 28-35. 

[17] D. Du, Y. Qi, H. Yu, Y. Yang, K. Duan, G. Li, Q. Tian, “The unmanned aerial 

vehicle benchmark: Object detection and tracking,” in Proceedings of the 

European Conference on Computer Vision (ECCV), 2018, pp. 370-386. 

[18] M. R. Hsieh, Y. L. Lin, W. H. Hsu, “Drone-based object counting by spatially 

regularized regional proposal network,” in Proceedings of the IEEE 

International Conference on Computer Vision, 2017, pp. 4145-4153. 

[19] A. Robicquet, A. Sadeghian, A. Alahi, S. Savarese, “Learning social etiquette: 

Human trajectory understanding in crowded scenes,” in European 

conference on computer vision, Springer, Cham, 2016, pp. 549-565. 

[20] M. Mueller, N. Smith, B. Ghanem, “A benchmark and simulator for UAV 

tracking,” in European conference on computer vision, Springer, Cham, 

2016, pp. 445-461. 

[21] K. Butorac, M. Šuperina and L. Mikšaj-Todorović, "Developing Police Search 

Strategies for Elderly Missing Persons in Croatia," Varstvoslovje, 17(1), 2015. 

[22] R. J. Koester, Lost Person Behavior: A Search and Rescue. DBS Productions 

LLC, 2008. 



156 

 

[23] A.S.Laliberte and A.Rango, “Textureandscaleinobject-based analysis of 

subdecimeter resolution unmanned aerial vehicle (UAV) imagery,” IEEE 

Transactions on Geoscience and Remote Sensing, vol. 47, no. 3, pp. 761–

770, 2009. 

[24] G. Pajares, “Overview and current status of remote sensing applications 

based on unmanned aerial vehicles (UAVs),” Photogrammetric Engineering 

& Remote Sensing, vol. 81, no. 4, pp. 281–330, 2015. 

[25] A. Bhardwaj, L. Sam, F. Mart´ın-Torres, and R. Kumar, “UAVs as remote 

sensing platform in glaciology: Present applications and future prospects,” 

RemoteSensingofEnvironment, vol.175, pp.196–204, 2016. 

[26] S. Harwin and A. Lucieer, “Assessing the accuracy of georeferenced point 

clouds produced via multi-view stereopsis from unmanned aerial vehicle 

(UAV) imagery,” Remote Sensing, vol. 4, no. 6, pp. 1573–1599, 2012. 

[27] S. Yahyanejad and B. Rinner, “A fast and mobile system for registration of 

low-altitude visual and thermal aerial images using multiple smallscale 

UAVs,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 104, 

pp. 189–202, 2015. 

[28] N. Tijtgat, W. Van Ranst, T. Goedeme, B. Volckaert, and F. De Turck, 

“Embedded real-time object detection for a UAV warning system,” in IEEE 

International Conference on Computer Vision Workshop (ICCVW), 2017. 

[29] X. X. Zhu, D. Tuia, L. Mou, G.-S. Xia, L. Zhang, F. Xu, and F. Fraundorfer, 

“Deep learning in remote sensing: A comprehensive review and list of 

resources,” IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 4, 

pp. 8–36, 2017. 

[30] L. Mou, Y. Hua, P. Jin and X. X. Zhu, "ERA: A Dataset and Deep Learning 

Benchmark for Event Recognition in Aerial Videos," arXiv preprint 

arXiv:2001.11394, 2020. 

[31] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-

scale image recognition," arXivpreprint arXiv:1409.1556, 2014. 

[32] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image 

recognition," in Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition (CVPR), 2016, pp. 770–778. 



157 

 

[33] S. Xie, R. Girshick, P. Dollar, Z. Tu and K. He, "Aggregated residual 

transformations for deep neural networks," in Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 

1492–1500. 

[34] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. 

Andreetto, and H. Adam, "MobileNets: Efficient convolutional neural networks 

for mobile vision applications," arXiv preprint arXiv:1704.04861, 2017. 

[35] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, 

"MobileNetV2: Inverted residuals and linear bottlenecks," in Proceedings of 

the IEEE Conference on Computer Vision and pattern recognition (CVPR), 

2018, pp. 4510–4520. 

[36] A. Howard et al, "Searching for MobileNetV3," in Proceedings of the IEEE 

International Conference on Computer Vision (ICCV), 2019. 

[37] A. Kuznetsova et al, "The open images dataset v4: Unified image 

classification, object detection, and visual relationship detection at scale," 

arXiv preprint arXiv:1811.00982, 2018. 

[38] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified, 

real-time object detection,” in Proceedings of the IEEE conference on 

computer vision and pattern recognition, 2016, pp. 779-788. 

[39] J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," 

Proceedings of the IEEE conference on computer vision and pattern 

recognition, 2017. 

[40] A. Bochkovskiy, C. Y. Wang and H. Y. M. Liao, "YOLOv4: Optimal Speed and 

Accuracy of Object Detection," arXiv preprint arXiv:2004.10934, 2020. 

[41] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for 

accurate object detection and semantic segmentation," in Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

2014, pp. 580–587. 

[42] R. Girshick, "Fast R-CNN," Proceedings of the IEEE international conference 

on computer vision, 2015. 



158 

 

[43] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-based 

fully convolutional networks,” in Advances in neural information processing 

systems, 2016, pp. 379–387. 

[44] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, 

"Feature pyramid networks for object detection," in Proceedings of the IEEE 

conference on computer vision and pattern recognition, 2017, pp. 2117-2125. 

[45] S. N. A. M. Ghazali, H. A. Anuar, S. N. A. S. Zakaria, Z. Yusoff, “Determining 

position of target subjects in maritime search and rescue (MSAR) operations 

using rotary-wing unmanned aerial vehicles (UAVs),” in 2016 International 

Conference on Information and Communication Technology (ICICTM), IEEE, 

2016, pp. 1-4. 

[46] P. Doherty, P. Rudol, “A UAV search and rescue scenario with human body 

detection and geolocalization,” in Australasian Joint Conference on Artificial 

Intelligence, Springer, Berlin, Heidelberg, 2007, pp. 1-13. 

[47] M. A. Goodrich, B. S. Morse, C. Engh, J. L. Cooper, J. A. Adams, “Towards 

using unmanned aerial vehicles (UAVs) in wilderness search and rescue: 

Lessons from field trials,” Interaction Studies, 2009, 10(3), 453-478. 

[48] S. Waharte, N. Trigoni, “Supporting search and rescue operations with 

UAVs,” in 2010 International Conference on Emerging Security 

Technologies, IEEE, 2010, pp. 142-147. 

[49] C. A. Baker, S. Ramchurn, W. T. Teacy, N. R. Jennings, “Planning search 

and rescue missions for UAV teams,” in Proceedings of the Twenty-second 

European Conference on Artificial Intelligence, IOS Press, 2016, pp. 1777-

1778. 

[50] K. Yun, L. Nguyen, T. Nguyen, D. Kim, S. Eldin, A. Huyen, E. Chow, “Small 

target detection for search and rescue operations using distributed deep 

learning and synthetic data generation,” in Pattern Recognition and Tracking 

XXX (Vol. 10995, p. 1099507), International Society for Optics and 

Photonics, 2019. 

[51] A. J. Gallego, A. Pertusa, P. Gil, R. B. Fisher, “Detection of bodies in maritime 

rescue operations using unmanned aerial vehicles with multispectral 

cameras,” Journal of Field Robotics, 2019, 36(4), 782-796. 



159 

 

[52] R. Geraldes, A. Gonçalves, T. Lai, M. Villerabel, W. Deng, A. Salta, H. 

Prendinger, “UAV-based situational awareness system using deep learning,” 

IEEE Access, 2019, 7, 122583-122594 

[53] S. O. Murphy, C. Sreenan, K. N. Brown, “Autonomous unmanned aerial 

vehicle for search and rescue using software-defined radio,” in 2019 IEEE 

89th Vehicular Technology Conference VTC2019-Spring, 2019, pp. 1-6. 

IEEE. 

[54] E. Lygouras, N. Santavas, A. Taitzoglou, K. Tarchanidis, A. Mitropoulos, A. 

Gasteratos, “Unsupervised human detection with an embedded vision 

system on a fully autonomous UAV for search and rescue operations,” 

Sensors, 2019, 19(16), 3542. 

[55] F. S. Leira, T. A. Johansen, T. I. Fossen, “Automatic detection, classification 

and tracking of objects in the ocean surface from UAVs using a thermal 

camera,” in 2015 IEEE aerospace conference, IEEE, 2015, pp. 1-10. 

[56] J. Sun, B. Li, Y. Jiang, C. Y. Wen, “A camera-based target detection and 

positioning UAV system for search and rescue (SAR) purposes,” Sensors, 

2016, 16(11), 1778. 

[57] Z. Kashino, G. Nejat, B. Benhabib, “Aerial wilderness search and rescue with 

ground support,” Journal of Intelligent & Robotic Systems, 2019, 1-17. 

[58] T. Marasović, V. Papić, “Person classification from aerial imagery using local 

convolutional neural network features,” International Journal of Remote 

Sensing, 2019, 1-19. 

[59] A. Al-Kaff, M. J. Gómez-Silva, F. M. Moreno, A. de la Escalera, J. M. 

Armingol, “An appearance-based tracking algorithm for aerial search and 

rescue purposes,” Sensors, 2019, 19(3), 652. 

[60] S. E. Wei, V. Ramakrishna, T. Kanade, Y. Sheikh, “Convolutional pose 

machines,” in Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, 2016, pp. 4724-4732. 

[61] S. Sambolek, M. Ivasic-Kos, "Detection of Toy Soldiers Taken from a Bird’s 

Perspective Using Convolutional Neural Networks," ICT Innovations 2019, 

Ohrid, Springer Communications in Computer and Information Science, 

2019. 



160 

 

[62] M. Ivasic-Kos, I. Ipsic, and S. Ribaric, "A knowledge-based multi-layered 

image annotation system," Expert systems with applications 42 (24), pp. 

9539-9553. 

[63] LabelImg [Online] Available: https://github.com/tzutalin/labelImg  

[64] C. Michaelis, B. Mitzkus, R. Geirhos, E. Rusak, O. Bringmann, A. S. Ecker 

and W. Brendel, "Benchmarking robustness in object detection: Autonomous 

driving when winter is coming," arXiv preprint arXiv:1907.07484, 2019. 

[65] Faster R-CNN mmdetection models. [Online]. Available: 

https://github.com/open-

mmlab/mmdetection/tree/master/configs/faster_rcnn  

[66] C. Y. Wang, H. Y. Mark Liao, Y. H. Wu, P. Y. Chen, J. W. Hsieh, and I. H. 

Yeh, "CSPNet: A new backbone that can enhance learning capability of CNN, 

"in Proceedings of the IEEE/CVF Conference on Computer Vision and 

Pattern Recognition Workshops, 2020, pp. 390-391. 

[67] K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep 

convolutional networks for visual recognition," IEEE Transactions on Pattern 

Analysis and Machine Intelligence TPAMI, 37(9), 2015, pp. 1904–1916. 

[68] S. Liu, L. Qi, H. Qin, J. Shi and J. Jia, "Path aggregation network for instance 

segmentation," in Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition CVPR, 2018, pp. 8759–8768. 

[69] RetinaNet mmdetection models. [Online]. Available: https://github.com/open-

mmlab/mmdetection/tree/master/configs/retinanet  

[70] Cascade R-CNN mmdetection models. [Online]. Available: 

https://github.com/open-

mmlab/mmdetection/tree/master/configs/cascade_rcnn  

[71] M. Kristo, M. Ivasic-Kos, M. Pobar. Thermal Object Detection in Difficult 

Weather Conditions Using YOLO, 2020, IEEE Access 8, 125459-125476 

[72] D. R. Pailla, “VisDrone-DET2019: the vision meets drone object detection in 

image challenge results, 2019. 

[73] S. Sambolek, M. Ivašić-Kos, „Detecting objects in drone imagery: a brief 

overview of recent progress“, Mipro 2020, Opatija. 

https://github.com/tzutalin/labelImg
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn
https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn
https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet
https://github.com/open-mmlab/mmdetection/tree/master/configs/retinanet
https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn
https://github.com/open-mmlab/mmdetection/tree/master/configs/cascade_rcnn


161 

 

[74] Yolo-v4 and Yolo-v3/v2 for Windows and Linux. [Online]. Available: 

https://github.com/AlexeyAB/darknet 

[75] M. Pobar, M. Ivasic-Kos, "Active Player Detection in Handball Scenes Based 

on Activity Measures," Sensors 20 (5), 1475. 

 

  

https://github.com/AlexeyAB/darknet


162 

 

RAD 5. TRANSFER LEARNING METHODS FOR TRAINING PERSON 

DETECTOR IN DRONE IMAGERY 

 

 

 

 

 

 

 

 

 

Ovaj rad je objavljen kao: Sambolek, Saša, and Marina Ivašić-Kos. Transfer 

Learning Methods for Training Person Detector in Drone Imagery. In: Arai, K. 

(eds) Intelligent Systems and Applications. IntelliSys 2021. Lecture Notes in 

Networks and Systems, vol 295. Springer, Cham. https://doi.org/10.1007/978-3-

030-82196-8_51 

 

Radi jasnoće, rad je preoblikovan, inače je sadržaj isti kao i objavljena verzija 

rada. © 2022 od strane autora. Reproduced with permission from Springer 

Nature. 

 

 

 

 

https://link.springer.com/chapter/10.1007/978-3-030-82196-8_51  

https://link.springer.com/chapter/10.1007/978-3-030-82196-8_51


163 

 

1. Introduction 

Deep learning methods have been successfully applied in many computer vision 

applications in recent years. Unlike traditional machine learning methods, deep 

learning methods allow automatic learning of features from data and reduce 

manual extraction and presentation features. However, it should be emphasized 

that the deep learning model is highly data-dependent. Large amounts of data 

are needed in the learning set to detect patterns among the data, generate 

features of the deep learning model, and identify the information needed to make 

a final decision. 

Insufficient data to learn deep learning models are a significant problem in 

specific application domains such as search and rescue (SAR) operations in non-

urban areas. The process of collecting relevant image data, in this case, is 

demanding and expensive because it requires the use of drones or helicopters to 

monitor and record non-urban areas such as mountains, forests, fields, or water 

surfaces. The additional problem is that scenes with detected casualties rarely 

appear on the recorded material, which is the most useful for learning the model 

for detecting an injured person. Besides, the data collected should be processed, 

each frame inspected, and each occurrence of a person marked with a bounding 

box and labeled, which is a tedious and time-consuming process. 

One way to overcome the problem of data scarcity is to use transfer learning. 

Transfer learning allows a domain model not to be learned from scratch, 

assuming that the learning set data is not necessarily independent and identically 

distributed as the data in the test set. This assumption makes it possible to 

significantly reduce the amount of data required in the learning set and the time 

required to learn the target domain model. 

This paper aims to detect persons on the scenes of search and rescue (SAR) 

operations. Today, it has become commonplace to use drones in SAR missions 

that fly over the search area and film it from a bird’s eye view. They can capture 

a larger area at higher altitudes, but then the people in the image are tiny and 

take up only a few pixels. People can be detected more efficiently at lower 

altitudes, but in that case, the field of view is smaller. People who are searched 
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for are very often barely noticeable because of the branches and trees, occluded 

by some vegetation, in the shadow, fused with the ground, which further 

complicates the search even for favorable weather conditions. During SAR 

operations, the drone operator has a demanding task to analyze the recorded 

material in real-time to detect a relatively small person on a large, inaccessible 

surface that requires great concentration, so automatic detection can be valuable. 

We used the YOLOv4 model for the person detector trained on the MS COCO 

dataset, which proved to be the most successful in previous research after 

additional learning on domain images [1–3]. 

To train theYOLOv4 model, we used the custom-made set of SARD scenes that 

were shot in a non-urban area with actors simulating injured people and prepared 

for machine learning. To increase the set, we have generated the Corr-SARD set 

from SARD scenes by adding atmospheric conditions. Since tailor-made SARD 

and Corr-SARD datasets were relatively small for learning deep learning models, 

we have additionally used the VisDrone dataset to include more images of people 

taken by drone, although not in non-urban areas. 

This paper examined three different transfer learning methods for building 

YOLOv4 models for detecting persons in search and rescue operations. In the 

next section, three different methods of transfer learning will be presented. In the 

third section, the experimental setup is given along with the description of image 

data sets SARD, Corr-SARD, VisDrone, and basic information about the YOLO4 

detector. In the fourth section, the experimental results of applying different 

transfer learning methods will be presented and compared. In conclusion, we list 

important characteristics regarding the impact of different transfer learning 

approaches on person detection in search and rescue scenes and a plan for 

future research. 

2. Transfer Learning 

Transfer learning involves taking a pre-trained neural network and adapting that 

neural network to a new distinct set of data by transferring or repurposing the 

learned features. Transfer learning is beneficial when learning models with limited 
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computing resources and when a modest set of data is available for model 

learning. 

Many state-of-the-art models took days, or even weeks, on powerful GPU 

machines to train them. So, to not repeat the same procedure over a long time, 

learning transfers allow us to use pre-trained weights as a starting point. 

Different levels and methods of applying deep transfer learning can be classified 

into four categories according to [4]: network-based transfer learning, instance-

based transfer learning, mapping-based transfer learning, and adversarial-based 

transfer learning, which we will not examine here. 

2.1 Network-Based Deep Transfer Learning 

Network-based deep transfer learning refers to the reuse of a part of the network 

(without fully connected layers) previously trained in the source domain and is 

used as part of the target network used in the target domain [4]. 

The CNN architecture contains many parameters, so it is difficult to learn so many 

parameters with a relatively small number of images. Therefore, for example, in 

[5], the network is first trained on a large set of data for classification (ImageNet, 

source domain), and such pre-trained parameters of the inner layers of the 

network are transferred to the target tasks (classification, detection, domain 

target). An additional network layer was added and trained on the labeled target 

set data to minimize the differences between the source and the target data 

regarding various image statistics (object type, camera position, lighting) and fit 

the model to the target data task. 

Suppose the source domain and the target domain differ in scenes. In that case, 

the objects’ appearance, lightings, background, position, distance from the 

camera, and similar lower detection results can be expected on target sets than 

achieved on the source. For example, the original model of the YOLO object 

detector trained on the COCO data set was used for detecting players in video 

frames of handball sports [6] and for person detection on thermal images [7]. In 

the case of player detection in handball scenes, the original YOLO model 

achieved an AP of 43.4%, which is often better than person detection in thermal 
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images, where an AP of 19.63% was achieved. Lower results on thermal images 

are due to significant differences between thermal and RGB images. Lower 

detection results on handball scenes were achieved since the detector did not 

accurately identify the player and often drop to mark a high-raised hand or leg in 

the jump, as handball-specific poses did not exist in the original set. 

2.2 Instances-Based Deep Transfer Learning 

Instance-based deep transfer learning refers to a method in which a union of 

selected instances from the source domain and instances of the target domain is 

used for training. It is assumed that regardless of differences in domains, the 

source domain’s instances will improve detections in the target domain. 

In deep learning, the approach of fine-tuning models on the target domain, which 

are pre-trained on large benchmark datasets of source domains, is standard to 

improve results in other similar target domains. The authors in [8] use an 

instance-based deep transfer approach to measure each training sample’s 

impact in the target domain. The primary purpose was to improve the model’s 

performance in the target domain by optimizing its training data. In particular, they 

use a selected pre-trained model to assess each training sample’s impact in the 

target domain. According to the impact value, remove negative samples and thus 

optimize the target domain’s training set. 

In the previously mentioned research in the sports domain [6] and thermal images 

[7], itwas shown that additional learning at the appropriate set and fine-tuning the 

parameters of the pre-trained model to tasks of interest could significantly 

improve the detection results at the target set. Thus, the basic model’s AP on the 

set of thermal images with AP 19.63% with additional adjustment on the 

customized set of thermal images achieved AP of 97.93%. In additional learning 

in the handball scenes, AP increased from an initial 43% to 67%. Similar results 

after fine-tuning with state-of-the-art backbone deep neural networks such as 

Inception v2, ResNet 50, ResNet 101 were also reported in [9]. 

2.3 Mapping-Based Deep Transfer Learning 
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Mapping-based deep transfer learning refers to mapping instances from the 

source domain and the target domain to a new data space [4]. Mapping-based 

deep transfer learning finds a common latent space in which feature 

representations for the source and target domains are invariant [10]. In [11], a 

CNN architecture was proposed for domain adaptation by introducing an 

adaptation layer for learning feature representations. The maximum mean 

discrepancy (MMD) metric is used to calculate the overall structure’s distribution 

distance concerning a particular representation, which helps select the 

architecture’s depth and width and regulate the loss function during fine-tuning. 

Later, in [12] and [13], a multiple kernel variance of MMD was proposed 

(MKMMD) and joint MMD (JMMD) to improve domain adaptation performances. 

However, the main limitation of the MMD methods is that the computational cost 

of MMD increases quadratically with the number of samples when calculating 

Integral Probability Metrics (IPM) [14]. Therefore, Wasserstein distance has 

recently been proposed in [15] as an alternative for finding better distribution 

mapping. 

2.4 Adversarial-Based Deep Transfer Learning 

Adversarial-based deep transfer learning mainly refers to introducing adversarial 

technology inspired by generative adversarial networks (GAN) [16] to find 

transferable representations that apply to both the source and target domain but 

can also refer to the use of synthetic data used to enlarge the original dataset 

artificially. 

In adversarial networks, the extracted features from two domains (source and 

target) are sent to the adversarial layer that tries to discriminate the features’ 

origin. If there is a slight difference between the two types of features, the 

adversarial network achieves worse performance, and it is a signal for better 

transferability, and vice versa. In this way, general features with greater portability 

are revealed in the training process. 

In the case of using synthesized data in order to increase the learning set of the 

deep learning model, it is necessary to analyze the content of the reference video 
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scene and select elements to be generated on the virtual scene taking into 

account the background, objects on the scene and accessories, such as [17]. 

3. Experimental Setup 

3.1 Dataset 

In this paper, three datasets were used: the publicly available VisDrone dataset, 

custom made SARD dataset and synthetically enlarged SARD dataset, Corr-

SARD datasets. 

From the VisDrone dataset [18] containing images of urban scenes taken by the 

drone, we selected 2,129 images that include a person or pedestrian tag. We 

combined both labels into one class: person. The obtained dataset was divided 

into a training set (1,598 images) and a test set (531 images). The selected 

dataset from the VisDrone set includes shots of people taken under different 

weather and lighting conditions in different urban scenarios such as roads, 

squares, parks, parking lots, and the like. 

The SARD dataset [19] was recorded in a non-urban area to show persons in 

scenes specific to search and rescue operations. The set contains footage 

simulating poses of injured people found in inaccessible terrains in the hills, 

forests, and similar places by searching and rescuing actions and standard poses 

of people such as walking, running, sitting. The set contains 1,981 images divided 

into two subsets, a training set containing 1,189 images and a test set with 792 

images. 

The Corr-SARD dataset is derived from the SARD set so that the effects of snow, 

fog, frost, and motion blur are added to the SARD images. The training set has 

the same number of images as the SARD training set, while the test set has 

slightly fewer images (714) because images in which no persons are seen after 

adding the effect have been removed. 

For the experiment, we created an additional three datasets containing images 

of the sets mentioned above. The SV refers to a mixture of SARD and VisDrone 



169 

 

sets. Similarly, the SC is a mixture of SARD and Corr set, and SVC is a mixture 

of SARD, VisDrone, and Corr test set. 

 

Figure. 1. Example of images from SARD dataset. 

3.2 YOLOv4 Person Detection Model 

Detection of persons in high-resolution images taken by a drone is a challenging 

and demanding task. People who are searched for due to loss of orientation, fall, 

or dementia are very often in unusual places, away from the road, in atypical body 

positions due to injury or fall, lying on the ground due to exhaustion, covered with 

stones due to slipping or landslides (Fig. 1). On top of all that, the target object is 

relatively small and often camouflaged in the environment, so it is often 

challenging to observe. 

In this experiment, for person detection, we used the YOLOv4 model [20]. 

YOLOv4 uses CSPDarkNet53 as a backbone [21] that includes the DarkNet53, 

a deep residual network with 53 layers, and the CSPNet (Cross Stage Partial 

Network). To increase the receptive field without causing a decrease in velocity, 

the authors added Spatial Pyramid Pooling SSP [22] as the neck, and PAN, Path 

Aggregation Network [23] for path aggregation, instead of the Pyramid Feature 

Network (FPN) used in YOLOv3. The original YOLOv3 network is used for the 

head [24]. 
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In addition to the new architecture, the authors also used training optimization 

called “Bag of Freebies” to achieve greater accuracy without additional hardware 

costs, such as CutMix, Mosaic, CIoU-loss, DropBlock regularization. There is also 

a “Bag of Specials” set of modules that only slightly increase the hardware costs 

with a significant increase in detection accuracy. 

To train and evaluate the YOLOv4 model, we used the Darknet framework [25], 

an open-source neural network framework written in C and CUDA that supports 

CPU and GPU computing. For the experimentation, we used Google Colab [26], 

a free tool for machine learning and local computer Dell G3 i7-9750H CPU, 16 

GB RAM, GeForce GTX 1660 Ti 6 GB, with Ubuntu 16.04. 64-bit operating 

system. 

3.3 Evaluation Metrics 

We use average accuracy (AP) to evaluate the detection results. AP is a metric 

that considers the number of correctly and incorrectly classified samples of a 

particular class and is used to determine the detection model’s overall detection 

power, not just accuracy [27]. In this experiment, we have used three precision 

measures in the MS COCO format that takes into account detection accuracy 

(IoU): 

• AP thresholds of 10 IoU (0.5: 0.05: 0.95), 

• AP50 at IoU = 0.50, 

• AP75 in IoU = 0.75. 

The original COCO script was used to calculate the results. 

4. Results of Transfer Learning Methods and Discussion 

This section presents the overall performance results from the conducted 

experiments. It is worth mentioning that the pre-trained YOLOv4 with weights 

(yolov4.conv.137 [25]) learned on the MS COCO [28] dataset was trained on 

three training datasets with different transfer learning methods to identify the 

transfer learning variant that provides the best solution for person detection in 

SAR scenes. 
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In all cases, the YOLOv4 model was trained with a batch size of 64, a subdivision 

of 32, and iterations of 6000. The learning rate, momentum, and decay for the 

training process were set to values of 0.001, 0.949, 0.0005, and width and height 

to value 512. 

Before training, the parameters of the original model should be changed and 

adapted to our domain. The first step is to change the number of classes from 

80, which corresponds to the number of MS COCO classes, to 1 class, a person 

in this experiment. After defining the class size, each Conv filter must be set to 

18 as defined in (1), where the class corresponds to the number of classes (class 

= 1 in our case). 

 𝑥 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 =  (𝑐𝑙𝑎𝑠𝑠𝑒𝑠 + 5) 𝑥 3  (1) 

The impact of applying each of the transfer learning methods in training the 

detection model on the detectors’ results in search and rescue operations is given 

below. 

4.1 Fine-Tuning the YOLOv4 Model to the Target Domain 

In the network-based deep transfer learning, the pre-trained YOLOv4 model 

trained on the COCO source domain was fine-tuned to the target domain: SARD, 

VisDrone, or Corr-SARD dataset. The sketch of network-based deep transfer 

learning is shown in Fig. 2. 
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Figure. 2. A network-based deep transfer learning: the first network was trained in the 
source domain (in our case MS COCO), and then the pre-trained network was fine-

tuned on the target domain (SARD dataset). 

For a more straightforward presentation of the results, the model trained on the 

SARD training dataset was designated as the SARD model. The model labeled 

COCO refers to the pre-trained model on the MS COCO dataset. 

Table 1 shows the results of person detection on SARD images concerning the 

AP metric with the original YOLOv4 model and theYOLOv4model that was further 

trained on SARD images. The results show a significant improvement in AP (Imp 

37,9) and AP50 and AP75 metrics of the detection results after fine-tuning the 

model to the SARD dataset. 

Table 1. Results of YOLOv4 models on SARD test dataset in case of network-based 
deep transfer learning 

Model AP AP50 AP75 Imp 

COCO 23.4 40.2 25.3  

SARD 61.3 95.7 71.7 37.9 

 

4.2 Instances-Based Deep Transfer Learning with SARD, Corr-SARD, and 

VisDrone Datasets 
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After we applied the network-based transfer learning, we applied several 

instance-based deep transfer learning to train further the YOLOv4 model, 

including a series of sets (VisDrone and Corr-SARD and SARD). 

Using the VisDrone set, we selected only those instances from that set relevant 

to our target domain, i.e., those that contained a person. In the VisDrone training 

set that we used, there is approximately the same number of images as in the 

SARD training set, but in the VisDrone set, there are 25,876 objects more than in 

the SARD dataset that is 29,797 marked persons in VisDrone and 3,921 marked 

persons in SARD dataset. 

In the first case of instance-based transfer learning, the original model was 

trained first on a selected part of the VisDrone dataset and then fine-tuned on the 

SARD training dataset (V + S model). The sketch of instances-based deep 

transfer learning with VisDrone and SARD dataset is shown in Fig. 3. 

 
Figure. 3. Instance-based deep transfer learning. We selected only images relevant to 
our target domain and trained the model with it from the source domain. In the second 

step, the model was trained on the SARD dataset. 

According to the results presented in Table 2, additional model training on the 

VisDrone set (model V + S) did not affect the detection results obtained on the 

SARD model. However, it improved the results compared to the original model 

(Imp 37,9). 

Training on the Corr-SARD training dataset contributed to a slight improvement 

in detection results concerning the SARD model and significant AP improvement 

to the original model (Fig. 4). 

Also, the results show that transfer learning is not commutative and that the order 

of the sets used to train the model affects the detection results. The best results 
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are achieved when the model is fine-tuned on the dataset on whose examples it 

will be tested, so the V + S model achieves significantly better results than the S 

+ V model. 

We also tested instance-based deep transfer learning using three datasets so 

that the original model was fine-tuned on the SARD training set after training on 

VisDrone, and the Corr-SARD datasets (V + C + S model). 

Table 2. Results of YOLOv4 models on SARD test set to build with instance-based 
transfer learning 

Model AP AP50 AP75 Imp 

S + V 22.8 41.7 23.7 -0.6 

V + S 61.3 95.8 70.6 37.9 

V + C + S 62.0 95.9 71.9 38.6 

 

Table 3 shows the individual detection results on the SARD test set obtained 

when the original model was additionally trained on the VisDrone and Corr-SARD 

sets. For an easier results notation, a model trained on the VisDrone dataset is 

designated as VisDrone, and the model trained on the Corr-SARD as Corr-SARD. 

The results are interesting and show that fine-tuning the original model to the 

VisDrone set even lowered the detection results even though the original COCO 

dataset does not include shots of people taken by the drone. The VisDrone set 

includes them just like the target SARD test set, but in urban areas. The use of 

the synthetic Corr-SARD set contributed to improved person detection outcomes 

in the SARD test set. 
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Figure. 4. Using Corr-SARD dataset for transfer learning. After training on the SARD 

dataset, the model was re-train with the same images with added effect. 

Table 3. Results of YOLOv4 models on SARD test dataset after learning on the 
VisDrone set and Corr-SARD set 

Model AP AP50 AP75 Imp 

VisDrone 18.9 33.2 20.5 -4.5 

Corr-SARD 54.9 90.5 61.9 31.5 

 

4.3 Mapping-Based Deep Transfer Learning with Images from SARD, Corr-

SARD, and VisDrone Datasets 

In mapping-based deep transfer learning, several new sets were made for 

training the model as a union of images from the VisDrone, SARD, and Corr-

SARD training sets. These are the SV sets created as a union of images from the 

SARD training set and VisDrone set, the SC model created by merging images 

from the SARD training set and Corr-SARD, and the SVC set created as a union 

of images from all three sets. A sketch of mapping-based deep transfer learning 

is shown in Fig. 5. 

The results in Table 4 show that transfer learning on newly created sets (SV, SC, 

SCV) significantly contributed to the improvement of the detection result 

concerning the original model with a relatively high AP score achieved: for SC 

model 59.4%, SV 55.4%, and SVC 56.4%. The AP increase after transfer learning 

the model on new sets is 32 to 36 percent higher than with the original model 

(Imp column in Table 4). However, it can be noticed that the results of the model 
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trained on the newly created sets SV, SC, SCV are comparable but still slightly 

lower than the case when the model was fine-tuned only on the training data from 

the target set (model SARD). 

Table 4. Results of YOLOv4 model on SARD test set to build with mapping-based 
transfer learning methods 

Model AP AP50 AP75 Imp 

SV 55.4 92.5 60.8 32.0 

SC 59.4 94.7 67.4 36.0 

SVC 56.4 93.6 63.1 33.0 

 

From the obtained results, it can be concluded that in the case of deep transfer 

learning based on mapping, relatively good AP results were achieved, but that 

results are still worse compared to deep transfer learning based on instances and 

network transfers. Overall, the best AP score of 62.0% was achieved with the V 

+ C + S model, and immediately afterward, with the AP 61.3%, a SARD model 

was fine-tuned only on the SARD training set. 

 
Figure. 5. Mapping-Based Deep Transfer Learning. Images from the Target SARD 

Dataset are Mapped with Images from the VisDrone and Corr-SARD Datasets. 

Additionally, to evaluate the performance of the SV, SC, SCV models built with 

mapping-based transfer learning on the appropriate test sets, additional testing 

of the models was done on the test sets generated in the same way as SV, SC, 

SCV training sets but from the corresponding test sets. 
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Table 5. Results of YOLOv4 models build with mapping-based transfer learning on 
appropriate test sets 

Model Test set AP AP50 AP75 

SV SV test 29.7 61.7 24.6 

SC SC test 55.8 91.6 61.7 

SVC SVC test 31.7 64.4 27.9 

 

The obtained results of the models obtained with the mapping-based transfer 

learning tested on the testing part of SV, SC, SCV sets are shown in Table 5 and 

have worse results than when tested only at the set SARD test set. 

The SC model achieved a minor difference in performance on the SC test set, 

comparing the SARD test set’s detection results. This was expected because the 

Corr-SARD set images included in the SC test set are those from the SARD set 

only with the added effects of bad weather. 

5. Conclusions 

In this paper, transfer learning approaches to improve person detection on drone 

images for the SAR mission were examined. We have fine-tuned the YOLOv4 

model using different transfer learning methods on three datasets: a tailor-made 

SARD set for SARD missions, a VisDrone drone-recorded dataset in urban 

places, and a Corr-SARD dataset with synthetically added weather effects on 

SARD images. 

We compared and discussed the impact of the transfer learning methods used in 

YOLOv4 model training on detection results. Testing was performed on the target 

dataset SARD and the newly created datasets SV, SC, and SVC, created by 

merging the initial sets. 

The results show that the best detection results are achieved on the target SARD 

domain using network-based transfer learning when the set on which the model 

is finetuned is equally distributed as the set on which the model is tested. The 

best results were achieved by applying the network transfer learning method, 
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which transmits features obtained on large data sets, and the instance-based 

transfer learning method, in which the model is trained on images of the domain 

corresponding to the images on which the model will be tested. The use of 

synthetic image instances further improved the performance of the model. 

From the results, we also see that the worst results were obtained when the 

datasets were merged because, in that case, the model could not fully adapt to 

the data of interest. However, this way, by increasing the learning data, a more 

general model can be achieved. It has been shown that when training models 

with multiple datasets, it is not insignificant whether we train with all images 

simultaneously or individually on each set and the sets’ order during training. 

For future work, we plan to explore the impact of different transfer learning 

methods on various application domains and determine the key characteristics of 

learning datasets that positively impact model performance. Also, we are 

interested in further exploring different network strategies for selecting, merging, 

and changing network layers to improve detection results. 
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1. Introduction 

Object detection is a key research area within computer vision, focusing on the 

precise positioning and recognition of various objects in the image (Zou et al., 

2023). Despite achieving promising results in ground-level object detection, the 

task of object detection in aerial images is still a challenge, especially in its 

application in search and rescue (SAR) operations (Sambolek & Ivasic-Kos, 

2021) whose primary objective is to assist as soon as possible to the casualty 

and save human lives. 

SAR is carried out on different terrains such as mountains, rivers, lakes, canyons. 

The speed of finding a missing person directly affects their chances of survival, 

so unmanned aerial vehicles (drones) equipped with RGB cameras and sensors 

are nowadays commonly included in the search missions. The search area is 

inspected during the flight and offline with the subsequent analysis of the 

recorded material if the missing person is not found during the online search. In 

both cases, artificial intelligence can help track down the missing person, 

however, the automatic detection of victims is still a challenge (Andriluka et al., 

2010; Bejiga et al., 2017; Doherty & Rudol, 2007; Geraldes et al., 2019; 

Shakhatreh et al., 2019; Sun et al., 2016). When analyzing the recorded material, 

it is crucial not only to detect the person in the images, but also to estimate the 

distance of the person from the drone and to geolocate it so that a SAR mission 

can be organized accordingly. 

The primary goal of this paper is to evaluate the effectiveness of the latest version 

of the widely used YOLO object detector, YOLOv8 (Ultralytics, n.d.-c), in 

detecting people in drone images. Using the publicly available SARD dataset 

(Sambolek & Ivasic-Kos, 2021) adapted for object detection in SAR, we fine-

tuned different models of the Yolov8 family and conducted an in-depth analysis 

and comparison of drone-captured person detection performance. In addition, we 

have built custom SARDAG_overflight dataset for developing and testing the 

algorithm for determining the geolocation of a detected person. 

The structure of this paper is as follows: Section 2 provides an overview of 

previous research related to YOLO object detectors and person geolocation 



184 

 

algorithms. The YOLOv8 family of models and the performance achieved after 

fine-tuning on the customized SARD dataset are described in Section 3, followed 

by a description of the geolocation algorithms proposed for use in SAR missions. 

The experimental part of the work and the metrics used are presented in Section 

4 along with the results and explanation. The concluding section highlights the 

main contributions of this paper. 

2. Related works 

For our proposed method of detection and geolocation of persons in SAR 

missions, the object detector and the geolocation algorithm are key. In the 

following, we will focus on the review of the state-ofthe-art CNN detectors from 

the YOLO family (Redmon et al., 2016), which are an example of single-stage 

detectors that constantly achieve top performance in real time, and algorithms for 

deterministic geolocation. 

2.1 YOLO Object Detectors 

The most popular and stable version of YOLO, showcasing improved 

performance with multi-scale prediction frameworks and a deep backbone 

network, was introduced by Redmon and Farhadi (Redmon & Farhadi, 2018). 

Bochkovskiy et al. (Bochkovskiy et al., 2020) developed YOLOv4, which featured 

significant new features, outperforming YOLOv3 in terms of accuracy and speed. 

(Ultralytics, n.d.-a) introduced YOLOv5, along with a PyTorch-based variant, 

bringing remarkable improvements. In 2022, the Meituan Vision AI Department 

unveiled YOLOv6 (Li Chuyi et al., 2022). YOLOv6 features an efficient backbone, 

RepVGG or CSPStackRep blocks, PAN topology gates, and efficient separate 

heads with a hybrid channel strategy. The model also employs advanced 

quantization techniques, including post-training quantization and channel 

distillation, resulting in faster and more accurate detectors. In July of the same 

year, YOLOv7 (Chien-Yao Wang, Alexey Bochkovskiy, 2023) outperformed all 

existing object detectors in terms of speed and accuracy. It follows the same 

COCO dataset training approach as YOLOv4 but introduces architectural 

changes and improvements that enhance accuracy without compromising 
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inference speed. The most recent version of the YOLO family released in January 

2023 is YOLOv8 (Ultralytics, n.d.-c) designed for speed and precision for various 

computer vision applications (Ultralytics, n.d.-c). The architecture of YOLOv8 can 

be divided into two main components: the backbone and the head. The backbone 

is like the YOLOv5 model and contains the CSPDarknet53 architecture with 53 

convolutional layers, but with the change in the building blocks of the C3 module. 

The module is now called C2f and all outputs from the gate (bottleneck – 3x3 

convolutions with residual connections) were chained, while in C3 only the output 

from the last gate was used. In the neck, the features are connected directly 

without forcing the same channel dimensions, which reduces the number of 

parameters and the total size of the tensor. The head of YOLOv8 consists of 

several convolutional layers, followed by fully connected layers responsible for 

predicting bounding boxes, objectivity (probability that the bounding box contains 

an object), and class probabilities for recognized objects. For class probabilities, 

the softmax function is used, while the output layer uses the sigmoid function as 

the activation function. 

The loss functions used by YOLOv8 for improving detection, especially when 

working with smaller objects are: CIoU (Complete Intersection over Union) and 

DFL (Distribution Focal Loss) for bbox-related losses, and binary cross-entropy 

for classification loss. 

YOLOv8 uses an anchor-free model with a decoupled head for independent 

object detection, classification, and regression processing. This design allows 

each branch to focus on its task and contributes to improving the overall accuracy 

of the model 

2.2 Target Geolocation Algorithms 

To calculate the geolocation of objects in the image, an algorithm based on the 

Earth ellipsoid model is usually used, (Leira et al., 2015; Sun et al., 2016; Wang 

et al., 2017; Zhao et al., 2019) which uses information about the average height, 

the field of view of the camera, the width and height of the image, the tilt of the 

camera and the position of the detected point within the image. This algorithm is 

easy to calculate, but it is not precise because it considers the average elevation 
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information as the reference height for the target, which leads to significant 

positional inaccuracies, especially in regions with significant topographic relief. 

Figure 1 shows the positioning of the target on the Earth's surface according to 

the model of the Earth's ellipsoid and the errors that arise due to the difference in 

the geodetic heights of the point from which the drone took off and the point where 

the detected person is located. In the given scenario, the SAR operation would 

be carried out at position P' instead of at position P where the person is actually 

located. 

 
Figure 1: Schematic diagram of target geolocating error using the Earth ellipsoid model 

in areas with uneven terrain. 

In the case of geographically complex terrains, data that rely on the Digital 

Elevation Model (DEM) (El Habchi et al., 2020), (Huang et al., 2020) can be used. 

DEM includes a database of the height of any location on Earth, expressed in 

relation to sea level. In (Paulin et al., 2024) a methodology for precise geolocation 

using DEM and the RayCast method was introduced and it was shown that the 

use of DEM significantly increases the accuracy of person positioning on complex 

terrain. 

Another approach focused in reducing the elevation error includes two-point 

shooting on known GPS positions (I1 and I2 on Fig. 2) at a single target and a 

direction vector that usually depends on angle sensor of drone camera (Qu et al., 

2013), (Xu et al., 2020). This algorithm can only be used for geolocation of 
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stationary targets because its accuracy is significantly degraded when the target 

moves. The solution is the approach in (Bai et al., 2017), which uses two drones 

at positions I1 and I2, for simultaneous recording of the same target and 

determination of the cross-section and the position of the target. However, this 

algorithm is not applicable for the case of SAR due to the additional cost of the 

drone that should record the same search area and due to the safety issue where 

the simultaneous use of the same airspace by multiple drones is avoided to 

reduce the risk of collision. 

 

Figure 2: Two-point intersection positioning model 

3. Person detection and geolocation in SAR missions 

3.1 YOLOv8 for person detection 

The YOLOv8 is engineered with a focus on improving performance of real-time 

detection of objects of various sizes while reducing inference time and computing 

requirements (Ultralytics, n.d.-c) which makes it potentially interesting for use in 

SAR missions that generally have small objects of interest and limited resources. 

The YOLOv8 is presented in five distinct scaled versions with different number of 

free parameters: YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. The 
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YOLOv8n has the simplest architecture with 3 million parameters, while 

YOLOv8x, has 68 million parameters and shows the best performance within the 

shortest time (Table 1.). 

Table 1. Comparison of five YOLOv8 models, trained and evaluated on the COCO test-
dev 2017 dataset with 640 px input, according to the report from (Ultralytics, n.d.-b). 

Version of YOLO mAP 50-95 Speed CPU 
ONNIX (ms) 

Speed A100 
TensorRT (ms) 

params (M) 

YOLOv8n 37.3 80.4 0.99 3.2 

YOLOv8s 44.9 128.4 1.20 11.2 

YOLOv8m 50.2 234.7 1.83 25.9 

YOLOv8l 52.9 375.2 2.39 43.7 

YOLOv8x 53.9 479.1 3.53 68.2 

 

We have fine-tuned all five versions of the YOLOv8 model on the SARD dataset 

adapted for object detection in SAR with two changes to the original architecture: 

the input to the network was changed to dimensions of 640 for images of 640x360 

pixels, and the output, to one class (a person). 

3.2 Geolocation estimation 

In SAR missions, it is very often the case that missing persons are motionless 

because they are injured and/or exhausted. Therefore, we propose a geolocation 

intersection measurement algorithm for locating missing person, that relies on the 

analysis of multiple shots taken by a single drone and uses terrain configuration 

data to reduce geolocation error. The algorithm starts to be used after a person 

is detected in an image, and then an intersection is determined with each 

subsequent image in which there is also a detected person. In Figure 2, label d 

is the distance between two drone positions from which the images were 

captured. Angles α1 and α2 are determined in the same manner as in (Sambolek 

& Ivašić-Kos, n.d.). By applying the same rule, we calculate the length of side 

I1P, which is the distance from the drone to the person (point P) when the first 

image was taken, and the length of side I2P (length a in Figure 2, equation 1), 

represents the distance from the location where the second image was taken. 

Then, from the triangle I2PP', we determine the length of side I2P' (Eq. 2), based 

on which we calculate the GPS coordinates of point P, considering known GPS 

coordinates of the drone's position and the azimuth toward point P. 
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 𝐼2𝑃′̅̅ ̅̅ ̅̅ =   𝑎 ∙ cos 𝛼2 
 

(2) 

Geolocation results is the distance in meters between two points at Earth 

according to the current standard WGS 84 that is reference system used by the 

GPS and identifies an Earth-centered, Earth-fixed coordinate system with 

absolute accuracy of 1-2 meters. The mean error (Eq. 4) indicates the average 

value of all distances ΔPi (Eq. 3) calculated between predicted geolocation of 

detected points and the GT point, 𝑃𝐺𝑇𝑖
 for each image in the dataset. 

 Δ𝑃𝑖 =   𝐺𝑒𝑜𝑑𝑒𝑠𝑖𝑐. 𝑊𝐺𝑆84. 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝑃𝑖 , 𝑃𝐺𝑇𝑖
) (3) 

 

 
𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 =   

∑ Δ𝑃𝑖
𝑛
𝑖=1

𝑛
 (4) 

4. Experiments 

4.1 Datasets 

In our study, we used two datasets, SARD and SAR-DAG_overflight. The SARD 

dataset was used for training the YOLOv8 model for person detection, while the 

SAR-DAG_overflight dataset was prepared for the validation of the geolocation 

algorithm of detected persons. 

4.1.1 SARD - dataset for training detector 

The SARD dataset was designed with a particular focus on detecting missing or 

injured persons captured by drones in non-urban terrains. The data was recorded 

by a DJI Phantom 4 Advanced drone in continental Croatia and includes 1,981 

images with a total of 6,532 people. Examples of images from the SARD set are 

shown in Figure 3. 
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Figure 3: Examples of detections on images from the SARD dataset with an enlarged 

image to better emphasize the person in the image that needs to be detected. 

The images from the SARD set are of 640 x 360 resolution and are evenly 

distributed in a ratio of 60:40 into a training set and a validation set based on 

various factors such as background, lighting, person pose, and camera angle. 

The training set contains 1,189 images with 3,921 tagged persons, while the 

validation set contains 792 images with 2,611 tagged persons (Sambolek & 

Ivasic-Kos, 2021).  

In this experiment, we removed from the training set all images that contained a 

frame with a person with an area of less than 102 pixels, which significantly saved 

the amount of computer time during training without negatively affecting the 

performance of the model. After this intervention, the training set contains 817 

images with 2017 people, of which 1779 are small objects (area < 322 pixels) and 

238 medium objects (area between 322 and 962 pixels), while there are no large 

objects (area > 962 pixels). 

4.1.2 SAR-DAG_overflight - datasets for evaluating geolocation method 

To test the geolocation algorithm, we created a set of images taken at two 

locations, a meadow, and a vineyard. The images were captured by a Phantom 

4 Advance drone, equipped with a camera with a field of view of 84° that flew at 

a height of 30 meters and captured images at regular time intervals as is usual in 
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SAR missions. The images have a resolution of 5472 x 3648 pixels, and an 

example is given in Figure 4. The set contains 40 marked persons. From the 

metadata of the images taken at the position where the drone took off and at the 

position when the drone is vertically above the person, GPS position data is taken 

to obtain the starting point and the actual position of the person on the ground. 

 
Figure 4: Examples of SAR-DAG_overflight images with zooming in on a part of the 

image where the person is. 

4.2 Evaluation Metric 

In the experiment, we use several standard metrics to evaluate detector 

performance and metrics that we have purpose-developed for detection and 

geolocation in SAR missions as explained below. 

Intersection over Union (IoU) is a traditional metric for evaluating the performance 

of an object detector calculated as the ratio of the intersection and union of the 

detected bounding box and the ground true bounding box. The equation is as 

follows:  

 
𝐼𝑜𝑈 =  

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (5) 

 

Higher IoU values indicate better overlap between detection and the real data.  

Recall (R) and Precision (P) are calculated as: 
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𝑃 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

where TP is positive detection that are true, FP is false positives, and FN is false 

negative detection. 

Mean average precision (mAP) is a common evaluation metric in object detection. 

In the experiment, we use mAP 50, the average precision at IoU greater than or 

equal to 0.5 and mAP 50-95 the average precision in the range of IoU from 0.5 

to 0.95, with intervals of 0.05. 

For SAR operations, it is important that the detector is optimized to have as few 

false positive (FP) detections as possible, because they consume human 

resources and time. Therefore, the performance of the detector is also evaluated 

using the ROpti (Recall Optimal) metric, which penalizes false positive detections 

(Sambolek & Ivasic-Kos, 2021). ROpti is calculated as the ratio of the difference 

between true positive (TP) and false positive (FP) detections and the total number 

of detections (TP+FN): 

 
𝑅𝑂𝑝𝑡𝑖 =

𝑇𝑃 − 𝐹𝑃

𝑇𝑃 + 𝐹𝑁
 (7) 

The experiments also evaluate the accuracy of geolocating a person using the 

proposed algorithm (Section 3.2). 

4.3 Experimental Results 

4.3.1 YOLOv8 person detection 

We conducted the experiments using all five versions of the YOLOv8 models 

modified to detect a person class and implemented in PyTorch using Python 

version 3.9.16. 

First, on the SARD validation set we tested original YOLOv8 models trained on 

the COCO dataset, and the obtained results are shown in Table 2. The 

confidence threshold was set to 0.25 and the IoU threshold to 0.5. 

The YOLOv8x model achieved the best result of all YOLOv8 versions on the 

SARD validation set, namely mAP@0,5 of 74.6%, recall of 49.2%, and mAP@ 

0.5:0.95 of 35%, which is significantly worse than when tested on the COCO set. 
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Although it is a simplified detection task with only one class (person), all YOLOv8 

models show the same performance degradation with many false detections (low 

ROpti). Considering that the SARD set was recorded from a completely different 

perspective (bird's eye view) and with many small objects for which the models 

were not trained, it was necessary to fine-tune them to SARD datasets so that 

they can be used in SAR missions. 

We trained all version of YOLOv8 models for 500 epochs using Tesla T4 GPUs 

on the Google Collaboratory platform while the hyperparameters remained 

unchanged. We used SGD optimizer, and the weight decay set to 5 x 10-4, while 

the initial learning rate was set to 10-3. Input image size was 640 and batch size 

set to 16.  

Detection performances on SARD validation dataset were evaluated using 

standard metrics of Precision, Recall, mAP@0.5, and mAP@0.5:0.95, and 

customized ROpti measure (Sambolek & Ivasic-Kos, 2021). After fine-tuning on 

the SARD data set all models show a significant improvement in detection (Table 

2.). The best results were achieved by YOLOv8x with mAP@0.5 91.3% and 

mAP@0.5:0.95 68.8%, which makes it the most suitable for offline analysis of 

materials recorded during drone flight because the accuracy is in that case the 

most important. 

The YOLOv8n model has the significantly fastest detection of only 4.6 ms per 

image and achieves mAP@0.5 only 4.5% lower than the best results. The same 

is true for the YOLOv8s model, which achieves the second-best inference time 

with almost the same mAP@0.5 performance as YOLOv8x. This makes it most 

suitable for use during a SAR operation when, in addition to detection accuracy, 

it is important for the model to inference quickly, in real time, and to be used on 

a drone without the need for large computing resources. 

4.3.2 Person Geolocation 

We have conducted a comparison of existing geolocation methods using a 

simplified ellipsoidal model of the Earth, an algorithm using DEM (Digital 

Elevation Model) and an intersection measurement algorithm. The results of the 
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first two measurements were taken from the paper (Sambolek & Ivašić-Kos, n.d.). 

Table 3 shows the results of the distance estimation between the calculated GPS 

location of a person using the mentioned three algorithms and the exact GPS 

location where the person was located. The algorithms were tested on five 

different data sets, two of which were recorded in a meadow (flat terrain), while 

three were recorded in a vineyard (sloping terrain). In data sets recorded in the 

meadow, no major deviation was observed for intersection algorithms that 

consider changes in the terrain configuration (e.g., a mean error of 4.5 m for 

PhantomLP1), however, on terrains with different slopes, the intersection 

measurement algorithm shows significantly better results than other algorithms.  

The best result was achieved in the first set recorded in the vineyard 

(PhantomVP1), with an average error of 4.8 meters. In the case of the Earth 

ellipsoid model and the DEM model, accuracy was checked for each image in the 

dataset. 

If a person is detected in one image or is in motion during the search, it is 

recommended to use the DEM model to determine the geolocation. When 

detecting a stationary person in multiple images, it is suggested to use the 

intersection measurement algorithm, which achieves the best results. 

Table 2. Performance of five versions of the YOLOv8 model on the SARD test dataset. 
The first five rows correspond to models trained on the COCO dataset and the last five 
to models that are fine-tuned on the SARD dataset, with the best results highlighted in 
bold. 

Version of YOLO and 
training dataset 

Precision 
(%) 

Recall 
(%) 

mAP 
@0,5 
(%) 

mAP 
@ 0.5:0.95 

(%) 

ROpti Speed per 
image [ms] 

YOLOv8n 
@COCO 

61 26 35.9 16.5 0.09 4,8 

YOLOv8s@COCO 66 37 47.5 23.8 0.18 8,5 

YOLOv8m@COCO 74 46 59.6 32 0.29 17.5 

YOLOv8l@COCO 75 47 60.7 34.5 0.31 34.5 

YOLOv8x@COCO 75 49 62.0 35.3 0.32 46.6 

YOLOv8n@SARD 93 78 86.8 54.9 0.71 4.6 

YOLOv8s @SARD 94 81 90.3 60.6 0.76 8.0 

YOLOv8m@SARD 93 83 90.6 62.1 0.77 17.3 

YOLOv8l@SARD 94 83 90.8 60.8 0.78 34.4 
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YOLOv8x@SARD 95 83 91.3 63.8 0.79 46.5 

 

Table 3. Coordinates calculation of person standing on a known location. 

Dataset No. 
of 

Imag
es 

Earth ellipsoid model 
(Sambolek & Ivašić-Kos, 

n.d.) 

DEM (Sambolek & 
Ivašić-Kos, n.d.) 

Intersection 
measurement 

algorithm 
MeanError MaxError MinError MeanError MaxError MinError MeanError MaxError MinError 

PhantomLP
1 

10 8.963 10.53
9 

7.87    13.446 14.37
7 

12.7
13 

PhantomLP
2 

10 8.704 11.59
5 

6.21
2 

   8.439 8.832 7.59
2 

PhantomVP
1 

4 18.374 29.26
2 

8.41
2 

10.935 15.83
3 

5.63
0 

4.794 5.451 4.00
4 

PhantomVP
2 

7 50.488 73.02
8 

14.4
27 

23.604 34.68
1 

7.32
7 

10.534 11.13
9 

10.3
51 

PhantomVP
3 

9 51.312 98.20
3 

22.8
15 

29.911 66.88
7 

14.7
62 

12.388 14.46
5 

9.72
5 

 

5. Conclusions 

In this paper, we have demonstrated that the YOLOv8 models can be 

successfully fine-tuned on UAV images for person detection in real-world 

environments. Our experiment was conducted on the publicly available SARD 

dataset.  

Furthermore, we built a set of SAR-DAG_overflight for testing the geolocation of 

a person and tested three geolocation algorithms on it: the Earth's ellipsoid 

model, the DEM model, and the modified cross-section measurement algorithm 

that we proposed in the paper. 

We believe that the fine-tuned YOLOv8@SARD models that we fine-tuned at the 

SARD dataset and the proposed person geolocation algorithms along with the 

given recommendations can be greatly utilized in SAR operations as they can 

help in the detection of persons in drone images, and thus contribute to providing 

more precise information for coordinating the operation and reducing search time. 

In future work, we plan to further investigate the model's robustness to weather 

conditions, night shooting, and camera motion blur, as well as conduct 

experiments with multiple datasets to increase the robustness and 

generalizability of our model. 



196 

 

References 

Andriluka, M., Schnitzspan, P., Meyer, J., Kohlbrecher, S., Petersen, K., Von 

Stryk, O., Roth, S., & Schiele, B. (2010). Vision based victim detection from 

unmanned aerial vehicles. IEEE/RSJ 2010 International Conference on 

Intelligent Robots and Systems, IROS 2010 - Conference Proceedings. 

https://doi.org/10.1109/IROS.2010.5649223 

Bai, G., Liu, J., Song, Y., & Zuo, Y. (2017). Two-UAV intersection localization 

system based on the airborne optoelectronic platform. Sensors 

(Switzerland), 17(1). https://doi.org/10.3390/s17010098 

Bejiga, M. B., Zeggada, A., Nouffidj, A., & Melgani, F. (2017). A convolutional 

neural network approach for assisting avalanche search and rescue 

operations with UAV imagery. Remote Sensing, 9(2). 

https://doi.org/10.3390/rs9020100 

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). Yolov4: Optimal speed 

and accuracy of object detection. 

Chien-Yao Wang, Alexey Bochkovskiy, H.-Y. M. L. (2023). YOLOv7: Trainable 

Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. 

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), 7464–7475. 

Doherty, P., & Rudol, P. (2007). A UAV search and rescue scenario with human 

body detection and geolocalization. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture 

Notes in Bioinformatics), 4830 LNAI. https://doi.org/10.1007/978-3-540-

76928-6_1 

El Habchi, A., Moumen, Y., Zerrouk, I., Khiati, W., Berrich, J., & Bouchentouf, T. 

(2020). CGA: A New Approach to Estimate the Geolocation of a Ground 

Target from Drone Aerial Imagery. In 4th International Conference on 

Intelligent Computing in Data Sciences, ICDS 2020. 

https://doi.org/10.1109/ICDS50568.2020.9268749 



197 

 

Geraldes, R., Goncalves, A., Lai, T., Villerabel, M., Deng, W., Salta, A., 

Nakayama, K., Matsuo, Y., & Prendinger, H. (2019). UAV-based situational 

awareness system using deep learning. IEEE Access, 7. 

https://doi.org/10.1109/ACCESS.2019.2938249 

Huang, C., Zhang, H., & Zhao, J. (2020). High-efficiency determination of 

coastline by combination of tidal level and coastal zone DEM from UAV tilt 

photogrammetry. Remote Sensing, 12(14). 

https://doi.org/10.3390/rs12142189 

Leira, F. S., Trnka, K., Fossen, T. I., & Johansen, T. A. (2015). A ligth-weight 

thermal camera payload with georeferencing capabilities for small fixed-wing 

UAVs. 2015 International Conference on Unmanned Aircraft Systems, 

ICUAS 2015. https://doi.org/10.1109/ICUAS.2015.7152327 

Li Chuyi, Li Lulu, Jiang Hongliang, Weng Kaiheng, Geng Yifei, Li Liang, Zaidan 

Ke, Qingyuan Li, Meng Cheng, Weiqiang Nie, Yiduo Li, Bo Zhang, Yufei 

Liang, Linyuan Zhou, Xiaoming Xu, Xiangxiang Chu, Xiaoming Wei, X. W. 

(2022). YOLOv6: A single-stage object detection framework for industrial 

applications. 

Paulin, G., Sambolek, S., & Ivasic-Kos, M. (2024). Application of raycast method 

for person geolocalization and distance determination using UAV images in 

Real-World land search and rescue scenarios. Expert Systems with 

Applications, 237. 

https://doi.org/https://doi.org/10.1016/j.eswa.2023.121495 

Qu, Y., Wu, J., & Zhang, Y. (2013). Cooperative localization based on the azimuth 

angles among multiple UAVs. 2013 International Conference on Unmanned 

Aircraft Systems, ICUAS 2013 - Conference Proceedings. 

https://doi.org/10.1109/ICUAS.2013.6564765 

RangeKing. (n.d.). YOLO v8 architecture. 

https://github.com/ultralytics/ultralytics/issues/189 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: 

Unified, real-time object detection. Proceedings of the IEEE Computer 



198 

 

Society Conference on Computer Vision and Pattern Recognition, 2016-

December. https://doi.org/10.1109/CVPR.2016.91 

Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. Tech 

Report. 

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. 

Proceedings - 30th IEEE Conference on Computer Vision and Pattern 

Recognition, CVPR 2017, 2017-January. 

https://doi.org/10.1109/CVPR.2017.690 

Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-

Time Object Detection with Region Proposal Networks. IEEE Transactions 

on Pattern Analysis and Machine Intelligence, 39(6). 

https://doi.org/10.1109/TPAMI.2016.2577031 

Sambolek, S., & Ivasic-Kos, M. (2021). Automatic person detection in search and 

rescue operations using deep CNN detectors. IEEE Access, 9, 37905–

37922. https://doi.org/10.1109/ACCESS.2021.3063681 

Sambolek, S., & Ivašić-Kos, M. (n.d.). Determining the Geolocation of a Person 

Detected in an Image Taken with a Drone. 

Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., 

Othman, N. S., Khreishah, A., & Guizani, M. (2019). Unmanned Aerial 

Vehicles (UAVs): A Survey on Civil Applications and Key Research 

Challenges. In IEEE Access (Vol. 7). 

https://doi.org/10.1109/ACCESS.2019.2909530 

Sun, J., Li, B., Jiang, Y., & Wen, C. Y. (2016). A camera-based target detection 

and positioning UAV system for search and rescue (SAR) purposes. Sensors 

(Switzerland), 16(11). https://doi.org/10.3390/s16111778 

Ultralytics. (n.d.-a). Yolov5 GitHub. Retrieved September 15, 2023, from 

https://github.com/ultralytics/yolov5 

Ultralytics. (n.d.-b). YOLOv8 Doc. https://docs.ultralytics.com/tasks/detect/ 



199 

 

Ultralytics. (n.d.-c). YOLOv8 GitHub. Retrieved September 15, 2023, from 

https://github.com/ultralytics/ultralytics 

Wang, X., Liu, J., & Zhou, Q. (2017). Real-time multi-target localization from 

unmanned aerial vehicles. Sensors (Switzerland), 17(1). 

https://doi.org/10.3390/s17010033 

Xu, C., Yin, C., Han, W., & Wang, D. (2020). Two-UAV trajectory planning for 

cooperative target locating based on airborne visual tracking platform. 

Electronics Letters, 56(6). https://doi.org/10.1049/el.2019.3577 

Zhao, X., Pu, F., Wang, Z., Chen, H., & Xu, Z. (2019). Detection, tracking, and 

geolocation of moving vehicle from UAV using monocular camera. IEEE 

Access, 7. https://doi.org/10.1109/ACCESS.2019.2929760 

Zou, Z., Chen, K., Shi, Z., Guo, Y., & Ye, J. (2023). Object Detection in 20 Years: 

A Survey. Proceedings of the IEEE, 111(3). 

https://doi.org/10.1109/JPROC.2023.3238524 

 

  



200 

 

RAD 7. DETERMINING THE GEOLOCATION OF A PERSON DETECTED IN 
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1. Introduction 

A few years ago, there was a rapid increase in the use of uncrewed aerial vehicles 

(UAVs, drones) in various applications. This includes search and rescue (SAR) 

operations and searching for missing people in non-urban areas and hard-to-

reach terrain, natural disaster management, detecting abnormal human behavior, 

crowd management during the evacuation, and many other areas where people's 

location information is important.  

A drone has many components, including electronic speed and flight controllers, 

a battery, a navigation system including a GPS module, accelerometer, 

gyroscope, altimeter and various onboard sensors, including ultrasonic, laser or 

lidar distance sensors, collision avoidance sensors, time of flight sensors, 

stabilization sensors and orientation. Drones are usually equipped with cameras 

with standard or infrared visual sensors that allow capturing images or videos 

from a bird's eye view. During the flight, drones record a large number of 

metadata related to the trajectory of the drone, camera parameters at the time of 

taking the photo, and the like with each image taken. 

Controlling the drone, i.e., its launch, navigation, and landing, is often done 

manually using a remote pilot. Still, trends are moving toward increasing the 

automation of some flight operations and using drones supported by artificial 

intelligence. AI-based drones rely heavily on computer vision methods and 

models such as deep convolutional neural networks (CNNs) or recurrent neural 

networks (RNNs) that allow the analysis of image/video data captured by the 

drone during flight and concluding detection, identification, and tracking of 

objects.  

Today, there are already many models of CNN architectures that are more and 

more precise in detecting people in images and faster in performing and reaching 

conclusions. However, to be effective and provide usable results on drone 

footage, they should be additionally trained on the data collected by the drone 

due to changing recording conditions, image distortion due to UAV movement, 

identification of a small target, computationally demanding implementation of 

algorithms, etc. [1]. Furthermore, data preparation and model learning has 
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become extremely demanding due to the specificity of the recording conditions 

and the need to collect specific rare data in everyday scenes, such as an injured 

person on a mountain. Therefore, detection models should be tuned for a specific 

task and application. A self-sustaining real-time person detection system can be 

particularly useful for these applications. Time is an essential resource, and early 

identification of people and knowledge of their distribution is important. 

This paper will focus on using drones in search and rescue operations. Search 

and rescue rely heavily on situational awareness. If a person is missing, certain 

steps must be taken according to the context and probabilities associated with 

the person's status and behavior. Field [2] lists the three main tasks: investigation, 

containment, and hasty search. All these tasks must be done as quickly as 

possible to prevent increasing the risk to the missing person's safety. During 

investigative actions, useful information about the subject is collected, including 

his activity plans before he went missing. This will help investigators understand 

where the person is most likely to be. Containment aims to prevent the search 

area from expanding. The more time passed before the missing person was 

found, the larger the search area. Using drones can help scan the search area 

faster and find the missing person faster. It also reduces the risk to the safety of 

the field search team. 

A larger search area is scanned by flying at higher altitudes, but the number of 

pixels occupied by a person on the image/screen is reduced. For this reason, it 

is possible that the requested person will not be detected during the flight of the 

drone by the remote pilot and software support for real-time person detection. 

That is why it is advisable to repeat the search/detection of persons on the 

recorded material afterward, offline, in the command center, with the help of a 

person detection algorithm that can use a higher-powered computer, because its 

goal is the precision of detection and not the speed of execution. 

This work focuses on systems used when a person is not detected in real-time 

during a drone flight. First, the paper describes the process of developing a 

system for detecting persons in search and rescue cases, which, along with the 

detection of a person, determines the person's GPS location and the direction 
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and speed of movement if the person is detected in several images. Finally, 

based on the obtained data, the system proposes correcting the search area. We 

also present a more practical and physical approach rather than a mathematical 

approach to reduce estimation errors. 

The main contributions of this paper are: 

• algorithm for geolocating the detected person using Digital Elevation 

Model (DEM); 

• algorithm for determining the speed and direction of movement of the 

detected person and correction of the search area; 

• improved YOLO model (using SARD-832-1024 dataset) for person 

detection with better ROpti; 

• prototype AI-SAR application for searching for missing persons in non-

urban terrain. 

The remainder of the paper is organized as follows: Section 2. provides an 

overview of the area of CNN-based object detection and geolocation in aerial 

imagery. In Section 3, the system for detection and geolocation of a person in a 

image taken by a drone is presented. Section 4. describes the method for 

geolocalization of a person and determining the speed of a person and the new 

search area, and gives a description of the experiment. Section 5. analyzes the 

obtained experimental results. The paper ends with a conclusion and guidelines 

for future research. 

 

2. Related works 

2.1. Object detection 

Object detection methods based on deep learning have greatly progressed in 

recent years. Two-stage methods and one-stage methods are two of their 

branches. As for the two-stage R-CNN [3] and Fast R-CNN [4], algorithms divide 

detection into region proposal generation and classification. They focus on 

improving detection accuracy while sacrificing detection speed. For single-stage 
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algorithms, generating region proposals is eliminated, and the probability and 

position coordinates are obtained directly through a single network. The one-

stage detector creates bounding box candidates at a given position and scale 

and then calculates their actual bounding box and score for each class like the 

single-shot multibox detector (SSD) [5]. These algorithms perform well in terms 

of speed. However, most perform worse than two-stage algorithms in detection 

accuracy and small object detection. YOLO [6] and its improved versions, 

denoted as YOLOv2 [7], YOLOv3 [8], YOLOv4 [9], are typical methods in single-

phase algorithms. YOLOv4 performs better speed and accuracy and works 

especially well in detecting small objects. In the field of our research, searching 

for missing persons, the speed of execution, as well as the detection of small 

objects, is of great importance. In earlier experimental work, we compared the 

detector's performance, chose YOLOv4, and additionally trained it (fine tuning) 

on our data set to improve its performance of person detection in aerial search 

and rescue scenes [1]. 

 

2.2. Object geolocation 

Most computer vision techniques rely on a camera model and calibration. A 

camera model is a geometric approximation of how light travels through a camera 

lens and forms images. Camera calibration is required to correct major deviations 

due to the model used. In addition, camera calibration can relate camera pixel 

measurements to the real three-dimensional world [10]. 

Pinhole model 
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Figure 1: The three dimensional point (X, Y, Z) is projected through the pinhole to the 

two dimensional plane (reproduced from reference [10]). 

In Fig. 1 shows the principle on which the pinhole model is based. As can be 

seen, each point P with coordinates (X, Y, Z) in 3D space is projected through a 

pinhole (which is taken as the origin of the coordinate system) to a point P' with 

coordinates (x, y, f) in the camera plane. It follows from the similarity of the 

triangles: 

𝑥′

𝑋
=

𝑦′

𝑌
=

𝑓

𝑍
= 𝜆   (1) 

Where λ is the ratio factor. If the focal length and are known, it is possible to 

calculate the 3D coordinates of the point from the 2D coordinates projected onto 

the image plane and the focal length. Usually, the focal length along with the 

intrinsic and extrinsic parameters can be obtained from the camera calibration 

procedure. 

 

Camera Calibration 

 

The basic pinhole model does not include distortion, usually in real cameras. 

Camera calibration provides a model of camera geometry and lens-induced 

distortions. This information can be used to define internal and external camera 

parameters. 
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Let P' be the projected point of the 3D point in the camera plane (as shown in Fig. 

1). Then, using homogeneous coordinates, we define P = [X Y Z 1]T and  P' = [x, 

y, 1]T. We can then express the mapping from P to P' in matrix multiplication. 

𝜆𝑃′ = 𝐴[𝑅 𝑡]𝑃   (2) 

here P is the 3D object point in homogeneous coordinates; P' is the same point 

of the object in homogeneous 2D coordinates; [R t] is the matrix of extrinsic 

parameters (rotation and translation); λ is an arbitrary scale factor and A is the 

matrix of intrinsic parameters. The matrix of intrinsic parameters is: 

𝐴 =  [
𝑓𝑥 𝑠 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]   (3) 

Here, fx, and fy provide information (depending on the pixel size) on the focal 

distance in the x and y direction, respectively; cx and cy are the coordinates of 

the main point of the image; s is known as skew and represents the angle of 

inclination of the pixel. 

The object's position, relative to the camera coordinate system, could be 

described in terms of the rotation matrix R and the translation vector t. The 

rotation matrices Rx, Ry, and Rz, respected can represent rotation around the x, 

y, and z axes: 

𝑅𝑥 =  [

1 0 0
0 cos(𝛼) sin(𝛼)

0 − sin(𝛼) cos(𝛼)
],    

𝑅𝑦 =  [
cos(𝛽) 0 sin(𝛽)

0 1 0
−sin 𝛽 0 cos(𝛽)

],   (4) 

𝑅𝑧 =  [−
cos(𝜃) sin(𝜃) 0
sin (𝜃) cos(𝜃) 0

0 0 1

]    

 

Here, α, β and θ are the angles of rotation around the x, y, and z axes, 

respectively. Specifically, α, β and θ are the pitch, roll and yaw angles of the 
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camera. Finally, the rotation matrix R can be constructed by multiplying the three 

rotation matrices. 

In our work, we do not rely on camera calibration because several different 

drones participate in search and rescue operations, where the camera calibration 

of each drone would slow down the search. 

Triangulation 

 

Triangulation is a method used to estimate the distance to an object, which is 

most often achieved with the help of a stereo camera. Stereo cameras are two 

cameras at a constant distance that record the same scene; the working principle 

is shown in Fig. 2. A point in the scene is mapped in different places in the images 

of the two cameras, depending on the distance of that point from the stereo pair. 

If we want to calculate the depth of the scene mapped into the pixel pL on the left 

image, we only need to find the pixel pR on the right image into which the same 

part of the scene has been mapped. 

Some authors using a monocular camera use this method by taking two images 

at two locations. Stereovision does not apply to our problem since the focus is on 

widely available drones. Therefore, in this paper, we consider only the case of 

localization based on a monocular vision for one image using mathematical 

methods from the data recorded in the image's metadata. 
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Figure 2: Working principles of the stereo camera. 

Geolocation based on drones is divided into active and passive methods 

according to the mechanism of operation [11]. Active UAV methods for object 

localization are based on a laser range finder. For example, the DJI M30 drone 

[12] has a laser rangefinder that can provide precise coordinates of objects up to 

1200 meters away. However, these devices are not available on small aerial 

platforms and are not useful when object detection is performed offline on 

captured images [13]. For small drones, GPS (or GLONASS) and IMU (Inertial 

Measurement Unit) can provide the location and position of the drone, so passive 

methods are widely chosen. An Inertial Measurement Unit (IMU) is an electronic 

device that uses accelerometers and gyroscopes to measure acceleration and 

rotation, which can be used to provide position data. The raw measurements 

output by an IMU (angular rates, linear accelerations, and magnetic field 

strengths) or AHRS (roll, pitch, and yaw) can be fed into devices such as Inertial 

Navigation Systems (INS), which calculate relative position, and orientation and 

velocity to aid navigation and control of drones. Onboard processors continuously 

calculate the drone's current position. First, it integrates the sensed acceleration 

with an estimate of gravity to calculate the current velocity. Then it integrates the 

velocity to calculate the current position. To fly in any direction, the flight controller 

gathers the IMU data on current positioning, then sends new data to the motor 

electronic speed controllers (ESC). These electronic speed controllers signal to 

the motors the level of thrust and speed required for the drone to fly or hover. 
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The GPS position of the object is calculated using image analysis methods. 

Mathematical methods of transforming a point on the image into Earth geographic 

coordinates are often used [14][15]. The basic information required for such a 

calculation is the camera angles, the height at which the drone is located, the 

geolocation of the drone, and the pixel coordinates of the point that we want to 

transform into the Earth's coordinate system. The transformation of the camera 

frame to the ENU (East-North-Up) frame is presented as: 

   (5) 

Where  is the rotation matrix from the ENU frame to the camera frame, which 

contains the rotation matrix around the x, y, and z axes taking into account the 

camera angles (pitch, roll, yaw) Equation 5.  is the position of the UAV in the 

ENU frame and represents the position of the target in the camera frame. These 

transformations assume that the terrain on which the vehicles drive is relatively 

flat. 

Geolocating that in the calculation also uses the diagonal field of view (FOV) of 

the camera is given in [16] only for cases of vertical aerial photography. Also, for 

vertical aerial photos, the authors in [17] propose a method that combines 

landmarks on the video that match the detections of the deep learning network 

(YOLOv3) on the reference image, thereby geolocating targets in cases where 

GPS signals are not available. In another paper, [18] uses a CNN detector for the 

case when the GPS signal is unavailable. It changes the pixel perspective from 

the drone's perspective to an orthogonal view of the detected object, and four 

reference points determine the geolocation of the detected object. Known data, 

such as coordinates of reference points or information about the size of reference 

objects (e.g., cars, buildings, plots) are used for detection. 

In [19], the authors propose a new approach based on position encoding-

decoding and use the SRTM DEM (The Shuttle Radar Topography Mission 

Digital Elevation Model) to model the ground terrain. The model encodes the 

world positions of each terrain point with a unique color and later decodes it from 

the terrain mesh to recover the world position. After detecting an object on the 
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image with OpenGL readPixel functionality, it reads the current vertex buffer and 

retrieves the color at a given 2D position on the camera window. So, the color 

can be encoded using only each point's x and z coordinates. The y coordinate 

(elevation) can be later retrieved knowing the x and z coordinates (latitude and 

longitude). Fig. 3 shows color encoding-decoding and the top view of the whole 

SRTM tile. 

 

Figure 3: a) Color encoding-decoding, b) top view of the whole SRTM tile 

A Digital Elevation Model (DEM) consists of a database that contains the 

elevation above sea level of a specific location. Despite the existence of different 

formats, it most often divides the earth's surface into squares of regular size. The 

highest altitude is saved for each square. The header of the DEM file lists the 

GPS coordinates of the origin as well as the size of each square (also called 

resolution). Since it is easy to retrieve the row and column number when reading 

a DEM file, the GPS location of each cell can be easily calculated (i.e., by adding 

the offset from the origin). Digital Elevation Models can be produced by various 

techniques, such as digitization of contours from existing topographic maps, 

topographic leveling, EDM (Electronic Distance Measurement), differential GPS 

measurements, (digital) photogrammetry, radar remote sensing (InSAR), and 

Light Detection and Ranging (LiDAR). Today, a wide range of data sources can 

be chosen for generating DEMs, and it is especially important for research that 

DEM files are freely available on the Internet. For our research, we used the 

Digital Elevation Model over Europe [20] from the GMES RDA project (EU-DEM), 

which is a Digital Surface Model (DSM) representing the first surface as 

illuminated by the sensors. The EU-DEM dataset is a realization of the 
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Copernicus program, managed by the European Commission, DG Enterprise, 

and Industry. The difference between DSM and DTM is shown in Fig. 4 and refers 

to the DSM including buildings, trees, and other fixed objects on the ground's 

surface, while the DTM model shows the terrain itself. DSMs more accurately 

represent the real world (especially in cities), but they also need to be updated 

much faster. Since the file formats of DTM and DSM files are very similar, our 

approach works for both DTM and DSM files, as it uses them as an additional 

parameter when determining the direction of movement of a detected person in 

non-urban terrain. 

 

Figure 4: The difference between DTM and DSM; source: [21] 

3. System for automatic detection and geolocation of the person in the 

picture 

This paper proposes a system for automatically detecting and geolocating people 

in photographs taken by a drone camera in non-urban areas during search and 

rescue operations. If a person is detected in several photos, the system 

determines the speed of the person's movement and suggests a search area 

based on that. The obtained information is recorded in a file (.gpx) that can be 

displayed visually in GIS programs. 

The system for detecting and determining geolocation consists of several 

modules working together. Figure 5 illustrates the processes that make up the 

system. 
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During the drone's flight in a search and rescue operation, the drone captures the 

monitored area and stores metadata with each image. It is recommended that in 

a search and rescue operation, the drone has settings for automatic imaging of 

the area every 2 seconds so that a set of data can be formed on which an 

additional offline search can be made in the command center. After the flight, the 

recorded images are analyzed on a more powerful computer with detection 

algorithms, and a missing person is searched for. This research uses a person 

detection model based on YOLOv4 architecture, and fine-tuning is done for 

search and rescue scenes (YOLOV4-SARD-832-1024) [1].  

To estimate the geolocation of the detected person, metadata recorded with the 

image and the height of the ground at the place where the drone took off (home 

point) are used. Each image in which a person is automatically detected is 

marked and saved with all metadata in a set of images for verification by mission 

operators. If a person is detected in two or more photos, the system estimates 

the speed of the person's movement in the observed interval and accordingly 

determines a new search area. 

 

Figure 5: System for automatic detection and geo-localization of the missing person. 

3.1. Person detection 

In earlier research, we investigated and analyzed existing detectors based on 

deep convolutional neural networks and showed that the starting model YOLOv4 

[9] pre-trained on the COCO base [22] gives the best results for our needs [1]. 

YOLOv4 uses CSPDarkNet53 [23] as the backbone. To the basic DarkNet53, a 
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deep residual network with 53 layers, CSPNet (Cross Stage Partial Network) was 

added. Also, the authors of YOLOv4 added Spatial Pyramid Pooling (SPP) [24] 

as a neck to increase the receiving (receptive) field without causing a decrease 

in inference speed performance. YOLO divides the image into a grid of 

dimensions S×S, each cell providing frames for the object. The probability, 

calculated for each frame, tells how confident the model is when there is an object 

inside the frame and how confident it is in the accuracy of the bounding box. 

The model is fine-tuned on the custom dataset SARD [1] which contains and 

simulates scenes from search and rescue missions in non-urban areas. A DJI 

Phantom 4A drone took the SARD images in FHD resolution. Several examples 

of images from the SARD dataset can be seen in Fig. 6. There are 1,981 images 

in this set, with 6,532 marked people. The set was divided in a ratio of 60:40 into 

train and test datasets. 

 

Figure 6: Examples of images from the SARD dataset. 

Several YOLOv4 models were trained on the SARD dataset, each with a different 

network resolution, starting from the original 512×512 [1], to higher of 832-832 

and 1024x1024. SARD-832-1024 model trained on a network resolution of 

832x832 and tested on with a network resolution of 1024x1024 was chosen as 

the best because it achieves a high rate of person detection with sufficient 

robustness and a speed of inference that meets the needs of SAR missions (AP 

65%, APs 51.2%, ROpti 93.9 %). 
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For comparison purposes in, Table 1 are shown the results achieved after training 

and testing the model on different network resolutions. For example, SARD-512-

832 is a model trained on a network resolution of 512x512 and tested with 

network resolution 832x832, SARD-832-832 trained and tested on a network 

resolution of 832x832 and SARD-832-1024 is a selected model for a further 

experiment that was trained on network resolution of 832x832 and tested on with 

network resolution of 1024x1024. 

     Table 1. Detection results for YOLOv4 model (%). 

Train Test AP IMP AP50 AP75 APS APM APL ARS ARM ARL ROPTI 

SARD-512-832 
[1] 

SARD 61.3 37.9 95.7 71.1 45.0 66.4 72.6 52.3 72.1 77.8 92.8 

SARD-832-832 SARD 63.4 40.0 95.8 73.9 46.5 68.3 78.1 52.9 73.8 82.4 92.4 

SARD-832-1024 SARD 65.0 41.6 95.9 77.1 51.2 69.1 76.9 57.7 74.7 82.1 93.9 

 

4. The proposed method of determining the geolocation and speed of 

movement of a person automatically detected in the image 

The assumption for determining the geolocation of a person is that a drone takes 

images and that there is a person detection model that has detected people in 

the recorded images. For the detection of persons, we used the model we defined 

during the previous research, however, it is important to point out that the 

proposed method of geolocation and determining the speed of movement of a 

missing person does not depend on a specific detector, and that any detector that 

gives good results on tracking recordings can be used to detect a person and 

rescues filmed by a drone. 

The input data for the proposed method of offline geolocation of a person in an 

image taken during a drone flight is metadata that is stored with each captured 

image and the height of the ground at the place where the drone took off (home 

point). 

From many metadata recorded during the drone's flight for localization of the 

detected person, we used their subset, which consists of data related to the 

drone's trajectory, image identification, and camera parameters at the time of 
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taking the photo. The data used and a specific example of values are shown in 

Table 2.  

Table 2. Used data and their measurement units. 

Variable Description Example data Unit 

Time Flight point's timestamp 2022-09-26 19:35:42  

File_Name Filename of the image recorded 

in the flight point 

DJI_0265.JPG  

Img_Width Recorded image's width 5472 px 

Img_Height Recorded image's height 3648 px 

FOV Camera's diagonal field of view 84 degrees 

Relative_Altitude Drone's altitude relative to the 

take-off point's height 

30.1 m 

Gimbal_Pitch_Degree Camera's pitch -45.8 degrees 

Gimbal_Yaw_Degree Camera's yaw 15 degrees 

Gimbal_Roll_Degree Camera's roll 0 degrees 

GPS_N Latitude of the flight point 45.5107911388 degrees 

GPS_E Longitude of the flight point 16.7602712222 degrees 

 

 

In order to simplify the problem of detecting/tracking a person in images, the 

dataset in the analyzed case was formed so that there is only one person in the 

images that represent the target for detection. 

4.1. Geolocation algorithm 

This section describes the procedure for estimating the distance between the 

detected person and the camera mounted on the drone, i.e., determining the 

position of the person in the coordinate system of the earth in the image taken 

from a bird's eye view. The method takes as input one RGB image captured by 

the drone during the flight and a bounding box obtained because of person 

detection with a corresponding confidence value. The output is the GPS (WGS84) 

coordinates of the detected person in the image. 

The detection bounding box is used to estimate the relative position of the person, 

so the middle of the lower edge of the bounding box is taken as the reference 

point for determining the person's distance. By the same principle, the distance 

of other detected objects could be calculated. 

 
Algorithm 1 Post-flight detection 
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Input: A set of images taken by a drone in a non-urban area 

Output: Detected persons marked with a bounding box and data on 

the geolocation of the detected person 

1: Take a set of drone shots 

2: Search for the desired object using a convolutional neural network 

3: If the object is detected, determine the center of the bottom edge 

of the bbox as the point where the object is located 

4: Calculate the position of the object in the 3D coordinate system of 

the Earth 

5: If the same object appears in more than one image in the set, 

determine the speed and direction in which the object is moving 

     5.1.: From the obtained data, propose a new search area 

6: Save the calculated object positions as a .gpx file 

 

The proposed algorithm for determining the distance of the detected object from 

the camera uses camera parameters and data obtained from sensors installed in 

the drone (metadata). The retrieved telemetry consists of the drone’s GPS 

position, height relative to the ground takeoff position, gimbal_roll, gimbal_pitch 

and gimbal_yaw angles. If gimbal_yaw = 0° and the camera is looking to the 

ground (i.e. nadir) it means that the top of the image points to the north, for 

gimbal_yaw = 90° and camera is looking nadir, it means that the top of the image 

points to the east and if gimbal_yaw = 270° and camera is looking nadir, it means 

that the top of the image points to the west. If gimbal_pitch = 0°, it means that the 

camera is looking forward or if gimbal_pitch = -90°, it means that the camera is 

looking down (i.e. nadir). The relationships between camera positions and image 

orientation are shown in Table 3. 

Table 3. Relationships between camera position and orientation in the Earth system. 

Gimbal YAW Gimbal PITCH /Camera position Top of the image 
orientation  

0° -90° (nadir) north 

90° -90° (nadir) east 

180° -90° (nadir) south 

270° -90° (nadir) west 

 

As in our case the camera is on a gimbal stand, gimbal_roll always takes the 

value 0. For this reason, we used a simpler mathematical calculation that 

eliminates the roll value from the calculation, being aware that this can lead to an 

error in the calculation, especially in cases of sudden movements of the drone 
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(e.g., due to the gust of wind) when the gimbal does not manage to react in such 

a short time and level the camera. 

For the detected object, as we described earlier, we take only one point on the 

image in pixels (u, v) and transform these coordinates into (x, y) coordinates on 

the ground. The starting point of the (x, y) coordinate system is the nadir point, 

the point located directly below the drone (Fig. 7). 

 

Figure 7: The coordinate system of the image (u,v) and the earth's coordinate 

system (x,y,z), where the origin of that system is the nadir point N (GPS_N, 

GPS_E). 

We determine the distance of the detected object from the camera on the drone, 

i.e., the distance and azimuth of the detected object in relation to the nadir point 

based on the GPS coordinates of the drone, the FOV of the camera, the image 

resolution and the known AGL ("Above Ground Level") height of the drone, which 

is enough to determine the GPS coordinate of the detected object. 

Using the FOV and aspect ratio, we determine the VFOV vertical field of view and 

the HFOV horizontal field of view. 
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Figure 8: Image sensor – different aspect ratio 

In Fig. 8. shows how the sensor area used during recording depends on the 

aspect ratio (image size). In our case, the FOV of the camera Field [25] is 84° 

and represents the diagonal angle for the 3:2 ratio. For different aspect ratios we 

have different FOV compared to the one defined in the settings or read from the 

EXIF data, i.e., 4:3 and 3:2 use the same sensor height and therefore have the 

same VFOV, while in the case of 16:9 and 3: 2 we have the same width or HFOV. 

 

Figure 9: Horizontal and vertical FOV 

From the data on the height and width of the image, we can determine the aspect 

ratio, i.e., how much of the sensor is used and thus correctly determine the VFOV 

and HFOV (Fig. 9). 
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Dividing the VFOV by the image height and the HFOV by the image width yields 

the angle in one image pixel by height and width. If we multiply the value of the 

angle per pixel by the position where the person is, we get the angle at which we 

see the person in the image τ (Fig. 11). This angle is measured from the upper 

edge of the image since the origin of the coordinate system of the image is in the 

upper left corner. The mathematical expression for determining the angle τ is: 

   (6) 

Where (u, v) is the coordinate of the position of the object in the image, and h is 

the height of the image in pixels. Then the angles (α and β) at which the object is 

seen are determined (Fig. 10). 

 

Figure 10: Display of aircraft and person in 3D space. α and β are the angles at which 

we see the person in the picture. The distance from the aircraft to the person is marked 

with a red line. 

 

In vertical and low oblique shots, i.e., when the camera angle is less than or equal 

to VFOV / 2, we must check whether the object is in front of or behind the nadir 

point. If the object is in front of point N, the angle at which we see the object is 

equal to: 

   (7) 
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Where φ is the angle of the camera (90 - Pitch). In the case when the object is 

behind the point N, the angle α is equal to: 

   (8) 

 

Figure 11: Side view of Fig 10. a) the person is in front of the nadir point (N) b) the 

person is behind the nadir point, in the pictures the distance from the drone (D) to the 

point (P') is marked with a red line, α is the angle at which we see the person in the y-z 

plane. The y represents the distance to the person from the nadir point 

The following equation calculates the distance to the detected object on the y-

axis: 

   (9) 

After determining the distance in the y direction, we calculate the distance in the 

x direction. As with determining the distance in the y direction, in this case we 

consider two possibilities that the object is located on the left of the image (viewed 

from the center of the image - Fig. 12.): 

   (10) 

or on the right: 

   (11) 
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where is: 

   (12) 

β is the angle at which we see the detected object in relation to the y-axis, if β = 

0 then x = 0. 

 

Figure 12: Top view, the case in which the person is located to the right of the 

center of the image (point P). σ – the angle at which we see the detected 

person measured from the left edge of the image. 

From the AGL height at which the drone is located and the y distance (3) using 

Pythagoras, we can determine the distance from the drone to the detected object 

in the y plane (disty = ). The distance along the x-axis of the detected object is 

obtained according to the equation: 

   (13) 

The distance from the nadir point to the location of the detected object ( ) is 

obtained from: 

𝐷 =  √𝑥2 + 𝑦2   (14) 

While the azimuth (the angle at which we see the detected object in relation to 

the north pole of the earth) is: 

𝜃 = 𝑔𝑖𝑚𝑏𝑎𝑙_𝑌𝑎𝑤 ± β   (15) 
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𝑃 =   𝐺𝑒𝑜𝑑𝑒𝑠𝑖𝑐. 𝑊𝐺𝑆84. 𝐷𝑖𝑟𝑒𝑐𝑡(𝐺𝑃𝑆_𝑁, 𝐺𝑃𝑆_𝐸, 𝜃, 𝐷)   (16) 

where gimbal_Yaw is the orientation of the drone in relation to the north, while 

the + or - sign is taken depending on where the object is located concerning the 

center of the image. 

To determine the GPS coordinates of the object, we use the "Direct" function from 

the geographiclib.geodesic library [26] Equation 16. As input parameters, the 

function receives the latitude and longitude (lat, lng) of the drone position, 

azimuth, and distance to the object. 

The height referred to as the relative height of the drone refers to the height 

concerning the ground at take-off, which can cause a significant error in the case 

of sloping terrain when there is a difference in height between the take-off position 

(home point) and the position where the drone is currently located, and between 

the position of the drone and the position where the person was detected (Fig. 

13). 

 

Figure 13: The different types of altitude 

To reduce such an error, we introduce EU-DEM into the calculation. The EU-

DEM is a 3D raster dataset with elevations captured at one arc second postings 

(2.78E-4 degrees) or about every 30 meters. The downloaded DEM is 4.56 GB, 

the area of the Republic of Croatia was cut using the QGIS program, which is 

1.03 GB, while the area of Moslavina where the drone footage was taken, is 46.8 

MB. 
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4.2. Geolocation algorithm with DEM calculation 

In the first step, as in the previously proposed geolocation algorithm, we 

mathematically determine at what angle the person is seen from the drone, and 

from this data we get the distance at which the person is located (if the surface 

of the earth were flat). After that, we correct the position of the object, depending 

on the home point position, the position of the drone and the position where the 

person is located, i.e., depending on the height (which we read from the DEM file) 

for these positions. In particular, the relative height of the drone Fig. 13. which is 

written in the metadata is reduced/increased (depending on whether the drone is 

higher or lower in relation to the home point) by the absolute amount of the height 

difference between the DEM height of the home point and the DEM height of the 

nadir point of the drone. In this way, we more precisely determine the height at 

which the drone is located, which we use later in the algorithm as a constant. This 

step is necessary because the drone measures the relative height as the height 

in relation to the starting point from which it took off (home point), i.e. the relative 

height in the meta data is not the height that refers to the difference between the 

ground (nadir point) and the drone at the moment when is the image taken, i.e. 

in the case of terrain with a slope, the relative height of the drone is not the AGL 

height at which the drone is located. 

The second parameter we use in the algorithm is the difference in the Nadir 

point's DEM height and the located object's (target) DEM height. The first step 

calculates the X position of the target (point X in Fig. 14). In this step, we check 

the Terrain Altitude in the DEM record for the GPS coordinate of the X position. 

If there is no difference in height between the nadir point and the X point, then 

the location is correct. If not, we look for the intersection of the line  and the 

line , and for the location of that intersection, we check the Terrain Altitude in 

the DEM database, which gives us the point Y1. Suppose the height of the terrain 

of point Y1 is different from the height of the intersection of the lines. In that case, 

we look for a new intersection between the line  and the new line . We 

repeat this procedure until the values of the terrain height from the DEM and the 

calculated height of the intersection match with the desired accuracy (in our case 

to three decimal places). 
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Figure 14: Terrain with a slope 

4.3. Algorithm for determining the speed and direction of movement of the 

detected person 

When a person is detected in two or more images, it is possible to determine the 

person's velocity from the obtained locations, which narrows the search zone and 

shortens the time needed for the ground teams to find the person. The speed of 

a person is calculated by first determining the distance between the two GPS 

locations dist(P2, P1) where the person was detected, and dividing that distance 

by the time that passed between the creation of the images where the person 

was detected. The direction of movement is determined as the geographic 

azimuth between the initial and final detection points.  

v =  
Δs

Δt
=

dist(P2,P1)

timg_2-timg_1
   (17) 

Our prototype application has the option of saving the person's track (the position 

of the person where it was detected) in gpx format that can be displayed in some 

GIS programs. The Croatian Mountain Rescue Service uses a modified version 

of the Qgis program for search and rescue operations (Fig. 16). 

Our application, after determining the traveled path and the direction of the 

person's movement, creates a search area for the search by adding and 

subtracting 30 degrees to the person's direction. The cartographer/search leader 



225 

 

can display the new search area in the GIS program and forward it to the field 

teams in their mobile applications. 

Figure 16 shows an example of the initial phase of the search for a missing 

demented person that took place in the Moslavina region. The circles in the 

picture represent the statistical areas of previous finds of persons of the same 

type (e.g., dementia, child, mountaineer, mushroom picker...). The first circle, 

according to statistical data, represents a 25% probability that a missing person 

will be found in that area (which according to [27] is 300 m), the green circle is 

50% (1000 m radius), while the probability of finding a missing person within the 

blue circle area is 75% (radius 2,400 m). 

The subjective search zone in the picture is marked with a red line and it is the 

area that the rescuers will search, the subjective zone is then divided into zones, 

which are marked with the letters A, B, C, and D. Zone A is further divided into 

segments A1 - A10 where search teams are sent. 

The star in the Fig. 16 (the center of the circles) indicates the IPP (Initial Planning 

Point), which is usually the point of last sighting or the last known location of the 

missing person. 

If a missing person is detected using a drone, his location on the map is 

determined (yellow dot in the Fig. 16 within segment A3) and marked based on 

the calculated speed, the elapsed time since the image was created and the 

azimuth of the person's movement, marking a new segment of the search (red 

triangle in Fig. 16). 

 

Figure 15: 3D view of DEM terrain [21] 
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Figure 16: GIS in search and rescue operations 

4.4. Experimental setups 

For the experiment, we used the drone Phantom 4 Advanced [25] and Mavic 2 

Enterprise Advanced [27], which were manually controlled. For the purposes of 

localization of the detected person, we used metadata that is recorded with the 

images taken by the drone during the flight and is related to the trajectory of the 

drone, the identification of the images and camera parameters at the time of 

taking the photo as shown in Table 1, and the height of the ground at the place 

where the drone took off (home point). 

For automatic person detection in images, the SARD-832-1024 model, which was 

previously trained in search and rescue scenes for person detection, is used. In 

a further step, the geolocation is determined for the person detected in the images 

taken by the drone. 
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To evaluate the proposed method of localization of a person and prediction of the 

movement of person in real conditions, several experiments were carried out, 

which include the following relationships between the movement of a person and 

a drone: 

1. the person and the drone are stationary 

2. the person is stationary, and the drone is moving 

3. the person moves while the drone is stationary/hovering 

4. the person and the drone move 

An experiment in which a person and a drone are stationary is presented in 

chapter 5.1. and the goal is to check the accuracy of the method, i.e., how much 

is the deviation from the actual spatial coordinate of the person. The experiment 

was carried out in two locations, flat terrain without a slope (meadow) and with a 

slope (vineyard). In the case of shots taken with the Phantom 4 Advance drone, 

the FOV of the camera is 84° while the image resolution is 5472 x 3648 px, the 

drone flew at a height of 30 m. The Mavic 2 Enterprise Advanced drone also flew 

at a height of 30 m above the home point, the result of the images taken by this 

drone is 8000 x 6000 while the FOV of the camera is also 84°. 

The experiment in which the person is stationary, and the drone is moving is 

shown in 5.2. and in this case, the recording was also made in two locations. Two 

sets were filmed in the meadow, while three were filmed in the vineyard. A 

realistic scenario was applied for the case of searching for a missing person with 

this type of drone, which means that the drone flew over the terrain taking pictures 

in a certain time interval.  

The case where a person moves while the drone hovers in place was filmed in 

two sets in a meadow and two sets in a vineyard. This method of searching is 

typical for drones and platforms like (DJI M30, DJI Matrice 210, or DJI Matrice 

300) where the aircraft are located at heights between 100 and 300 m and inspect 

the space using zoom and movement of the camera only. 
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In the fourth experiment, both the person and the drone move. In order to have 

accurate data that can be compared with that which will be automatically 

estimated by applying the proposed method, a moving person has a navigation 

device, i.e., a navigation device that recorded the position where the person was. 

When filming with the Phantom 4 Advanced drone, the person has a Garmin 

GPSMAP 78 watch, and when filming with the Mavic 2 Enterprise Advanced 

drone, a hand-held navigation device GPSMAP 65s with support for multi-

frequency systems / multiple GNSS that recorded the person's position every 

second and saved the data in a .gpx file which was later used for data 

comparison. In the same way, the position of the person's movement is monitored 

in the case of the person's movement while the aircraft is stationary. 

The fifth experiment deals with the speed of a person's movement, i.e., estimating 

the speed and direction of a person's movement, which serves as a basis for 

determining a new search area. 

In all cases, the results were also checked using the DEM file. 

4.5. OBS AI Detector 

To demonstrate and test the use of the proposed methods, a desktop application 

prototype (Fig. 17) was developed for use in search and rescue operations. 

During fieldwork, the controller of the drone is connected via HDMI cable (or 

wirelessly via Wi-Fi) to a computer on which the detector is running, which 

performs detection on the images obtained from the video during the flight (Fig. 

18). The second part of the application is intended for off-line detection and for 

detection on recorded video or on recordings made during the flight in the field. 
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Figure 17: Presentation of the operation of the "OBS detector" application. In the 

picture, we see a detected person with the GPS coordinates where the person is 

located. 

 a)  b) 

Figure 18: Display of the system ready for terrain search. a) The controller of the 

Phantom 4 Advanced aircraft is connected via an HDMI cable to the computer on 

which the image from the controller's screen is projected. b) Mavic 2 Enterprise 

Advanced aircraft controller connected to a computer via wifi. 
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5. Experimental Results 

In the experiments, the accuracy of locating people using the proposed method 

is tested. The result is displayed as the distance between two points measured 

in meters. In Fig. 19 shows the GT location of a person (yellow pin) and the 

location of the same person determined by the proposed Algorithm 1 (blue pin) 

for one photo from the set. Mean Error (Equation 19) represents the mean value 

of all distances ΔPi between the points determined according to (Equation 16) 

and the GT point for each image in a certain set of recordings. Max Error is the 

greatest distance, i.e. the largest error the method made in that set, and Min Error 

is the smallest error. Both data are equally important, because it is difficult for 

remote pilots to detect a stationary object, and it is possible that in the set that is 

subsequently analyzed, there will be only one shot of the desired object from 

which the position in the Earth's coordinate system will be determined. 

Δ𝑃𝑖 =   𝐺𝑒𝑜𝑑𝑒𝑠𝑖𝑐. 𝑊𝐺𝑆84. 𝐼𝑛𝑣𝑒𝑟𝑠𝑒(𝑃𝑖, 𝑃𝐺𝑇𝑖
)   (18) 

 

 

𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 =   
∑ Δ𝑃𝑖

𝑛
𝑖=1

𝑛
   (19) 
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Figure 19: Displaying the GPS location of a person in the Google Earth program. The 

yellow pin represents the person's GT location, while the blue pin is the location 

obtained by the proposed algorithm. The yellow direction represents the distance, 

which in this case is 0.83 meters. 

5.1. The person and the drone are stationary 

Table 4 shows the results for sixteen sets. The second column represents the 

number of shots taken two seconds apart for each set. The drone hovers in one 

position using "P-mode" positioning. This mode works best with a strong GPS 

signal and will provide the most stable flight. "P-mode" allows the drone to 

maintain its position and altitude even in moderate wind. Each set is recorded at 

a new position where the drone hovers, which is what we see in the difference in 

the results. Also, the person is located at different coordinates for the Phantom 

sets compared to the Mavic, as well as the home point for each aircraft Fig. 18. 

The differences in the results arise from the inaccuracy of the sensors in the 

spacecraft, we can also address a significant role in the accuracy of the results 

to the influence of the wind, i.e. slow response of the gimbal system and 

positioning of the aircraft in such cases. Part of the inaccuracy can also be 
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addressed to the resolution of the DEM file, but even such a DEM improves our 

results by more than 50% compared to the results when no DEM was used. 

     Table 4. Coordinates calculation of person standing on known location. 

# Data Set Number of images 
in set 

Mean Error (m) Max Error (m) Min Error (m) 

1 Phantom - livada 1 10 0.903 1.040 0,790 

2 Phantom - livada 2 10 3.392 4.181 2,732 

3 Phantom - livada 3 10 2.872 4.344 1.327 

4 Mavic - livada 1 6 2.729 2.865 2.563 

5 Mavic - livada 2 10 4.361 4.836 4.102 

6 Mavic - livada 3 10 1.645 1.804 1.462 

7 Phantom - vinograd 1 10 6.326 6.494 6,239 

8 Phantom - vinograd 2 10 7.149 7.438 6.919 

9 Mavic - vinograd 1 10 24.701 25.219 24.236 

10 Mavic - vinograd 2 10 27.084 27.370 26.850 

11 Mavic - vinograd 3 9 19.704 20.006 19.386 

12 Phantom - vin 1 DEM 10 5.339 5.587 5.234 

13 Phantom - vin 2 DEM 10 2.270 3.782 1.301 

14 Mavic - vin 1 DEM 10 11.026 11.541 10.605 

15 Mavic - vin 2 DEM 10 12.377 12.604 12.170 

16 Mavic - vin 2 DEM 9 9.102 9.367 8.836 

 

 

 

Figure 20: Display the positions where the person is in the case of recordings made 
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with the Phantom 4 Advanced and Mavic 2 Enterprise Advanced aircraft, as well as the 

position from which the aircraft took off (home point) for cases when the person is 

stationary. 

5.2. The person is stationary, the drone is moving 

In this scenario, the drone flies at a speed that allows the pilot to search the target 

area well. The person is stationary, which is a very common case in search and 

rescue operations. Missing persons very often not moving after some period. 

Most often, the person is exhausted and can no longer move independently, also 

an injury to the person can be a reason for not moving. 

Table 5 shows the results related to the estimation of the distance of a person 

from a drone in flight. The smallest error was achieved in the meadow where the 

terrain is flat so that the most accurate results were achieved. In the case of 

vineyards where the terrain is sloping, it was shown that the use of DEM 

significantly improves the precision of distance determination compared to when 

DEM was not used. For the Phantom VP 1a set the improvement is 40%, for the 

Phantom VP 2a 53%, and for the Phantom VP 3a case 46%.  

We believe that the calculated location on which the person was detected is 

important data to help the rescuers on the ground to reach the located person in 

the shortest time (Fig. 19 and Fig. 20). However, it should be investigated what 

is the maximum acceptable error in locating the person and that for different 

cases of terrain configuration and flight height, i.e., different cases of detection 

range (AMDR - Average Maximum Detection Range [28]). 

Table 5. Coordinates calculation of person standing on known location. 

# Data Set Number of images in set Mean Error (m) Max Error (m) Min Error (m) 

1 Phantom LP 1 10 8.963 10.539 7.870 

2 Phantom LP 2 10 8.704 11.595 6.212 

3 Phantom VP 1a 4 18.388 29.283 8.424 

4 Phantom VP 2a 7 50.540 73.028 14.447 

5 Phantom VP 3a 9 51.267 98.108 22.783 

6 Phantom VP 1a DEM 4 10.935 15.833 5.630 

7 Phantom VP 2a DEM 7 23.604 34.681 7.327 

8 Phantom VP 3a DEM 9 27.911 66.887 14.762 
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5.3. The person moves, the drone hovers in one position 

This search method setup is more often used with platforms where cameras with 

different lenses and different zoom capabilities are installed. Then the remote 

pilot places the aircraft at a higher altitude to hover and uses the controller to 

survey the area just by moving the camera and using the zoom. Four sets were 

made with the Mavic 2 EA drone, two sets on non-sloped terrain (Mavic LH 1 and 

Mavic LH 2) and two sets on sloped terrain (Mavic LH 1 and Mavic LH 2). Table 

6 shows the obtained results. 

Table 6. Coordinates calculation of moving person recorded from a hovering drone. 

# Data Set Number of images 

in set 

Mean Error (m) Max Error (m) Min Error (m) 

1 Mavic LH 1 DEM 10 7.682 10.913 4.650 

2 Mavic LH 2 DEM 21 4.994 10.375 2.216 

3 Mavic VH 1 DEM 11 10.010 14.107 7.131 

4 Mavic VH 2 DEM 13 4.613 9.257 2.035 

 

Fig. 21 shows the points/traces for each image in the set using the QGIS program 

at a scale of 1:505. The yellow lines/dots represent the calculated positions of the 

detected person in the image, while the orange lines/dots represent the positions 

recorded by the handheld GPS device (Garmin GPSMAP 65s) worn by the 

person/target during the recording set and used as a ground truth. The GPS 

device is set to record a person's position every second. And for comparison, i.e., 

to check the accuracy, the positions that were created at the same moment (the 

moment of the image creation) are taken. 
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a)  b) 

c)  d) 

Figure 21: Representation of a person's movement using tracks and dots, the orange 

line/dots represent the calculated positions of the person, while the yellow lines/dots 

represent the points measured using a hand-held GPS device (Garmin GPSMAP 65s) 

for set a) Mavic HL 1 DEM, b) Mavic HL 2 DEM, c) Mavic HV 1 DEM and d) Mavic HV 

2 DEM. In each image, there is also the beginning of the proposed search segment (a 

pointed red corner, the top of which is located at the first detected position of the 

missing person), from which the direction of the person's movement can be seen. 

5.4. The person and the drone are moving 

A realistic scenario, especially in the initial phase of the search. Table 7 shows 

the results of the locating error for the case in which a person and a drone are 

moving. Results are shown for both aircraft, Phantom 4A and Mavic 2 EA. The 

test was performed out in two locations. Mean error ranges from 2.298 m to 

13.950 m. Which is a good result if we consider that the field teams for the 75% 

circle need to search 19 625 000 m2. 
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Table 7. Coordinates calculation of moving person. 

# Data Set Number of images 
in set 

Mean Error (m) Max Error (m) Min Error (m) 

1 Phantom LM 1 DEM 13 2.298 4.406 0.996 

2 Phantom LM 2 DEM 20 7.452 13.808 2.395 

3 Phantom LM 3 DEM 10 4.588 8.434 2.085 

4 Mavic LM 1 DEM 10 6.943 7.951 5.943 

5 Mavic LM 2 DEM 5 6.692 9.623 4.200 

6 Mavic LM 3 DEM 7 8.486 11.065 7.754 

7 Mavic LM 4 DEM 3 5.031 5.259 4.732 

8 Phantom VM 1 DEM 6 12.388 20.923 7.133 

9 Phantom VM 2 DEM 5 13.950 25.072 4.439 

10 Mavic VM 1 DEM 5 12.054 16.445 8.210 

11 Mavic VM 2 DEM 6 10.413 12.595 7.690 

12 Mavic VM 3 DEM 5 8.484 9.580 7.283 

13 Mavic VM 4 DEM 12 9.266 10.977 6.635 

 

 

 

Figure 22: A set of photos taken in real conditions on a sloped field ("vineyard") 
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Figure 23: Display of a person's GPS location in the "Google Earth" program. Points 1-

6 are coordinates recorded with a hand-held GPS device, points c1-c6 are coordinates 

determined using the proposed algorithm. Red points indicate the estimated position of 

the person with regard to the photos shown in Fig. 22. 

5.5. Velocity calculation 

The speed of a person's movement is calculated as the quotient of the distance 

and the time in which that distance was covered. To calculate the route, the initial 

position of the GPS location where the person was first detected is used, and as 

the final position the GPS location where the person was last detected, and the 

distance between these two points representing the route is calculated. To 

determine the time in which the person has passed that route, the time from the 

creation of the first image in which the person was detected to the creation of the 

last image is taken. 

Additionally, from the two GPS coordinates related to the initial and final location 

of the person, using the geographiclib.geodesic [26], along with the distance 

between the points, the azimuth between those points is obtained, i.e. the 

direction of a person's movement in relation to the north pole of the earth.  
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Further, it is necessary to check how much time has passed from the moment the 

last image was taken to the moment of detection, i.e., statistically determine how 

far the person could have moved if he continued to move at the calculated speed. 

The program outputs a .gpx file that can be displayed in a GIS application and is 

used to define a new proposed search area and the trail along which the missing 

person moved. For each set (Table 8), we determined the person's speed per 

gpx track as the ground truth and speed concerning detection. 

Table 8. Movement speeds of the detected person in more than two photos. 

# Data Set Number of images in data 

set 

Calc speed (m/s) Garmin GPSMAP 78/ 

Garmin GPSMAP 65s 
speed (m/s) 

Speed error (%) 

1 Phantom LM 1 DEM 13 1,172 1,085 + 8.01 

2 Phantom LM 2 DEM 20 1,639 0,799 + 105.13 

3 Phantom LM 3 DEM 10 1,199 1,257 - 4.61 

4 Mavic LM 1 DEM 10 1.088 1.344 - 19.04 

5 Mavic LM 2 DEM 5 1.172 1.259 - 6.91 

6 Mavic LM 3 DEM 7 1.617 1.284 + 25.93 

7 Mavic LM 4 DEM 3 1.141 1.166 - 2.14 

8 Phantom VM 1 DEM 6 2,571 1,096 + 134,58 

9 Phantom VM 2 DEM 5 1,053 1,192 -11.66 

10 Mavic VM 1 DEM 5 2.062 1.029 + 100.38 

11 Mavic VM 2 DEM 6 0.421 0.854 - 50.70 

12 Mavic VM 3 DEM 5 0.563 0.371 +51. 75 

13 Mavic VM 4 12 1.386 1.250 + 10.88 

 

Table 8 shows the speed of motion of the detected person in the image. Calc 

speed is the average speed by taking the calculated points of the person's 

position. In contrast, Garmin speed is calculated using the points determined by 

the Garmin handheld GPS device (for the Phantom, it is GPSMAP 78, while for 

the Mavic, set GPSMAP 65 was used). The number of images in the data set 

represents the number of images in which the person was detected.  

The example of data for the motion of a person and a drone in the case of the 

Mavic LM 1 DEM set is shown in Fig. 24. The yellow track shows the movement 

of the person from the calculated coordinates, while the orange track shows the 

movement of the person from the coordinates measured by the GPS device. The 

blue track is the motion of the drone. 
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Fig. 22 shows images from the Phantom VM 1 DEM set, whit marked locations 

where the person is. By comparing the calculated positions and the grown truth 

we get using the handheld GPS Garmin GPSMAP 78 device, the estimated 

positions are shifted to the right about the actual position observed in the Google 

Earth application (Fig. 23). In the same image, the positions of the person are 

marked with red points according to the assessment of an expert who considers 

the configuration of the terrain, his experience, and the visible environment in the 

images of the Google Earth application. The goal was to show that even the GPS 

devices used in search and rescue operations as the grown truth have an error 

of ± 3 m. Hence, the results presented in this paper provide sufficiently precise 

data on the missing person's location and enable ground teams to access a 

missing person quickly. 

 

Figure 24: The display of points in the QGIS program for the movement of a person, 

and the yellow track/points represent the calculated coordinates, while the next 

points/track show the coordinates determined by manual navigation, the blue 

track/points represent the positions of the drone at the time the photos were taken. 

6. Conclusion and future work 

This paper presents a complete framework for person detection and geolocation 

using a single image captured by a drone camera. The person in a non-urban 

area, with a small pixel size in the image, was detected using the model trained 

by Yolov4 named SARD-832-1024. A passive geolocation method is presented 
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to calculate the GPS coordinates of the detected person. Suppose there are 

several images in which the detected person is located. In that case, the 

proposed system calculates the speed at which the person moves using the 

distance traveled between the detected positions of the person and the time 

elapsed between the photos. 

We established an experimental system consisting of a DJI Phantom 4 Advance 

aircraft and a laptop computer to analyze the images after the flight. The 

experiment results show that with this approach, the missing person can be 

located precisely enough so that ground teams can approach the person in the 

shortest possible time in case the person is injured/not moving or reduce the 

search area in case the person is moving. Moreover, all the methods mainly 

depend on the low-accuracy sensors on the drone. The results show that the 

person detection system is cost-effective and efficient. In future work, the system 

needs to be adapted for tracking multiple people, i.e., distinguishing them in case 

of multiple detections in one photo. 
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RAD 8. APPLICATION OF RAYCAST METHOD FOR PERSON 

GEOLOCALIZATION AND DISTANCE DETERMINATION USING UAV 

IMAGES IN REAL-WORLD LAND SEARCH AND RESCUE SCENARIOS 

 

 

 

 

 

 

 

 

 

Ovaj rad je objavljen kao: Paulin, Goran, Sasa Sambolek, and Marina Ivasic-Kos. 

"Application of raycast method for person geolocalization and distance 

determination using UAV images in Real-World land search and rescue 

scenarios." Expert Systems with Applications 237 (2024): 121495. 

 

Radi jasnoće, rad je preoblikovan, inače je sadržaj isti kao i objavljena verzija 

rada. © 2024 od strane autora.  

 

 

 

 

 

https://www.sciencedirect.com/science/article/abs/pii/S0957417423019978   

https://www.sciencedirect.com/science/article/abs/pii/S0957417423019978


244 

 

1. Introduction 

People are adventurous creatures. For numerous reasons, they enjoy spending 

time in the wilderness. Unfortunately, occasionally they get lost or injured. When 

this happens, their life is at stake, and their survival depends on being efficiently 

found and rescued in the shortest possible time. A search and rescue operation 

(SAR) is launched after the accident is reported, and all possible resources are 

activated (people, search dogs, vehicles, helicopters, and drones). 

Today, drones and unmanned aircraft systems (UAS) are ubiquitous in various 

SARs due to the many benefits that their use provides. Drones equipped with 

cameras (RGB and/or thermal) are potent reconnaissance systems (Doherty & 

Rudol, 2007) and area mapping tools (Boccardo et al., 2015) in SAR operations. 

They can provide crews with almost real-time situational awareness helpful for 

locating a missing person, speeding up the rescue mission, and increasing the 

survival rate. However, sophisticated drones are often not available in SAR 

practice. Instead, low-cost commercial drones are used without Real-Time 

Kinematic (RTK) modules, laser rangefinders, and stereo cameras. In order to 

make them usable for participation in SAR missions, it is necessary to research 

and design a system that includes an efficient method for person geolocalization 

and distance determination using monocular unmanned aerial vehicle (UAV) 

images and basic metadata such as drone GPS position and orientation. 

Thanks to the recent development of photogrammetry and computer vision, 

especially the methods for automatically detecting and tracking objects and for 

geolocalization (Paulin et al., 2021), fast and automated processing of drone data 

recorded from a bird's eye view has been enabled (Sambolek & Ivasic-Kos, 

2021). A ground target (person) within an image frame can be detected 

automatically in real-time using machine learning techniques. A model can be 

built to detect a person in images recorded in the same conditions as the images 

used to train the model. Nowadays, detection models are based on deep learning 

and deep convolutional neural networks, and they achieve very good results in 

detecting people (even from a top-down perspective). Data such as the drone's 

current position and the camera's position and orientation in relation to the 
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drone's body are useful for determining the target's or the victim's coordinates. 

The built-in GPS receiver provides the drone's position, which is stored in image 

metadata along with other data, such as camera orientation. 

The accuracy of location determination depends on the accuracy of the data 

obtained from the drone sensors. In the past, the photogrammetric process of 

extracting accurate geometric information was based almost exclusively on 

images in which the camera's position was perpendicular to the recording 

surface. However, in SAR operations, the drone pilot usually captures the area 

with the camera set to an angle that covers as much area as feasible, and 

possibly when the person is detected, the drone is just above him or in an ideal 

position perpendicular to the ground. 

Oblique aerial images are taken with the camera axis intentionally inclined with 

respect to the vertical. They are characterized as either high oblique if tilted 

sufficiently to show the horizon or low oblique if they do not include the horizon 

(Verykokou & Ioannidis, 2018). Some of the basic characteristics of oblique 

photographs are their trapezoidal footprint, the significant change of scale, the 

coverage of a larger ground area compared to vertical images taken from the 

same altitude by the same camera, and the intuitive interpretation by people 

because they are accustomed to seeing ground features from a similar 

perspective (Verykokou & Ioannidis, 2015). 

Distance determination, as a part of the geolocalization process, has an important 

role in many areas, including SAR and 3D reconstruction (Hosseinpoor et al., 

2016; Sambolek & Ivasic-Kos, 2021). The fastest way to measure distance is with 

a laser. The drone-mounted laser measures the distance for a single point, which 

usually needs to be manually marked on the remote controller screen. However, 

due to the small screen size, the drone pilot may not see the object of interest at 

the given moment. For that reason, images are further analyzed after flight 

operations (offline) (Sambolek & Ivasic-Kos, 2020), but measuring the object's 

distance in the image with a laser is no longer possible. In the case of SAR 

operations, it is also impossible to use Ground Control Points (GCP) as a method 
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of indirect geolocation (F. He et al., 2018) since placing a GCP on inaccessible 

terrain is impractical. 

There are alternative methods that can be divided into single-image and multi-

image methods. Algorithms such as Structure from Motion (SfM) and 

Simultaneous Localization and Mapping (SLAM) are approaches using multiple 

images. The general principle behind determining depth from multiple images is 

finding corresponding features in them and resolving the depth by looking at the 

change in their positions (Forlani et al., 2019; Vidal et al., 2018; von Stumberg et 

al., 2017). SLAM implementations require large amounts of processing power 

and memory to generate accurate maps.  

Another approach often applied in the automotive industry and used to estimate 

distances to objects and potential obstacles is the use of stereo cameras, where 

the depth is determined by triangulation on the obtained images and binocular 

disparity between the image of the object in the left and right cameras (Leu et al., 

2012; Zhang et al., 2018).  

Also, image metadata, which includes the position and orientation of the drone 

and camera in space, is frequently used (Haseeb et al., 2018; Sun et al., 2016; 

Verykokou & Ioannidis, 2015; Zhao et al., 2019; Zhu & Fang, 2019) for 

determining object distance. However, the problem with this approach is mainly 

the small number of sensors installed on the drone and their low reliability. 

Accordingly, the information and signals obtained are often inaccurate and 

deficient. 

The target geolocation algorithm based on a single image and the Earth ellipsoid 

model (Cai et al., 2022) is still the mainstream of current research and the basis 

of other relatively extensive researched algorithms. However, when the distance 

determination problem is observed in 3D, it may be reduced to locating a point of 

interest on the ground using image metadata. A similar problem occurs in 

computer graphics, specifically raytracing, when searching for line-surface 

intersections (Roth, 1982). It is also encountered in 3D computer games, where 

is known as raycasting (Pietroszek, 2018), and used to determine collisions 

between 3D objects. Once we find the intersection point, determining the distance 
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is then a simple task of calculating the distance between the camera position and 

the point of intersection. Sheng (Sheng, 2004, 2005) tests three different methods 

to solve the optic ray-DEM intersection: Iterative Photogrammetry (IPG), Ray-

Tracing (RT), and Iterative Ray-Tracing (IRT). He concludes that the RT method, 

essentially based on raycasting, is more accurate than the others. However, he 

rejects it in favor of the IRT method because it is considered too computationally 

demanding. It was a meaningful criticism in 2004 but no longer is today. 

For the above reasons, building upon previous simulation experiments (Paulin et 

al., 2021), we propose using the raycast method for person geolocalization and 

distance determination in different real-world scenarios and offer 

recommendations for its successful use. The proposed approach allows using 

low-cost commercial drones with a monocular camera and no RTK module while 

enabling laser rangefinder emulation during offline image analysis. It overcomes 

problems encountered in previously published methods and achieves the best 

result (geolocation error of 0.7 m) in actual SAR mission conditions. We also 

proposed a new evaluation metric (ErrDist) for person geolocalization and 

prepared and released our SAR-DAG_raycast dataset. 

The main contributions of this paper are: 

• prototype of a system for automatic person detection and geolocation in 

search and rescue missions (SAR-DAG); 

• proposed geolocating method based on raycast for use in SAR missions; 

• proof that the proposed geolocation method can be adapted for real-world 

scenarios with recommendations for use; 

• proposed ErrDist evaluation metric for person geolocalization; 

• SAR-DAG_raycast dataset. 

The rest of the paper is organized as follows: Section 2 provides an overview of 

previous research and papers related to CNN-based object detection, distance, 

and geolocation determination. Section 3 describes the SAR-DAG system 

prototype. In Section 4 proposed geolocation method based on the raycast is 

detailed, describing the algorithm, 3D terrain generator, and the raycaster tool.  

Section 5 describes experiments, including datasets, evaluation metrics, 3D 
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terrain generation, and raycaster management, and analyzes the obtained 

results. Section 6 gives recommendations for using the proposed geolocation 

method in real-world scenarios. The paper ends with the conclusion and 

directions for future research. 

2. Related work 

Today, drones and unmanned aircraft systems (UAS) are almost inevitably used 

in various search and rescue operations (SARs) to reconnoiter areas and locate 

missing or injured persons. As a rule, drones are equipped with RGB cameras, 

and more and more often with thermal cameras, which allows them to capture a 

situation image or video of the monitored terrain at all times of the day. The 

operator can view the recorded material in real-time or, subsequently, offline. For 

SAR operation, it is important to detect the person in the image but also to 

estimate the distance of the person from the drone and thus to geolocate the 

person, which is not easy to determine since offline analyzed images are primarily 

taken from an oblique perspective. 

With the development of laser radar and machine vision, non-contact active and 

passive distance measurement methods have emerged (Aki et al., 2016; 

Bradshaw et al., 2005). Active UAV methods for object geolocalization are based 

on the laser rangefinder. DJI M30 drone (DJI Matrice 30, n.d.) has a laser 

rangefinder that can provide precise coordinates of objects up to 1,200 meters 

away. However, these devices are not useful when the detection of objects is 

done offline in captured images (Sambolek & Ivasic-Kos, 2021). 

For UAVs without a laser rangefinder, GPS and inertial measurement units (IMU) 

can provide the location and altitude of the UAV, so the passive methods are 

widely chosen. This data is also recorded in the image metadata. In general, the 

mathematical transformation methods are based on the measurement of the 

intrinsic and external orientation parameters of the aerial image and the 3D 

coordinates of the UAV to calculate the 3D coordinates of the ground object.  

The object geolocation method described in (Zhao et al., 2019) first transforms 

the pixel coordinate frame to the East-North-Up (ENU) frame, using the intrinsic 
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camera parameters (image width, image height, and focal length of the camera). 

Then the depth estimation of the object is performed, assuming that the observed 

space is relatively flat. The object distance is calculated from the drone's altitude 

and cosine of the angle at which the object is seen. Finally, the ENU frame is 

converted to GPS coordinates. For a flight height of 100 m, an accuracy of 5 m 

was achieved. 

Leira et al. (Leira et al., 2015) try to find the North-East-Down (NED) coordinates 

of the object from the pixel coordinates of the object in the thermal image using 

a scaling factor obtained from known intrinsic and external camera parameters. 

In order to improve localization accuracy, they developed a method of calibrating 

thermal cameras. For flights at heights between 50 and 100 m, they achieve an 

accuracy of 7.8 m. 

A different approach to obtaining GPS coordinates of the object is to create 

orthophoto images for a specific target area (Suziedelyte Visockiene et al., 2016). 

The problem with this method is that it takes a lot of time. 

A method using georeferenced images is described in (Conte et al., 2008). The 

authors seek to match the image taken by the aircraft with existing georeferenced 

images such as Google Earth. In the experiment, a ground object was 

geolocalized with an accuracy of 2.3 meters from a flight altitude of 70 meters. 

The object positioning by using the camera's FOV and UAV's altitude is given in 

(Sun et al., 2016). The ratio between the distance and pixels is assumed to be a 

linear relationship for vertical aerial photography (Types of Aerial Photograph, 

n.d.). The calculation of ground coordinates from a single low oblique aerial image 

is given in (Verykokou & Ioannidis, 2015). Tilt angle is used for the calculation, in 

addition to the focal length and the drone altitude.  

Stereo cameras are used in the automotive industry for collision prevention (Leu 

et al., 2012) by estimating depth using a binocular disparity map between the 

image of the object in the left and right cameras, which is then segmented based 

on pixel intensity to detect different objects in the scene. High-speed cameras of 

100 fps and low latency below 0.1 are processed with computationally expensive 
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algorithms. For each detected object, its distance to the front of the vehicle is 

calculated, and the collision warning module estimates the degree of danger. In 

(Zhang et al., 2018), stereo vision is used in simulations and actual flight to 

geolocate a target based on the relative height between the drone and the target 

using image information retrieved from the drone metadata. The goal of the 

proposed method is to avoid using georeferenced terrain databases and position 

sensors used to determine the drone's turning angle, given that the sensors on 

the drone are mostly of low quality and provide incorrect information. 

Additional data recorded in the image metadata, which includes the position and 

orientation of the drone and camera in space, is used in (Haseeb et al., 2018; 

Sun et al., 2016; Verykokou & Ioannidis, 2015; Zhao et al., 2019; Zhu & Fang, 

2019) in case of single image. However, the higher the desired data accuracy, 

the higher the hardware's cost and/or size. The problem with this approach is the 

inaccuracy of the measured data because, due to payload constraints, UAVs 

typically use smaller and error-prone senzors.  

Paper (Pan et al., 2023) presented a framework for geolocating a moving target 

using images captured from a UAV. Unlike traditional approaches, the proposed 

framework relies solely on monocular vision and does not require laser 

rangefinders or multiple UAVs. It transforms the problem of moving target 

geolocation into stationary target geolocation by matching corresponding points. 

The framework utilizes Siamese-network-based models for point matching and 

introduces compensation values to improve matching accuracy. The 

experiment's results demonstrated successful geolocation of the moving target 

on the ground, with mean absolute errors of 0.046 m, 0.044 m, and 0.165 m for 

the X, Y, and Z coordinates, respectively. 

Cellular-based drone search and rescue geolocalization system SARDO 

(Albanese et al., 2022) aims to find victims' locations by keeping track of their 

mobile phone signals in disaster areas with the information collected by a single 

UAV that acts as a portable cellular base station. 

The use of the raycast method for distance determination was tested in a 

simulated 3D scenario corresponding to terrain images recorded from a height of 
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60 meters. The accuracy of geolocation of a point in space with a location error 

of 1 m was achieved using 150 iterations of raycast (Paulin et al., 2021). The 

achieved results were an incentive for further development of the method and 

research with real data. 

A distance estimation using the bounding box of the detected object from the 

monocular camera, DistNet (Haseeb et al., 2018), is an approach in which 

authors used the object's bounding boxes resulting from the YOLO object 

classification, processed to calculate the features and bounding box parameters. 

The ratios of the object bounding box dimensions to the image dimensions Bh, 

Bw, and Bd and the values of average height, width, and breadth Ch, Cw, and 

Cb of an object of the particular class are input features. DisNet's input layer 

consists of 6 neurons corresponding to 6 features, followed by 3 hidden layers 

with 100 parameters. The output layer consists of a single neuron. The output of 

this node is the estimated distance between the camera and the object viewed 

with the camera. The training of DisNet is performed using a set of RGB images 

collected from a railway scene with possible static obstacles on the railway track. 

 

The authors (Zhu & Fang, 2019) introduced the framework to directly predict 

distances (in meters) from a given RGB image and object bounding boxes. The 

enhanced model contains 4 parts: a feature extractor, a keypoint regressor, a 

distance regressor, and a multiclass classifier. The model only uses camera 

projection matrix P, keypoint regressor, and classifier for training. The feature 

extractor, the keypoint regressor, the distance regressor, and the classifier are 

trained simultaneously. To construct the train/test dataset, the authors appended 

the ground truth of the object-specific distance and keypoint to object detection 

labels of the training samples of the KITTI/nuScenes(mini) dataset (because only 

they contain ground truth labels), together with the RGB images. Generated 

ground truth object-specific distances are varied from 0 to 80 m for KITTI and 

from 2 to 105 m for the nuScenes(mini) dataset. For the evaluation metrics, 

absolute relative difference, squared relative difference, the root of mean squared 

errors, and root of mean squared errors computed from the log of the predicted 
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distance and the log ground truth distance were used. The results demonstrated 

that the base model could predict distances with superior performance over 

alternative IPM (Inverse Perspective Mapping algorithm) and SVR (Support 

Vector Regressor) approaches, while the enhanced model obtained the best 

performance over all methods compared. 

Table 1. Chronologically sorted overview of papers reporting their best results and flight altitude. 
Author Method Determined 

distance 

error (m) 

Shot 

height 

(m) 

Reliability % 

(Shot height / 

Distance error) 

UAV model 

(Conte et al., 

2008) 

Geolocation of ground 

targets using aerial image 

registration 

2.3 70 30.43% PingWing, in-house 

developed fixed-wing 

MAV 

(Leira et al., 2015) Earth ellipsoid model + 

Camera calibration and 

distortion model 

7.8 50 - 100 6.4-12.8% X8 Skywalker fixed-

wing 

(Zhao et al., 2019) Earth ellipsoid model 

(Passive geolocation 

method) 

5 100 20% DJI M100 

(Paulin et al., 

2021) 

Distance determination 

using raycast 

1 60 60% Simulated 

(Pan et al., 2023) Earth ellipsoid model + 

Learning-based 

corresponding point 

matching model 

MAE 

X 0.046 

Y 0.044 

Z 0.165 

2.8 - Laboratory product 

 

Of all the mentioned works, only a small number specify the flight altitude and the 

achieved result as an error in determining the geolocation in meters (Table 1). 

(Pan et al., 2023) achieves the best result, but only in laboratory conditions and 

at a flight altitude (2.8 m) that is not suitable for use in actual SAR missions. 

(Conte et al., 2008) achieves an excellent result that would be applicable in actual 

flight conditions, but for use in non-urban SAR missions, it is limited by requiring 

georeferenced images because of the continuous change in the appearance of 

the terrain due to the change of seasons and vegetation growth. Both (Zhao et 

al., 2019) and (Leira et al., 2015) achieve similar results, but the former for flat 

terrain exclusively and the latter using a thermal camera. Our previous method 

for distance determination based on the raycast method (Paulin et al., 2021), 

overcomes all the listed limitations for use in a SAR scenario in a simulated 
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environment and achieves the best result with a reliability of 60% (error of 1 m on 

recording from a 60 m height). 

Computer vision techniques can help operators detect a person or object in an 

image or video. Today, deep learning methods, specifically convolutional neural 

networks (CNN), are the most often used to detect objects in images. CNN-based 

object detection methods are usually divided into two-stage and single-stage 

detectors. In general, single-stage detectors achieve higher inference speed but 

with lower precision. As a prominent example of the two-stage detector, Faster 

R-CNN (Ren et al., 2017) uses a region proposal network to create boundary 

boxes and utilizes those boxes to classify objects. Its derivatives, such as R-FCN 

(Dai et al., 2016) and Mask R-CNN (K. He et al., 2017), are proposed to improve 

detection accuracy further. The single-stage detectors discard the phase of 

generating proposals and detect objects in a dense manner, e.g., YOLO 

(Bochkovskiy et al., 2020; Redmon et al., 2016; Redmon & Farhadi, 2017, 2018) 

and SSD (Liu et al., 2016). YOLO and SSD have adopted a lightweight neural 

network as a backbone to obtain faster inference speed with state-of-the-art 

comparable accuracy. Networks such as VGG (Simonyan & Zisserman, 2015) or 

MobileNet (A. Howard et al., 2019; A. G. Howard et al., 2017; Sandler et al., 2018) 

pre-trained on the ImageNet (Russakovsky et al., 2015) or OpenImages 

(Kuznetsova et al., 2020) dataset, are most commonly used as backbones. 

YOLOv4, used in our experiments, uses CSPDarkNet53 (Wang et al., 2020) as 

the backbone. To the basic DarkNet53, a deep residual network with 53 layers, 

CSPNet (Cross Stage Partial Network) was added. Also, the authors of YOLOv4 

added Spatial Pyramid Pooling (SPP) (K. He et al., 2015) as a neck to increase 

the receiving (receptive) field without causing a decrease in inference speed 

performance. YOLO divides the image into a grid of dimensions S×S, each cell 

providing frames for the object. The probability, which is calculated for each 

frame, tells us how confident the model is when there is an object inside the frame 

and how confident it is in the accuracy of the bounding box. From 2015 to today, 

YOLO has developed into one of the key models for real-time object detection (Li 

et al., 2022; Wang et al., 2023). The current version of YOLOv8 (Jocher et al., 

2023) provides 5 scaled versions: YOLOv8n (nano), YOLOv8s (small), 
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YOLOv8m (medium), YOLOv8l (large), and YOLOv8x (extra large). YOLOv8 

supports multiple vision tasks such as object detection, segmentation, pose 

estimation, tracking, and classification. Evaluated on the MSCOCO dataset's 

test-dev2017 subset, YOLOv8x achieved an Average Precision (AP) of 53.9% 

with an image size of 640 pixels. 

Recently, as an alternative to CNN, there has been increased interest in using 

Vision Transformer (Dosovitskiy et al., 2021) in various computer vision tasks. 

Transformer models are originally proposed for natural language processing and 

use self-attention mechanisms. In computer vision tasks, the transformer model 

represents an input image as a series of image patches, like the series of word 

embeddings used when using transformers to text, and directly predicts class 

labels for the image. The transformer architecture has been shown to be a 

promising option for computer vision tasks as it requires significantly less 

computing resources than CNNs. However, it requires huge data sets to train the 

model to achieve the same performances as today's CNN models (Liu et al., 

2023). 

The performance of object detection methods significantly depends on the use 

case and application and the set of images on which they are applied, so different 

algorithms may prove to be the most successful in different cases. One of the 

benchmarks for comparing detection methods is the Microsoft COCO dataset (Lin 

et al., 2014), where different models are typically evaluated by the Mean Average 

Precision (MAP) metric and the inference time (Frames per Second). The results 

of object detection on the COCO set achieved by all relevant models are shown 

on the COCO Detection Leaderboard page (COCO - Detection Leaderboard, 

n.d.) and show that top detectors reach a mean accuracy of 56%. Successful 

detection also depends on the size of the object in the image because it is more 

difficult to detect objects that occupy only a few pixels than those that are in the 

foreground and occupy a large area of the image, so the detection results, in this 

case, range from 41% for small objects (APS) to 72% for large objects (APL). 

For the use of detectors in various applications that require decision-making in 

real-time, an important parameter is the inference time, which should be as short 
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as possible and is measured in FPS (Frames per Second), that are better the 

higher they are. A comparison of the performance of baseline real-time object 

detectors trained from scratch on the COCO train 2017 dataset with the same 

settings is given in (Wang et al., 2023), and here only models relevant to our 

experiment are presented (Table 2). 

Table 2: Comparison of baseline real-time object detectors. 
Model #Param

. 

Size AP AP50 AP75 APS APM APL 

YOLOv4 (Bochkovskiy et 

al., 2020) 

64.4M 640 49.7% 68.2% 54.3% 32.9% 54.8% 63.7% 

YOLOv4-CSP (Wang et 

al., 2021) 

52.9M 640 50.3% 68.6% 54.9% 34.2% 55.6% 65.1% 

YOLOv7 (Wang et al., 

2023) 

36.9M 640 51.2% 69.7% 55.5% 35.2% 56.0% 66.7% 

 

A graphical presentation of the comparison of real-time object detectors 

performances considering inference time is shown on page Real-Time Object 

Detection on COCO (Real-Time Object Detection on COCO, n.d.), Fig. 1. 

 

Figure 1: The state-of-the-art object detectors by Frames per Second (FPS) 

considering the development timeline. The leading computer vision algorithm for real-

time object detection on COCO can process 400 frames per second (DAMO-YOLO-T). 
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3. Prototype of a system for automatic person detection and 

geolocation in search and rescue missions 

We propose a prototype of a system for automatic person detection and 

geolocation in search and rescue missions (SAR-DAG) specifically designed to 

automatically detect and geolocate missing persons by using UAVs in SAR 

missions. The system consists of 3 units: data acquisition, detection module, and 

geolocation module (Fig. 2). 

Satellites and drones participate in the data acquisition phase. Satellites 

periodically record digital elevation maps (DEM) and supply the drone with GPS 

data during flight. The drone flies over the search area, performs online detection, 

and captures images and metadata. Metadata includes the position and 

orientation of the drone and camera data. Images and metadata are recorded on 

an SD memory card and become available for offline processing upon the drone's 

return to base. 

The detection module is used in the phase of offline data processing for analysis 

of images taken during drone flight and automatic detection of persons in the 

images using a deep neural network model that has been previously trained and 

fine-tuned for the detection of injured and missing persons. 

As part of the geolocation module, the resulting detection data is combined with 

the positional data of the drone in a single CSV file. The DEM of the terrain over 

which the drone was flown is used to generate the 3D terrain. By using 3D terrain 

and the data in the CSV file, the raycaster can determine the geolocation of the 

detected person. Geolocation information is forwarded to the rescue team, who 

accesses the person on the ground and successfully completes the SAR mission. 
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Figure 2: Search and Rescue - Detection and Geolocation (SAR-DAG) system 

overview. 

3.1. Data acquisition 

The images obtained during the drone flight are used to create datasets for 

training the person detector. With each image taken by a drone, a series of 

metadata is also recorded, such as the GPS location of the drone from which the 

image was taken and the telemetry of the drone and camera. This metadata, 

together with the drone's camera optics specification, is used when determining 

the distance of the person detected in offline mode. 

In order for the person detector to be specially prepared to facilitate the detection 

of missing or injured persons in non-urban areas, it is necessary to additionally 

train the detector on precisely those images that correspond to real scenes and 

situations that could occur in search and rescue operations. This actually means 

that the dataset on which the detector is trained should include footage that 

simulates different positions of injured individuals located in challenging terrains, 

such as inaccessible areas, hills, forests, etc. It should also include different 

lighting conditions, different drone heights, and scenarios where people may be 

partially obscured by tree branches or placed in the shade of trees. These 
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different scenarios in search and rescue operations should include different 

activities and poses, such as walking, running, sitting, and others. 

We have prepared the SARD dataset (Sambolek & Ivasic-Kos, 2021) with footage 

on challenging and inaccessible terrains and simulations of various poses of 

injured individuals found in non-urban areas. The dataset is additionally 

augmented by adding different weather conditions. Images containing persons 

are manually annotated with the bounding box marked around each person in the 

image to be used later as ground truth (GT) for training or testing the person 

detectors (Fig. 3). 

 

Figure 3: Dataset preparation for training and evaluating deep neural network person 

detector model. 

3.2. Detection module 

The detection module is able to perform object detection during the flight, in online 

mode, and after the flight, in the offline mode, but for this research, we are using 

it solely for offline detection. We have in detailed explained the process of training 

the deep neural network object detector for person detection in SAR missions in 

(Sambolek & Ivasic-Kos, 2021), and here we will only point out the most important 
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characteristics of this module so that the functionality of the proposed system can 

be understood more easily. 

The deep learning method was used to train a person detector on drone imagery 

acquired in non-urban areas during search and rescue operations. Here we use 

the YOLOv4 model pre-trained on the MS COCO dataset (Lin et al., 2014), and 

the model intended for the detection of people in the SAR missions additionally 

trained and fine-tuned on the SARD dataset as in the original work (Sambolek & 

Ivasic-Kos, 2021). The YOLOv4 model was trained using a batch size of 64 and 

a subdivision of 32, with a total of 6000 iterations. The training process employed 

a learning rate of 0.001, momentum of 0.949, and decay of 0.0005. The width 

and height were set to 512 px for the network resolution. For testing purposes 

(person detection), the same environment was used as in (Sambolek & Ivasic-

Kos, 2021), Dell G3 i7-9750H CPU, 16 GB RAM, GeForce GTX 1660 Ti 6 GB. 

3.3. Geolocation module 

In this paper, we focus on the last required component of the SAR-DAG system, 

the geolocation module, by using the proposed geolocation method based on the 

raycast (Section 4) and evaluating its potential for use in real-world SAR 

scenarios (Section 5). 

4. Proposed geolocation method based on the raycast 

Raycasting is well-known in computer graphics, being around since 1982 (Roth, 

1982). It is a process of tracing geometric rays from the camera and finding line-

surface intersections (Fig. 4). It has been invented as the methodological basis 

for a CAD/CAM solid modeling system. In other words, raycast is the ray-solid 

evaluator, which finds where a given ray enters and exits a given solid. Here, the 

solid is assumed to be a 3D terrain. 
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Figure 4: Ray is projected from the camera (on the left) through the point on the screen 

(pale red square) to the object (cube) in 3D space. The point of intersection is where 

the ray hits the object's surface (red dot). Ray may continue through the object, exit 

(green dot), and then continue further, trying to hit another surface in the scene. 

Besides 3D terrain, input in the form of a digital elevation map, meshed LiDAR 

point cloud, or sculpted 3D model, the proposed geolocation method based on 

the raycast requires a sequence of monocular aerial images, known specification 

of drone's camera optics, drone, and camera telemetry for each recorded image, 

a dedicated neural network for the object (person) detection, and normalized 

device coordinates of the center of the bounding box of the detected person. 

 

Figure 5: Diagram of the raycasting part of the proposed geolocation method. 

The method takes normalized device coordinates (NDC; f, ranging from 0 to 1 in 

screen space) from the detector's output and transforms them to 3D coordinates 

(t) using the camera's position (c) and orientation (o) from the image's metadata 

(Fig. 5). Then it subtracts these 3D coordinates from the camera's position to 

obtain a raycast direction vector (r). When shot from the camera's position to 3D 

terrain, this vector gives us a point of intersection (p) whose 3D coordinates are 
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exact geo-coordinates where a person is located (Fig. 6). Calculating the distance 

(d) to the detected person is then a simple task of calculating the distance 

between the camera position and the point of intersection (Eq. 1): 

 

 𝑑(𝑐, 𝑝)  =  |𝑐 − 𝑝|  (1) 

 

 

Figure 6: Top: The drone's virtualized camera with a visible 4:3 aspect ratio frustum 
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(blue) casts a single ray (red) thru the person detector's NDC coordinates to the 3D 

terrain (green). The red dot indicates a point of intersection (p): a person's location in 

the 3D space that can be easily remapped back to GPS coordinates. Middle: 800% 

zoomed 4864×3648 px image with visible detection bounding box (red) covering 22×32 

px area with a sitting person inside. NDC coordinates are located in the center of this 

bounding box. The red arrow points to NDC coordinates projected on the terrain. 

Bottom: 4000% zoomed image with the pixelated person. 

To successfully apply the proposed geolocating method based on raycast for use 

in SAR missions, Algorithm 1 should be followed. First, the tools for 3D terrain 

generation and raycasting need to be developed. Then, using a 3D terrain 

generator, a specific 3D terrain is generated for each SAR mission while acquiring 

mission data (images captured by the drone and the drone's telemetry). For each 

image in mission data, person detection is performed using pre-existing person 

detector. Also, for each image, drone telemetry and image metadata are 

extracted from the drone's log and image. After processing all images, detection 

data, telemetry, and metadata are combined into a single CSV file. This file is 

further processed with a raycasting tool and used in a preprocessing step, where 

the flight path is divided into individual flight sequences. The algorithm's core is 

geolocating the detections for which the raycast is used. And finally, sequence 

and flight results are processed, and the precise GPS coordinates of the target 

(e.g. injured person) are determined and forwarded to the rescue team. 

Algorithm 1. Proposed geolocation method algorithm. 
create 3D terrain generator 

create raycasting tool 

for each SAR mission 

    generate 3D terrain using 3D terrain generator 

    acquire mission data using drone 

    for each image in mission data 

        perform person detection using pre-existing person detector 

        extract drone telemetry from drone log 

        extract image metadata from image 

    combine detection results, telemetry, and metadata to Input CSV file 

    with raycasting tool 

        process Input CSV file 

        preprocess flight path data 

        geolocate detections 

        process sequence and flight results 
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4.1. 3D terrain generator 

The 3D terrain model has an important role in the proposed geolocation method. 

Its accuracy (compared to the actual terrain), along with the accuracy of the 

telemetry data of the drone, dictates whether the projected ray will intersect it in 

the appropriate location and thus allow reading the exact GPS coordinates of the 

detected person. If the geometry of the 3D terrain deviates from the geometry of 

the actual terrain, which is often the case due to the relatively low resolution of 

the 3D terrain, the read coordinates will contain the deviation (calculated 

Error_2D and Error_3D, which represent the distance from the target to the 

ground truth, GT, expressed in meters, will be greater than zero). 

A limiting resource for creating 3D terrain models is the availability of elevation 

data and their resolution (m/px). Our terrain generator uses two types of input 

data: metadata of the selected OpenStreetMaps area and NASA elevation data 

(1-arcsecond N45E016.hgt tile, resolution 30 m/px which equals 3601×3601 px) 

in a latitude/longitude projection (EPSG: 4326 (EPSG:4326, n.d.)) from the 

Shuttle Radar Topography Mission (SRTM), downloaded using 30-Meter SRTM 

Tile Downloader (30-Meter SRTM Tile Downloader, n.d.). 

 

From OpenStreetMaps data (OpenStreetMap > Export, n.d.), which we download 

using the Overpass API (Overpass API, n.d.), we use metadata from which we 

build 3D objects and 3D roads and rails infrastructure. These 3D objects are not 

used for raycasting, but they significantly help with orientation when evaluating 

raycasting results, given the monotony of the display of the 3D terrain itself (Fig. 

7). In addition, they can be used for automatic pathfinding so that when 

determining the location of the detected person, an access route proposal is 

created. The proposal might include the shortest route to the nearest road, 

considering different terrain properties included in the data that we used to 

generate 3D terrain. 
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Figure 7: Top-left: monotonous 3D terrain (near the city) that is difficult to navigate 

without reference 3D geometry. The red dot represents the location of the detected 

person. Top-right: 3D terrain with additional 3D geometry (buildings and traffic 

infrastructure). The automatically generated red curve shows the shortest and safest 

route from the nearest road to the detected person. Bottom-left: monotonous 3D terrain 

(wilderness). Bottom-right: even sparse geometry (2 structures at the mountain peak) 

and contours of the city (black) far away help in orientation. 

The generator allows us to vary the output resolution of the 3D terrain model. The 

output of the 3D terrain generator is a triangulated polygonal mesh that contains 

data on the boundaries of the geographical bounding box. 

4.2. Raycaster tool 

The raycasting tool is the heart of the geolocation module. It transforms and 

projects transformed 2D coordinates obtained from the object detector onto 3D 

terrain, finding the point of intersection whose 3D coordinates are exact geo-

coordinates of a person's location in the real world. 

Before creating the raycasting tool, its input (Table 3 and 4) and output (Table 5) 

formats are defined. Today's drones record a large amount of metadata in their 

logs with each image they capture during the flight. Their subset (Table 3), which 

consists of data related to the drone trajectory and identification of captured 
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images at individual flight points (Table 3, #1-12, and #25-28), is sufficient for 

applying the proposed geolocation method. We refer to this subset as "Flight log". 

Table 3. Flight log variables, their description, and example data with corresponding units. 
# Variable Description Example data Unit 

1 Time Flight point's timestamp 2022-01-18 

14:28:44 

- 

2 File_Name Filename of the image recorded in the flight 

point 

DJI_0265.JPG - 

3 GPS_N Latitude of the flight point 45.51064608 degrees 

4 GPS_E Longitude of the flight point 16.76035542 degrees 

5 Absolute_Altitude Drone's absolute altitude (unreliable) 30.82 m 

6 Relative_Altitude Drone's altitude relative to the take-off 

point's height 

29.7 m 

7 Flight_Pitch_Degree Drone's pitch -3.8 degrees 

8 Flight_Yaw_Degree Drone's yaw -11.7 degrees 

9 Flight_Roll_Degree Drone's roll -0.6 degrees 

10 Gimbal_Pitch_Degree Camera's pitch -44.3 degrees 

11 Gimbal_Yaw_Degree Camera's yaw -11.7 degrees 

12 Gimbal_Roll_Degree Camera's roll 0 degrees 

13 GT_CX Horizontal center of GT bounding box 1620 px 

14 GT_CY Vertical center of GT bounding box 3068 px 

15 DET_CX Horizontal center of detection's bounding 

box 

1612 px 

16 DET_CY Vertical center of detection's bounding box 3068 px 

17 GT_X_min Upper-left X coordinate of GT bounding box 1506 px 

18 GT_Y_min Upper-left Y coordinate of GT bounding box 2912 px 

19 GT_X_max Lower-right X coordinate of GT bounding 

box 

1735 px 

20 GT_Y_max Lower-right Y coordinate of GT bounding 

box 

3224 px 

21 DET_X_min Upper-left X coordinate of detection's 

bounding box 

1510 px 

22 DET_Y_min Upper-left Y coordinate of detection's 

bounding box 

2911 px 

23 DET_X_max Lower-right X coordinate of detection's 

bounding box 

1715 px 

24 DET_Y_max Lower-right Y coordinate of detection's 

bounding box 

3226 px 

25 Drone_Model Drone model designation Phantom4A - 

26 Camera_Model Camera model designation FC6310 - 

27 Resolution_X Recorded image's width 5472 px 

28 Resolution_Y Recorded image's height 3648 px 

29 FOV Camera's diagonal field of view 84 degrees 

30 Focal_Length Camera's focal length 8.8 mm 

31 Wind Wind speed 3 m/s 

32 Wind_Direction Wind direction SE - 
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The drone's absolute altitude (#5) is not necessarily reliable. If this measurement 

during the raycaster setup proves unreliable, the absolute altitude of the drone 

should be calculated from the drone's relative altitude (relative to the home point's 

altitude). The home point is the place from where the drone took off. Data related 

to the bounding box of detected objects (#15-16 and #21-24) is obtained as the 

output of the person detector. Variables #13-14 and #17-20 are reserved for 

storing manually annotated ground truth, which is required for testing the 

raycaster's implementation. In both cases, if detection is not present in the image 

or if the GT is not manually added, -1 is used instead of the coordinate. 

Data related to camera optics (#29-30) is taken from the technical specifications 

of each drone (identified by #26). Wind data (#31-32) is registered before taking 

off and, if the drone has no anemometer, refers to the wind measured at the 

ground level. Wind at the flight altitude can deviate significantly from this 

measurement, so the possibility is left to be treated as a variable and recorded 

with each image, using a drone's anemometer like the one built into the MATRIX 

300 RTK (MATRICE 300 RTK User Manual, n.d.). If the wind is not measured, -

1 is registered (both for wind speed and direction). 

Recording the data combination #25-30 allows for varying the settings of the 

drone camera optics during the flight, as well as the image resolution and aspect 

ratio. For the experiments, fixed focal length (8.8 mm), FOV (84°), and resolutions 

of 5472×3648 px (aspect ratio 3:2) and 4864×3648 px (aspect ratio 4:3) were 

used. 

Flight log data is used to create an Input CSV file (Table 4). Input CSV file consists 

of a header row with variable names and Flight log data for the Home point, N 

data points, and optional GT required for testing the raycaster's implementation. 

A single flight point can have multiple detections (in a single image). Therefore 

we store Flight log data for each detection separately and refer to it as a "data 

point" in the Input CSV file. 

Table 4. Input CSV file structure. 
Row Content Type of content 

1 Header Variable names 

2 Home point Flight log data 
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3...N Data points Flight log data 

N GT Flight log data 

 

Based on the defined input and output data formats, we developed a raycasting 

tool, using, as in the case of the 3D terrain generator, procedural 3D modeling. 

We chose this approach because it allows rapid prototyping with immediate visual 

feedback. We can monitor the performance of each scenario over the entire 

observed area (3D terrain) but also from the perspective of a virtualized drone 

camera, making it easier to spot problems and adjust tools faster (Fig. 8). 

 

Figure 8: Raycaster implementation in Houdini with visible Scene View (upper-left: 

showing 3D terrain, flight path, drone's home point, GT, and multiple detections), 

Geometry Spreadsheet (bottom-left: showing numerical results of the raycasting), 

procedural nodes (middle area) and Python code of one of the nodes (right). 

Raycaster sequentially performs input CSV processing, flight path data 

preprocessing, geolocating detections, and sequence and flight results 

processing. 

4.2.1. Input CSV processing 
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In the first step of Input CSV processing, the pre-known (according to 

drone/camera specifications) diagonal drone camera's FOV is converted to a 

horizontal FOV, using image dimensions, at each flight point. This data, combined 

with the known focal length, is used to calculate the aperture value of the 3D 

camera, which aligns the optics of the drone camera and the 3D camera (Fig. 9). 

 

Figure 9: Relevant elements for camera optics alignment. 

In the second step, using the geographical bounding box boundary data stored 

in the previously generated 3D terrain, the GPS coordinates of the drone 

trajectory are converted to 3D coordinates. At the same time, the YOLO detection 

coordinates are translated into NDC coordinates (normalization is performed, and 

the Y coordinates are mirrored from the 4th to the 1st quadrant). 

From the data thus prepared, the home point location is taken, and a raycast is 

performed by which its XZ position is projected onto the 3D terrain. The home 

point's absolute height (Y) is read from the intersection point. The optional GT 

(actual location of the target) is processed in the same way. 

In the last step of processing the Input CSV, the drone's altitude (hABS) at all flight 

points is corrected. Its known relative altitude (hREL) is added to the home point's 

height (hHOME) which completes the positioning of the virtual drone in 3D space 

(Fig. 10). 
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Figure 10: Virtual drone positioned in 3D space with marked camera's optical axis, 

FOV, and pitch in relation to the horizon line. d represents the distance from the drone 

to the person we are searching for (located at point p). 

4.2.2. Flight path data preprocessing 

Since not all flight points contain detections, the raycaster's second task is to 

divide the flight path into individual flight sequences. A flight sequence contains 

a series of detections in continuous chronological order. 

The first step of this process is to remove flight points that do not contain 

detections (head and tail trimming). The remaining points in the sequence are 

then assigned a unique sequence identifier that defines the association of a 

particular flight point to only one sequence. 

In the case of multiple detections in the same image (e.g., a group of people), 

each detection is registered as a separate data point, treating the group as a 

single person detected in multiple places (within a single flight point). Future work 

can improve this by identifying (and subsequently reidentifying) each person and 

averaging raycast results per unique person per flight sequence. 

Although the goal of developing this method was to build a system that can detect 

an injured person from a single image (detection) in just one flight over the area, 

initial experiments indicated that single flight point sequences are better ignored 

when determining location. In all test cases, these were false detections that 

corrupted the result during averaging. Consistent with this conclusion, the final 

step of sequencing is to remove sequences containing a single flight point. 

4.2.3. Geolocating detections 
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The raycaster's main task is to determine the location of each detection in 3D 

space and, during calibration, calculate the error relative to the GT and, 

incidentally, the distance of the GT from the drone. These operations are 

performed separately for each flight point that belongs to one of the previously 

formed sequences. 

The previously prepared NDC coordinates are transformed into 3D coordinates, 

and a raycast vector (r) is formed using the drone's position. Raycasting is 

performed from the camera's position in the direction of the raycast vector, and 

the point of intersection with the 3D terrain is determined. This point is the location 

of the detected person in the 3D space. Then XZ (Error_2D) and XYZ distances 

(3D_Error) from GT are calculated. Error_Difference (Eq. 2) is calculated as the 

difference between these distances: 

 

 𝐸𝑟𝑟𝑜𝑟_𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = |𝐸𝑟𝑟𝑜𝑟_2𝐷 − 𝐸𝑟𝑟𝑜𝑟_3𝐷| (2) 

 

Error_2D ignores the height difference (it behaves like a distance in map reading). 

Error_3D takes height into account (by calculating the actual distance in 3D 

space) and can differ significantly from Error_2D if the GT is located, e.g., at the 

foot of a cliff, and detection is (due to raycast error caused by insufficient 3D 

terrain resolution or incorrect drone telemetry) located at the top of the cliff. 

4.2.4. Sequence and flight results processing 

The results of individual sequences are calculated after all individual points within 

them have been processed. The average pitch, relative height, wind speed, and 

drone distance from the determined geolocation are calculated for each 

sequence. The average Error_2D, Error_3D, and Error_Difference of the 

sequences are not calculated by averaging previously calculated Error_2D, 

Error_3D, and Error_Differences of all points. Instead, all detection locations 

within the sequence are first averaged to a single point, and then Error_2D, 

Error_3D, and Error_Differences are calculated for that point. Sequence 

processing ends with converting 3D coordinates back to GPS coordinates. 
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The same procedure is repeated to calculate the average results of all sequences 

for the entire flight. The obtained results are recorded in Results CSV file (Table 

5). Individual flight sequences (#24) are numbered from zero, and the entire flight 

is marked with -1. 

Table 5. Results CSV variables, their description, and example data with corresponding units. 
# Variable Description Example data Unit 

1 flight Filename of the flight's data in Input CSV format vinograd.csv - 

2 terrain resolution Resolution of 3D terrain model 30 m/px 

3 DET location Use center (of the detection's bounding box) or bottom-middle 

(bottom) position as the center of detection 

center - 

4 DET Use detection (DET) or GT (GT) data DET - 

5 P.x X coordinate of person location (in 3D space) 12521.66602 m 

6 P.y Y coordinate of person location (in 3D space) 204.705368 m 

7 P.z Z coordinate of person location (in 3D space) -12317.81055 m 

8 Aperture 3D camera's aperture (in Houdini) 13.18559551 mm 

9 Average_Distance Averaged drone to GT distance 34.55657578 m 

10 Camera_Model Camera model designation FC6310 - 

11 Detections Number of flight points (in a single sequence or during entire 

flight) 

15 - 

12 Drone_Model Drone model designation Phantom4A - 

13 Error_2D Averaged 2D distance between detection and GT 7.948086739 m 

14 Error_3D Averaged 3D distance between detection and GT 7.957713604 m 

15 Error_Difference Difference between Error_2D and Error_3D 0.009626865387 m 

16 Focal_Length Camera's focal length 8.8 mm 

17 FOV Camera's diagonal field of view 84 degrees 

18 Gimbal_Pitch_Degree Averaged camera's pitch -44.29999161 degrees 

19 Latitude Latitude of person location (in real world) 45.51074219 degrees 

20 Longitude Longitude of person location (in real world) 16.76032829 degrees 

21 Relative_Altitude Averaged relative altitude 29.70000458 m 

22 Resolution_X Recorded image's width 5472 px 

23 Resolution_Y Recorded image's height 3648 px 

24 Sequence Single sequence ordinal number (or -1 for entire flight) -1 - 

25 Wind Averaged wind speed 3 m/s 

26 Wind_Direction Wind direction SE - 

 

5. Experiments 

The purpose of this series of experiments was to test the proposed geolocation 

method in different real-world scenarios. The scenarios differed according to the 

terrain configuration. Kutina (Croatia) was chosen as a location for the 

experiments due to the availability of terrains of varying difficulty in a relatively 

small area (approx. 30×30 km), with the possibility of access by car. The selected 
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micro-locations and their terrain configurations were increasingly demanding, 

both for the application of the proposed method and for SAR. They varied from 

flat terrain, over terrain with a slight slope, to mountainous terrain and narrow 

valley (Fig. 11). 

 

Figure 11: Top-left: example drone imagery from the 2nd experiment (terrain with a 

slight slope), with visible detection (red bounding box). Top-right: 800% zoomed 

detection. Bottom-left: generated 3D terrain laid over drone imagery. Each rectangular 

pair of triangles represents a 30×30 m terrain patch. The red dot indicates the person's 

position (ground truth), and the cyan dot indicates the raycasted detection's coordinate. 

Bottom-right: 3D terrain's relief. The green dot indicates the drone's home point. 

In the experiments, the hand-operated Phantom 4 Advanced drone (Phantom 4 

Advanced - Specs, n.d.) without an RTK module was used in all phases, such as 

taking images to form a dataset for training and testing the model for detecting 

persons in SAR missions and for testing the geolocation method. All imagery 

acquisitions were performed by flying 30 m above the ground. Images were taken 

at a frequency of 1 image every 2 seconds. 

5.1. Dataset for training the person detector 

For training the person detector model in the detection module, we have prepared 

the SARD dataset (Sambolek & Ivasic-Kos, 2021) that is specifically curated to 

facilitate the detection of missing or injured individuals in non-urban environments 
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using drone imagery. The dataset includes footage that simulates various poses 

of injured individuals found in challenging terrains, such as inaccessible areas, 

hills, forests, and more. It also incorporates different lighting conditions, varying 

drone altitudes, and scenarios where people may be partially obscured by tree 

branches or located in the shade of trees. These diverse scenarios encompass 

search and rescue actions and standard poses like walking, running, sitting, and 

others. 

The SARD dataset includes 1981 images captured with a DJI Phantom 4 

Advanced drone at FHD resolution, featuring 6532 annotated instances of 

people. We divided the dataset into training and testing subsets to assess the 

model's performance using a 60:40 ratio. Fig. 12 provides a visual representation 

of a selection of images from the SARD dataset. 

In the SARD dataset, there is a greater proportion of small objects than the large 

ones. The object's size is determined based on the number of pixels within their 

respective bounding box. According to the COCO standard (COCO - Detection 

Evaluation, n.d.) there are three object size categories: Small (with an area 

smaller than 322 px), Medium (with an area between 322 and 962 px), and Large 

(with an area larger than 962 px). Approximately 29% of the objects in the SARD 

dataset fall into the Small category, while 64% fall into the Medium category. The 

remaining 7% of objects belong to the Large category. 
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Figure 12: Examples of images from the SARD dataset. 

In case of blurred images or challenging weather conditions, the model can be 

further trained using the Corr-SARD dataset (Sambolek & Ivasic-Kos, 2021). The 

Corr-SARD dataset is derived from the SARD set and incorporates the effects of 

snow, fog, frost, and motion blur into the SARD images (Fig. 13). 
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Figure 13: Examples of images from the SARD-Corr dataset. Top row: ice (left) and fog 

(right). Bottom row: motion blur (left) and snow (right). 

Since this paper focuses on geolocation, the drone imagery for the experiments 

was recorded in good weather and did not require additional training on the 

SARD-Corr dataset. An optimized detection model can be used depending on the 

weather conditions during a particular SAR mission. The geolocation module 

would work equally well with thermal images, using a model for detecting people 

in thermal images. The training process can be carried out continuously, using 

images collected during SAR missions and adjusting the model afterward. 

5.2. Datasets used for testing the geolocation method 

In 4 conducted experiments, we prepared a total of 7 primary datasets for raycast 

(Table 6, datasets #1-5 and #7-8) and 2 aggregated (Table 6, datasets #6 and 

#9), created by combining primary datasets (Table 6, datasets #4+5 and #7+8, 

respectively). 

While preparing these datasets, we eliminated the initial and final parts of the 

flight that did not contain detections. This way, data processing is sped up, related 

to the detector and to processing individual Input CSV files as part of the first 

raycaster's task. 
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Table 6. Raycast datasets with corresponding statistics. 
# Dataset Sequences Flight 

points 

Data 

points 

GT DET 

(TP+FP) 

TP FP FN ROpti 

(%) 

1 polje 4 72 73 25 25 23 2 2 84.0 

2 vinograd 1 15 18 10 15 10 5 0 50.0 

3 vinograd2 5 67 86 57 78 55 23 3 55.2 

4 Vis_let1 1 12 12 10 1 0 1 10 -10.0 

5 Vis_let2 1 9 9 6 1 0 1 6 -16.7 

6 Vis_let1+2 2 21 21 16 2 0 2 16 -12.5 

7 Brunkovac_let1 2 14 14 10 6 6 0 4 60.0 

8 Brunkovac_let2 2 21 21 16 16 15 1 1 87.5 

9 Brunkovac_let1+2 4 35 35 26 22 21 1 5 76.9 

 

Table 6 shows the number of sequences in each flight, the number of flight points 

processed (containing at least one detection), the number of data points, the 

number of available ground truth (GT), the number of detections with YOLOv4-

SARD model (true, TP and false, FP), the number of failed detections (FN) and 

ROpti. 

Flight sequences are created during flight path data preprocessing. They consist 

of a continuous sequence of detections within flight points (the moment during 

the flight in which the image was taken). Each detection in an individual image is 

recorded as one data point in Input CSV file (Table 4). In our case, flight 

sequences contain an average of 30 flight points (median = 21). The small 

number of flight points is a consequence of the large area covered during the 

flight in the SAR mission, so there are not many overlaps in the images. For this 

reason, there are not many (redundant) detections, which, consequently, speeds 

up the process of raycasting and geolocation. 

The SAR-DAG_raycast dataset is available for download at 

https://urn.nsk.hr/urn:nbn:hr:195:686105. 

5.3. Evaluation metrics 

5.3.1. Metrics for evaluation of the object detector performances 

For evaluating the detection performances of our model, we have used standard 

evaluation metrics (COCO - Detection Evaluation, n.d.) for the average precision 

(AP) on various IOUs (Intersection over Union) and considering the object size 
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on the image. It is typically calculated for 10 IOU thresholds ranging from 50% to 

95%, with increments of 5%. This range is often reported as AP@50:5:95. 

Additionally, AP can be evaluated using specific IOU values, most commonly 

50% and 75%. These are reported as AP50 and AP75, respectively. The AP metric 

can also be evaluated across different object sizes: APs for small objects (with an 

area smaller than 322 px), APM for medium size objects (with an area between 

322 and 962 px), and APL for large objects (with an area larger than 962 px). 

When searching for a particular object, any detection that recognizes the object 

and its location can be considered a positive detection, regardless of the 

percentage of the IoU between the GT bounding box and the detected bounding 

box. However, search and rescue purposes require an optimized object detector 

that makes as few false-positive (FP) detections as possible, as they consume 

valuable human resources and time. Since human resources are limited in SAR 

operations, it is essential to use them optimally. Each detection of the person 

detector is additionally reviewed by the person responsible for checking the 

detections on the recordings, who then dispatches teams to the field. For this 

reason, it is crucial to have as few false positive detections as possible not to 

waste time that can mean the difference between life and death for a missing 

person. To address this, we evaluate detection performance also with the ROpti 

(Recall Optimal) metric defined in (Sambolek & Ivasic-Kos, 2021) because ROpti 

gives us a value that considers all variables necessary for detector evaluation 

(TP, FP, FN). ROpti is computed as the ratio of the difference between true 

positive (TP) and false positive (FP) detections, divided by the total number of 

possible detections (TP+FN) in the dataset (Eq. 3). This metric provides a 

quantitative measure of the model's performance in terms of minimizing false 

positives and maximizing true positives, considering the overall potential 

detections in the dataset. For perfect precision (no false positives), ROpti is equal 

to recall, and with perfect recall (no false negatives), ROpti is equal to 1, which is 

a perfect score. 
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𝑅𝑂𝑝𝑡𝑖 =  

(𝑇𝑃 − 𝐹𝑃)

(𝑇𝑃 + 𝐹𝑁)
 (3) 

 

5.3.2. Metrics for evaluation of the geolocation method 

In the experiments, we replicate the conditions of actual use of drones in SAR 

missions with the camera tilted down (pitch) by -33.7° to -63.8° (relative to the 

horizon). By taking oblique photographs, we cover a larger angle than when the 

camera would look perpendicular to the ground (pitch = -90°), taking vertical 

photographs. The distance of the detected person from the drone can be much 

higher compared to vertical photographs in which the detection distance in the 

center of the image corresponds to the drone's height in relation to the ground. 

For this reason, in addition to the primary set of measures (Error_2D and 

Error_3D, which measure the detection distance from GT), we introduce the 

ErrDist (Eq. 4) measure, which represents the percentage of error of the 

determined location of the person in relation to the actual distance of the drone 

from the person. 

 

 
𝐸𝑟𝑟𝐷𝑖𝑠𝑡 =  

𝐸𝑟𝑟𝑜𝑟_2𝐷

𝑑(𝑐, 𝑝)
 (4) 

 

In real situations, the error (Error_2D) of 50 m does not play a significant role, 

especially in areas of good visibility (e.g., meadows). However, if the search is 

performed in thickets or on impassable karst terrain, even a smaller error 

(Error_2D < 40 m) can be a problem that is then attempted to be solved by looking 

at a photograph in which detection is visible. Knowing this, we chose ErrDist = 

10% for the (rather strict) limit of acceptable error, which means that for a drone 

60 m away from the location of the person we are searching (GT), the acceptable 

result is the one that gives us a location within a radius of 6 m from GT. 

5.4. 3D terrain generation 
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To successfully apply the proposed geolocation method and build the geolocation 

module for the SAR-DAG system prototype, we developed tools for 3D terrain 

generation and raycasting using SideFX Houdini Apprentice 18.5.672 (Houdini 

Help, n.d.). 

For the experiments, we generated 3D terrain at the maximum available (30 

m/px) and lower resolution (100 m/px) to determine the influence of terrain 

resolution on the detection accuracy. By using 3D terrain in higher resolution, we 

measured the heights of known elevations and found significant deviations (up to 

28 meters, Table 7): 

 

Table 7. Mountain peaks used for measuring the height difference between 3D terrain (based 
on 30 m/px elevation data) and their actual height. 

Mountain peak Actual height (masl) Height in 3D (masl) Error (m) Latitude, longitude 

Vis 444 416 -28 45.6001, 16.7558 

Humka 489 481 -8 45.61409, 16.75402 

 

Since the problem of insufficient accuracy of terrain geometry for detection 

purposes was noticed when using higher resolution (30 m/px), lower 3D terrain 

resolution was not used in the experiments. The generated 3D terrain in our case 

contains 999,740 points and 1,995,480 polygons and data on the boundaries of 

the geographical bounding box (45.4, 16.6) and (45.7, 17.0) latitude/longitude. 

5.5. Raycaster tool management 

Raycaster tool management is reduced to parameters sufficient for applying the 

proposed geolocation method. Input data vary during experiments (Fig. 14). 
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Figure 14: Raycaster's control interface. 

The "CSV" parameter selects the flight record (Input CSV file). With the 

"Detections" parameter, we choose between using YOLO detections or GT. 

"Detection location" determines the detection coordinate that we target with a 

raycast (center or middle of the bottom of the bounding box). The center of the 

bounding box is more suitable for situations where the requested person is lying 

on the ground, while the bottom of the bounding box is more suitable if we detect 

a person in an upright position. 

The "Terrain resolution" parameter selects the resolution of (previously 

generated) 3D terrain. The "Rotation calibration" parameter enables subsequent 

calibration of the drone camera orientation (after the flight is completed) to cancel 

the errors that occurred during the drone self-calibration. It is possible to adjust 

all three axes simultaneously (pitch, yaw, and roll) without the danger of a gimbal 

lock. The "Results" parameter (not visible in Fig. 14 due to the enabled "Debug" 

option) allows the selection of results: averaged over Sequences or averaged 

over the entire Flight. Enabling the "Debug" parameter changes the display of 

results in the 3D viewport from the average coordinates of the localized person 

(for the entire flight or for a single sequence) to the display of detections at a 

single flight point. Detections can be displayed as Single (useful when watching 

a 3D scene from a virtualized drone) or All at once (useful as visual feedback 

when calibrating the raycaster). 

5.6. Results and discussion 

5.6.1. Performances of person detector fine-tuned for SAR missions 
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Table 8 presents the results of person detection on SARD images, specifically 

focusing on the AP metric. It compares the original YOLOv4 model (referred to 

as "COCO") with the YOLOv4 model fine-tuned on SARD images (referred to as 

"SARD"). The "COCO" model was trained on the MS COCO dataset. The results 

demonstrate a significant enhancement in the detection performances of the 

"SARD" model for both AP and ROpti. The model trained on the SARD dataset 

has 37% better AP results than the original "COCO" model (IMP 37.9), and ROpti 

increased by 57.6%. Specifically, there were 2,611 annotated persons in the 

testing set, of which the "COCO" model correctly detected 1,068 while detecting 

150 false positives. The "SARD" model had 2,512 correct detections and only 97 

false positives. 

 

Table 8. Detection results for YOLOv4 model (%). 
Train Test AP IMP AP50 AP75 APS APM APL ROpti 

COCO SARD 23.4 0 40.2 25.3 13.2 26.1 41.1 35.2 

COCO + 

SARD 

SARD 61.3 37.9 95.7 71.1 45.0 66.4 72.6 92.8 

 

Despite using the detector model with high ROpti (93.9%), the average achieved 

ROpti of all prepared datasets was 50.3%, with a large standard deviation 

(30.7%) which was mostly contributed by Vis_let1, Vis_let2, and Vis_let1+2 

datasets from the 3rd experiment, due to their rigorous conditions (a person in 

white clothes, in a sitting position, on a white stone). 

To simplify the detection problem, a single person in the image was used as the 

detection target. However, false-positive detections caused multiple detections in 

some images. We treated such cases by registering each detection in the image 

as a separate data point during dataset preparation. 

5.6.2. Evaluation of the proposed geolocation method 

In a previous in silico experiment (Paulin et al., 2021), we simulated a static 

drone, focusing on measuring the influence of telemetry error on raycast precision 

in a controlled environment. We concluded that it takes as many as 150 images 

(raycast iterations) to reduce the detection's location error to less than 1 m (initial 
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error being 6.26 m and largest ~8 m). These were satisfying results in terms of 

detection location error but problematic regarding the number of required 

iterations for application in real-world SAR scenarios. In current real-world 

experiments, given the drone's movement during which the person we search for 

enters and exits the frame very quickly, it turned out that we are limited to only 2 

to a maximum of 33 images with detections per flight, which converts to the same 

number of possible raycast iterations. Thus, in the achieved conditions of the 

experiment, matching those in actual SAR missions, we approached the effort to 

build a system that can detect an injured person from a single image (detection) 

in only one flight over the area. Moreover, with the best result (Error_2D = 0.7 m, 

in a sequence with 4 detections), we found that excellent results can be achieved 

with a small number of raycast iterations, provided the adequate accuracy of 3D 

terrain and drone telemetry. 

Table 9. Collected results of all experiments. 
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1 polje center DET 55.14 23 4.78 4.78 0.00 -48.15 -1 1 -1 8.67% 

2 
 

center DET 46.56 6 1.88 1.88 0.00 -51.50 0 1 -1 4.04% 

3 
 

center DET 57.06 4 0.70 0.70 0.00 -51.50 1 1 -1 1.23% 

4 
 

center DET 55.55 7 8.91 8.91 0.00 -44.20 2 1 -1 16.05% 

5 
 

center DET 61.41 6 7.75 7.75 0.00 -45.40 3 1 -1 12.61% 

6 polje bottom DET 55.14 23 4.17 4.17 0.00 -48.15 -1 1 -1 7.57% 

7 
 

bottom DET 46.56 6 3.06 3.06 0.00 -51.50 0 1 -1 6.56% 

8 
 

bottom DET 57.06 4 0.86 0.86 0.00 -51.50 1 1 -1 1.50% 

9 
 

bottom DET 55.55 7 8.47 8.47 0.00 -44.20 2 1 -1 15.25% 

10 
 

bottom DET 61.41 6 6.69 6.69 0.00 -45.40 3 1 -1 10.89% 

11 vinograd center DET 34.56 15 7.95 7.96 0.01 -44.30 -1 3 SE 23.00% 

12 vinograd bottom DET 34.56 15 6.57 6.59 0.02 -44.30 -1 3 SE 19.02% 

13 vinograd2 center DET 32.61 77 7.47 7.50 0.03 -48.50 -1 3 SE 22.92% 

14 
 

center DET 48.13 29 13.77 13.80 0.02 -38.30 0 3 SE 28.61% 

15 
 

center DET 31.08 33 23.95 23.97 0.02 -38.30 1 3 SE 77.06% 
16 

 
center DET 31.62 9 10.47 10.54 0.06 -38.31 2 3 SE 33.13% 

17 
 

center DET 26.69 4 7.39 7.42 0.03 -63.80 3 3 SE 27.68% 

18 
 

center DET 25.56 2 6.17 6.19 0.01 -63.80 4 3 SE 24.16% 

19 vinograd2 bottom DET 32.61 77 6.56 6.59 0.03 -48.50 -1 3 SE 20.11% 

20 
 

bottom DET 48.13 29 11.43 11.47 0.03 -38.30 0 3 SE 23.75% 

21 
 

bottom DET 31.08 33 21.78 21.80 0.02 -38.30 1 3 SE 70.10% 
22 

 
bottom DET 31.62 9 8.35 8.40 0.05 -38.31 2 3 SE 26.42% 

23 
 

bottom DET 26.69 4 5.82 5.85 0.03 -63.80 3 3 SE 21.82% 

24 
 

bottom DET 25.56 2 4.77 4.78 0.01 -63.80 4 3 SE 18.68% 

25 Vis_let1 bottom GT 85.60 10 41.04 41.32 0.28 -33.71 -1 5 NE 47.94% 

26 Vis_let1 bottom GT 85.60 10 3.47 3.48 0.00 -33.71 -1 5 NE 4.06% 

27 Vis_let2 bottom GT 61.59 6 36.19 36.22 0.03 -48.90 -1 5 NE 58.76% 

28 Vis_let2 bottom GT 61.59 6 5.97 5.97 0.01 -48.90 -1 5 NE 9.69% 

29 Vis_let1+2 bottom GT 85.60 16 4.04 4.39 0.35 -41.31 -1 5 NE 4.72% 

30 Vis_let1+2 bottom GT 85.60 16 4.68 4.68 0.00 -41.31 -1 5 NE 5.47% 

31 Brunkovac_let1 bottom DET 21.17 6 11.18 11.27 0.09 -59.00 -1 4 N 52.80% 
32 

 
bottom DET 19.40 2 17.89 18.02 0.13 -59.00 0 4 N 92.22% 

33 
 

bottom DET 22.95 4 22.81 22.82 0.01 -59.00 1 4 N 99.40% 

34 Brunkovac_let1 bottom GT 21.56 10 10.68 10.80 0.12 -59.00 -1 4 N 49.55% 
35 

 
bottom GT 22.89 5 19.99 20.15 0.16 -59.00 0 4 N 87.34% 
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36 
 

bottom GT 20.23 5 19.96 19.97 0.01 -59.00 1 4 N 98.66% 

37 Brunkovac_let2 bottom DET 27.91 16 16.73 16.98 0.25 -48.87 -1 4 N 59.96% 

38 
 

bottom DET 17.98 10 17.46 17.46 0.00 -57.00 0 4 N 97.10% 

39 
 

bottom DET 45.53 2 39.98 40.34 0.36 -44.80 1 4 N 87.82% 
40 

 
bottom DET 20.22 4 19.78 20.03 0.25 -44.80 2 4 N 97.82% 

41 Brunkovac_let2 bottom GT 24.53 16 10.31 10.51 0.20 -50.90 -1 4 N 42.05% 

42 
 

bottom GT 19.57 9 19.11 19.11 0.00 -57.00 0 4 N 97.67% 

43 
 

bottom GT 29.48 7 27.33 27.61 0.28 -44.80 1 4 N 92.69% 

44 Brunkovac_let1+2 bottom DET 24.57 22 9.61 9.84 0.23 -52.92 -1 4 N 39.10% 

45 
 

bottom DET 19.40 2 17.89 18.02 0.13 -59.00 0 4 N 92.22% 

46 
 

bottom DET 22.95 4 22.81 22.82 0.01 -59.00 1 4 N 99.40% 
47 

 
bottom DET 20.05 10 19.64 19.64 0.00 -57.00 2 4 N 97.92% 

48 
 

bottom DET 42.88 2 37.34 37.68 0.34 -44.80 3 4 N 87.08% 

49 
 

bottom DET 17.57 4 17.14 17.38 0.24 -44.80 4 4 N 97.54% 

50 Brunkovac_let1+2 bottom GT 22.92 26 5.22 5.48 0.26 -54.95 -1 4 N 22.78% 

51 
 

bottom GT 22.89 5 19.99 20.15 0.16 -59.00 0 4 N 87.34% 

52 
 

bottom GT 20.23 5 19.96 19.97 0.01 -59.00 1 4 N 98.66% 
53 

 
bottom GT 21.73 9 21.31 21.31 0.00 -57.00 2 4 N 98.04% 

54 
 

bottom GT 26.83 7 24.68 24.95 0.27 -44.80 3 4 N 92.00% 

 

5.6.3. Flat meadow 

The first experiment was conducted at Lonjsko polje (GPS: 45.480357, 

16.701824). The terrain was a flat meadow with sparse trees, intersected by a 

stream and some puddles. Visibility was good, wind minimal (1 m/s). The person 

we were searching for wore contrasting clothes (dark) compared to the 

environment (light green). 4 straight flights were performed from different 

directions over the person (Fig. 15). The minimum distance of the drone from the 

person was 31 m, and the maximum was 90 m. The images were taken in a 

resolution of 5472×3648 px (aspect ratio 3:2). 

 

Figure 15: Top view of 4 straight flights from different directions (connected cyan dots) 

over the person we search for (red dot). The green dot indicates the drone's home 

point, and each rectangular pair of triangles represents a 30×30 m terrain patch (green 

mesh in the background). 

The detector had a high performance (ROpti = 84.0%; Table 6, dataset #1). It 

was confused only by the reflections of the sky in the puddles (Fig. 16). 
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Figure 16: Top: example of false detections in puddles. Bottom: 400% zoomed 

detections. 

Using the center of the bounding box as the detection coordinate, the Error_2D 

(distance from GT) of averaged detections (23) throughout the flight was 4.78 m 

(Table 9, result #1). Error_Difference was 0.00 m, in accordance with flat terrain. 

We consider location determination successful according to ErrDist criteria 

(8.67% < 10%). 

Analysis of individual sequences shows that the results (Table 9, #2-3, Error_2D) 

were significantly better than the average of the entire flight (Table 9, #1). Among 

them is the best-achieved result (0.7 m) of all measurements. The results of the 

next two sequences (Table 9, #4-5) are almost twice as bad, which can be 

explained by the strong correlation (0.72) found between Error_2D and 

Gimbal_Pitch_Degree (camera's pitch). Fig. 17 shows the change in Error_2D by 

sequences. The first two sequences (0 and 1) were flights in opposite directions, 

using the camera's pitch -51.5°. The next two sequences (2 and 3) were also 

flights in opposite directions but using the camera's pitch -44.2° and -45.4°, 

respectively. 
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Figure 17: Error_2D results by flight sequences, using the middle-bottom of the 

bounding box (DET location) as the detection coordinate. 

After noticing that the person's complete figure is visible in the images, we added 

to raycaster the ability to treat the middle of the bottom of the bounding box as 

the detection coordinate. In this way, repeated measurements (results #6-10) 

favored sequences recorded with a smaller pitch (in absolute value) and 

improved the average result of the entire flight. Error_2D fell from 4.78 m to 4.17 

m, and ErrDist from 8.67% to 7.57%. 

5.6.4. Slight slope 

For the second experiment, a vineyard located on a slight slope was selected 

(GPS: 45.490690, 16.769242). Visibility was good, but the wind increased (3 

m/s). The person we were searching for was again contrastingly dressed (dark) 

compared to the environment, which was primarily green. Two sets of flights were 

performed (Fig. 18). The first set (vinograd) contains only 1 straight flight over the 

terrain, with the camera focused exclusively on the area planted with vines. The 

second set (vinograd2) contains 5 flights, of which 4 were straight in 2 opposite 

directions and 1 orbital, with various rural elements (houses, auxiliary facilities, 

garden elements, vehicles) appearing in the images. While recording the second 

set, the resolution of the photos was reduced to 4864×3648 (changing the aspect 
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ratio to 4:3), and the raycaster was improved to support variable image 

resolutions. 

 

Figure 18: Top: top view of single straight flight (connected cyan dots) towards the 

person we search for (red dot). The green dot indicates the drone's home point, and 

each rectangular pair of triangles represents a 30×30 m terrain patch (green mesh in 

the background). Yellow geometry represents roads. Bottom: top view of 5 flights, of 

which 2 pairs in opposite directions and 1 orbiting. 

The detector had a half success rate (ROpti fell to 50.0% and 55.2%, respectively; 

Table 6, #2-3), with many false detections, detecting various garden elements as 

persons (Fig. 19). This suggests that garden elements should be used as 

negative samples when training detectors for use in rural areas. 
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Figure 19: Top: example of false detections (garden elements). Bottom: 800% 

zoomed detections. 

Despite many false detections (Table 6, #2-3) and multiple detections on 

individual images, their averaging yielded good results. Error_2D of the first set, 

using the center of the detection's bounding box, was 7.95 m (Table 9, result 

#11), and using the middle of the bottom of the detection's bounding box, 6.57 m 

(Table 9, result #12). A similar Error_2D was achieved for the entire flight in the 

second set (7.47 m and 6.56 m, respectively, results #13 and #19). Error_2D of 

individual sequences ranged between 4.77 m and 23.95 m. Error_Difference 

ranged between 0.01 m and 0.06 m indicating uneven terrain (corresponding to 

a slight slope). 

The camera's pitch in individual sequences varied between -38.30° and -63.80° 

and confirmed a strong correlation (0.70) between the camera's pitch and 

Error_2D (Table 9, results #13-18 and #20-24), observed in the first experiment. 

Although all the above results are satisfactory for practical application on a 

specific type of terrain, we do not consider any of these results successful 

according to the ErrDist criterion because they range from 18.68% to as much as 

77.06%. 
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5.6.5. Mountain 

The third experiment was performed on mountainous terrain (Moslavačka gora: 

45.596889, 16.752002). Visibility was good, and the wind was the strongest (5 

m/s) compared to other experiments. The person we were searching for was 

dressed in camouflage (white) in relation to his surroundings (sitting on white 

masonry ruins in the middle of a deciduous forest in winter). Two flights (Vis_let1 

and Vis_let2) were performed in opposite directions, both below the take-off point 

(Vis peak), as a standard scenario for achieving the highest search coverage by 

overflights in mountainous conditions (Fig. 20). 

 

Figure 20: Top and bottom: top view of 2 straight flights from different directions 

(connected cyan dots) towards the person we search for (red dot). The home point (the 

green dot) is not visible because it was further away. Each rectangular pair of triangles 

represents a 30×30 m terrain patch (green mesh in the background). 

As expected, due to camouflage conditions, ROpti was negative (-10.0 and -16.7) 

because no successful detection was achieved. To be able to evaluate the 

success of the method despite this result, raycaster was given the option to use 

GT instead of detections (Fig. 21). 
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Figure 21: Top: example of GT used as detection coordinates. Bottom: 1000% zoomed 

detection. 

Using the middle of the bottom of the GT's bounding box, Error_2D of the first 

flight (Table 9, result #25) was 41.04 m, and the second (Table 9, result #27) 

36.19 m. While these are arguably the worst Error_2D results of all flights, they 

are still usable in real conditions (especially due to the lack of leaves on the trees). 

The Error_Difference of individual flights increased (compared to 2nd 

experiment) to 0.28 m, indicating slightly higher terrain unevenness. However, 

values are still low, suggesting that all detections (GTs) are located at 

approximately the same isohypse. 

ErrDist is significantly higher than the threshold (47.94% and 58.76%), but, given 

the large Error_2D, we can consider it moderate due to the large average 

distance of the drone from the person we search for (85.60 m and 61.59 m). 

The camera's pitch varied between -33.71° and -48.90° and, as such, belongs to 

the zone in which, according to the previous two experiments, we expect worse 

results (higher Error_2D). This prompted us to refine the raycaster with the ability 
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to calibrate the drone camera orientation after the flight. Since we used GT, we 

were able to find the optimal calibration, which in this case was +15° for pitch and 

+3° for yaw. By measuring after calibration, we achieved Error_2D 3.47 m for the 

first flight (Table 9, result #26) and 5.97 m for the second flight (Table 9, result 

#28). This also resulted in satisfactory Err_Dist in both cases (4.06% and 9.69%). 

Since such post-calibration is not possible in real conditions, we also tested the 

ensemble approach, averaging the results of both flights together. We achieved 

an excellent result: Error_2D dropped from 41.04 m and 36.19 m to only 4.04 m, 

with a satisfactory ErrDist of 4.72%. When we applied the previously determined 

calibration to this, the result deteriorated: Error_2D rose to 4.68 m and ErrDist to 

5.47%. These are still good results but indicate that averaging the results of flights 

in opposite directions achieves better results even without calibration, which may 

be more useful for practical application. 

Even more useful is the awareness of an almost perfect negative correlation (-

0.996) between Error_2D and the Y coordinate of the detection center (in this 

case GT_CY), with an almost perfect correlation (0.993) between drone distance 

from GT and Error_2D. These correlations indicate greater reliability of detections 

that are positioned lower in the image, and which are therefore closer to the 

camera. In this case (Vis_let1), Error_2D drops from 49.61 m, when the distance 

from the drone is 113.92 m, and the Y coordinate detection is 1052nd px (of 3648 

px), to 25.96 m, when the distance from the drone is 47.68 m, and the Y 

coordinate is 2766th px. This means that if we come across a sequence of linearly 

decreasing Error_2D results and linearly increasing Y detection coordinates 

(Table 10), we can reliably take the best Error_2D result (25.96 m) within the 

sequence, thus avoiding a worse result resulting from averaging the results of 

individual sequences (in this case 41.04 m, Table 9, result #26). 

 

Table 10. Linearly decreasing drone to GT distance (Distance), linearly increasing Y coordinate 
of the center of the GT's bounding box, and linearly decreasing Error_2D for Vis1_let dataset, 
resulting in almost perfect correlations. 

Distance GT_CY Error_2D 

113.9183197 1052 49.61310959 

113.7919846 1066 50.25457764 
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108.704155 1147 49.35968018 

100.6928329 1277 47.24179459 

91.62268829 1433 44.01839066 

82.58696747 1618 40.83591843 

73.509552 1819 37.62094116 

65.97645569 2030 34.58089447 

57.5095253 2324 30.9470005 

47.68379211 2766 25.95678902 

 

5.6.6. Narrow valley 

The last experiment in the series was conducted in a narrow valley (GPS: 

45.491297, 16.768484). Visibility was good, wind 4 m/s. 2 sets of flights were 

performed, with 2 flights in opposite directions in each (Fig. 22). 

 

Figure 22: Top and bottom: top view of 2 pairs of straight flights in opposite directions 

(connected cyan dots) over the person we search for (red dot). The home point (the 

green dot) is not visible because it was further away. Each rectangular pair of triangles 

represents a 30×30 m terrain patch (green mesh in the background). 

Unlike previous experiments in which the person we were searching for was an 

adult of average height and build, in this case, it was a 10-year-old child of smaller 
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build. The person is dressed in a combination of light and dark clothes and is 

located near a stream (Fig. 23). 

 

Figure 23: Top: example of successful detection of a 10-year-old child of smaller build. 

Bottom: 1000% zoomed detection. 

Aware of the previous impact of drone telemetry error and the problem of 3D 

terrain resolution that should become apparent at this location (the valley is 

narrower than 1 px elevation data), we first tested the reliability of telemetry by 

repeatedly turning the drone on and off on the ground and recording single control 

image that contains the recorded GPS location of the drone. It was shown that 

the drone reports its position with a deflection of 3.6 to 6.4 m in relation to the 

actual position. 

The correlation between wind speed and achieved Error_2D for all flights is 

moderate (0.56). However, due to the mentioned limitation (measuring wind 

speed only at the ground level) and the ability of the drone to cope with the wind 

up to 10 m/s, we did not take into account wind speed and direction when 

assessing the impact on the reliability of telemetry. 
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High ROpti (60.0 and 87.5) allowed us to use detection coordinates for 

raycasting, but due to testing the impact of telemetry error on Error_2D, we 

performed all measurements using GT as well. Error_2D of entire flights, using 

detection coordinates, was 11.18 m for the first and 16.73 m for the second flight 

(Table 9, results #31 and #37), and using GT, 10.68 m and 10.31, respectively 

(Table 9, results #34 and #41). In all 4 cases, the mentioned Error_2D is almost 

twice as good as the Error_2D of individual sequences, which indicates a positive 

effect of averaging sequences. 

Insufficient 3D terrain resolution, combined with telemetry error, led to the 

positioning of the virtual drone (during raycast) below the 3D terrain (Fig. 24). 

Instead of producing poor results, this situation revealed the robustness of the 

system and another advantage of the proposed geolocation method. Trying to 

cast a ray that can not hit the ground (because the camera is below it) results in 

the starting coordinate (position of the drone/camera) being treated as a detection 

location. Although this is a faulty result, it guarantees that the drone's distance 

from the GT is the largest Error_2D we can get in this case. Since this is the best 

result we have had before raycasting, any successful detection paired with 

successful raycasting can only improve it, which happened during this 

experiment. 

 

Figure 24: Perspective view of 4 flight paths towards the person we search for (red 

dot), simultaneously shown. The black part represents above the ground segment of 

the flight path. The red part represents below the ground segment of the flight path, 

indicating insufficient 3D terrain resolution, combined with telemetry error. 
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Finally, we tested the ensemble approach on this data (Brunkovac_let1+2). We 

averaged the results of both flights and achieved Error_2D for the entire flight of 

9.61 m, using detections (Table 9, result #44), and 5.22 m, using GT (Table 9, 

result #50). Although the achieved ErrDist varies between 22.78% and 59.96% 

(and, as such, does not exceed the success threshold), Error_2D between 5.22 

and 16.73 m represents excellent results for practical application, especially 

given the specificity of the terrain and pre-known problems of telemetry and 3D 

terrain resolution. 

6. Recommendations for using proposed geolocation method in real-

world scenarios 

Following the conclusions of the experiments, we make recommendations that 

include the setup of a drone, person detector, 3D terrain generator, raycaster, 

and the applicability of the SAR-DAG system to real-world SAR missions. 

6.1. Drone setup 

After calibrating the drone and before take-off, it is recommended to measure the 

deviation range of the recorded position of the drone (at the home point) in the 

flight log in relation to its actual position. By our measurements, low-cost 

commercial drones without RTK module report this deviation within a 5 m radius 

from the actual location (average being 4.79 m, with 4.69 m median). Therefore 

we consider this error intrinsic to the system and, as seen from the results of our 

experiments, confirm that it does not negatively influence our proposed method. 

During the raycast, it is possible to correct the home point of the virtual drone with 

the obtained average deviation value. However, this is unnecessary for an 

average deviation of up to 5 m since good results could be achieved without 

correction. 

Before take-off, it is mandatory to record the correct GPS coordinate of the home 

point because the absolute altitude at that point is used to calculate the absolute 

altitude of the drone during the flight, using the relative altitude recorded by the 

drone in its log for each flight point. 



295 

 

It is recommended to take low oblique photos, using a pitch between -50° and -

60°, for which the proposed method gives good results. A recording frequency of 

at least 1 image every 2 seconds is recommended, at the maximum resolution of 

a camera that supports that frequency. This way, a sufficient number of images 

will be recorded during the flight, enabling a successful detection of the person 

using a well-trained detector. 

The recommended flight altitude is 30 m, but in practice, it depends on the 

combination of the camera resolution, the detector model, and the dataset on 

which it was trained. Since several drones are often in the field during SAR 

missions, vertically spaced from each other by 20 m, it is recommended to train 

detectors with augmented data corresponding to different flight altitudes. 

If possible, it is recommended to perform pairs of flights in opposite directions (for 

the ensemble approach when using the proposed geolocation method) as they 

can increase the accuracy of geolocalization 2-10 times. 

6.2. Detector setup 

For a more reliable operation of the person detector, it is recommended to 

additionally train the model with negative examples of water bodies (with 

reflections in them) and specific pre-known objects located in search areas, which 

could be otherwise falsely detected as persons. 

For particularly challenging detection cases (e.g., a person dressed in white, 

walking in snow), it is recommended to train the detector model with examples of 

specific equipment that the person may carry (e.g., backpack, walking sticks) 

according to information available to rescuers. 

6.3. 3D terrain generator setup 

When generating 3D terrain, we recommend using elevation data with at least 30 

m/px resolution to minimize raycasting error. If we prepare the system for a 

search in the area of more complex relief, we recommend purchasing or creating 

a DEM in a much higher resolution (up to 1 m/px). The 3D terrain model created 

from this data can be adaptively resampled to minimize the number of points and 
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polygons while keeping essential features of the relief. Minimizing the number of 

points and polygons improves raycasting speed. 

In addition to elevation data, we recommend using OpenStreetMap metadata to 

add reference 3D objects (buildings and traffic infrastructure) that are not used 

for raycasting but can help the raycasting operator to navigate otherwise 

monotonous 3D terrain. 

If the proposed geolocation method is used as part of a system that, in addition 

to the GPS coordinates of the located person, returns a suggested route to guide 

the rescuers from the nearest road, it is recommended to incorporate additional 

attributes such as soil type information (in the context of passability) and potential 

hazards (e.g., minefield) in the 3D terrain model. 

6.4. Raycaster setup 

The established correlations indicate higher reliability of detections that are 

positioned lower in the image, and which are therefore closer to the camera. 

Thus, in the linear detection series, it is recommended to use the raycast location 

of the lowest coordinate instead of the averaged coordinates. 

To match the camera's optics with the 3D camera, it is necessary, in addition to 

focal length and image dimensions (image width and image height), to know the 

exact horizontal FOV (HFOV) in degrees. Drone user manuals list the camera's 

FOV but often do not explicitly state what type of FOV it is. In such cases, it is 

usually a diagonal FOV from which it is necessary to calculate the horizontal FOV. 

The conversion can be done using Eq. 5 and 6: 

 

 
ℎ =

√𝑖𝑚𝑎𝑔𝑒𝑤
2 + 𝑖𝑚𝑎𝑔𝑒ℎ

2

tan (
𝐹𝑂𝑉 × 𝜋

360
)

 

 

(5) 

 𝐻𝐹𝑂𝑉 =
360

𝜋
× tan−1 (

𝑖𝑚𝑎𝑔𝑒𝑤

ℎ
) (6) 
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6.5. Applicability of the SAR-DAG system to real-world SAR missions 

For this research, the data acquisition phase (Section 3.1.) used a low-cost 

commercial DJI Phantom 4 Advanced drone whose battery allows up to 30 

minutes of flight time. In practice, for safety reasons (considering the condition of 

the batteries and the strength of the wind), we set the alarm to sound at 30% 

battery capacity, and at 20% capacity, the drone lands. Therefore, the average 

effective flight time is 21 minutes. 

During 21 minutes of flight (Fig. 25), the drone can cover ~100,000 m2 (10 ha) 

area, recording 2 images per second for a total of 630 images (~5 GB of data). 

When the drone returns to the base, this data is copied to the computer for offline 

processing. The time required to copy 5 GB of data using USB 3.0 SuperSpeed 

transfer type is 77 seconds. 

The detection module (Section 3.2.) processes images at a speed of 268.1 

ms/image using a Dell G3 laptop (2.6 GHz i7-9750H CPU, 16 GB RAM, and 

GeForce GTX 1660 Ti 6 GB). It takes 169 s to process the entire set (630 

images). 

The geolocation module downloads the necessary DEM and OSM data within 1 

minute (depending on the speed of the Internet connection). Generating 2M 

polygons for 3D terrain (30×30 km2 area) using a MacBook Pro laptop (2.7 GHz 

i7 CPU, 16 GB RAM, and GeForce GT 650M 1 GB) takes ~4 minutes. Both tasks 

(downloading data and generating 3D terrain), considering that they take shorter 

than the drone flight (5 min < 21 min), can be done before or during the drone 

flight. 

The raycast speed depends on the number of polygons (Paulin et al., 2021), and 

in our case (2M polygons), it takes 1.15 ms per single detection. The determined 

median number of detections during a single flight in our experiments is 21 

(Section 5.1.), meaning that resolving geolocation using the proposed 

geolocation method (Section 4.) takes only ~24 ms. 

 

Table 11. Duration of individual tasks within the SAR-DAG system prototype. 
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Task Duration 

Drone flight 21 min 

Downloading DEM and OSM data (during flight) 1 min 

Generating 3D terrain (during flight) 4 min 

Total data acquisition time 21 min 
  

Data copying 77 s 

Person detecting 169 s 

Person geolocating 1 s 

Total data processing time 247 s 
  

Minimum time required to complete 1 flight of 

maximum duration and offline data processing 

(by determining geolocation)  

~25 min 

 

The minimum time required to complete 1 flight of maximum duration (21 

minutes) and offline data processing (by determining geolocation) is 25 minutes 

and 7 seconds (Table 11). Using a single computer for offline processing and 4 

drones simultaneously during an actual SAR mission, it is possible to achieve 

optimal utilization of the SAR-DAG system while covering a 40 ha search area 

within the same time (~25 minutes). 

 

Figure 25: The flight path of the drone (green lines) and the 10 ha covered area (blue) 

during the 21-minute flight, shown in the DJI Pilot software. 
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7. Conclusion 

In this paper, we explored the possibility of applying the geolocation method 

based on the raycast in different land search and rescue real-world scenarios, 

using low-cost commercial drones with a monocular camera and no RTK module, 

enabling laser rangefinder emulation during offline image analysis. 

To test the usability and efficiency of the proposed method in actual SAR 

missions, we built a Search and Rescue - Detection and Geolocation (SAR-DAG) 

system, with a goal to precisely geolocate persons automatically detected in 

offline processed images recorded during the SAR mission. 

For the experiments, we selected 4 locations of different configurations and 

terrain requirements ranging from flat terrain, over terrain with a slight slope, to 

mountainous terrain and narrow valley. We performed drone flights at 30 m 

altitude and recorded sequences of monocular oblique aerial photographs at 

these locations. 

Using drone and camera telemetry data from flight logs along with person 

detection results, we prepared multiple datasets in a proposed Input CSV format 

that combines them. We used YOLOv4 trained on our SARD dataset for person 

detection. The achieved AP of the model was 61.3%, and the corresponding 

ROpti was 92.8%. 

Since the application of the proposed geolocation method, besides a sequence 

of aerial images and person detections, requires 3D terrain, we built a procedural 

3D terrain generator that allowed us, using NASA's terrain elevation data (at 30 

px/m resolution) and OpenStreetMaps metadata, to obtain, respectively, 

appropriate polygonal mesh for raycasting and better orientation of human 

operator evaluating the raycasting results. We applied the proposed method to 9 

datasets using a custom-made raycaster that allowed us to monitor each scenario 

performance in 3D, including from the perspective of a virtualized drone camera. 

This approach allowed us to notice problems as they occurred and solve them by 

continuously adjusting and improving the raycaster. 
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For geolocation evaluation metrics, we chose the distance of the location 

determined by the proposed method from GT (Error_2D), which, based on 

previous SAR experience, assesses the practical usability of the results on 

certain types of terrain. To objectify the assessment of the achieved result, we 

introduced the ErrDist measure as a percentage of the error of the determined 

location in relation to the actual distance of the drone from the person we are 

searching for. 

By adjusting the raycaster, we achieved good results on all types of terrain, with 

Error_2D ranging from 3.47 m to 16.73 m and ErrDist ranging from 4.06% to 

59.96%, using all sequences of each flight. The lowest Error_2D (0.7 m) and 

ErrDist (1.23%) were achieved using a single flight sequence with only 4 

consecutive detections, outperforming the previously best result (2.3 m) by 1.6 m 

(69.57% decrease) and proving that the proposed geolocation method can be 

adapted for in vivo use. Also, by being able to process offline data acquired during 

each 21-minute flight over a 10 ha area in 247 seconds, we proved that the 

proposed method can be efficiently used in actual SAR missions. Raycaster 

proved robust even in the combined unfavorable conditions of drone telemetry 

error and insufficient 3D terrain resolution. Following the experiment analysis, we 

made recommendations related to the setup of a drone, person detector, 3D 

terrain generator, raycaster, and the applicability of the SAR-DAG system to real-

world SAR missions. 

In future work, we plan to replicate this series of experiments using more 

advanced drones with better telemetry, generate synthetic RGB and thermal 

datasets for model training to improve detection performance, and improve 

handling multiple detections by identifying (and subsequently reidentifying) each 

person and averaging raycast results per unique person per flight sequence. 

Table 12. Abbreviations. 
Abbreviation Description 

AP Average Precision 

API Application Programming Interface 

CAD Computer-Aided Design 

CAM Computer-Aided Manufacturing 

CNN Convolutional Neural Network 

COCO Common Objects in Context 
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CSV Comma-Separated Values 

DEM Digital Elevation Model 

DET Detection 

ENU East-North-Up 

EPSG European Petroleum Survey Group 

FHD Full High Definition 

FN False Negative 

FOV Field of View 

FP False Positive 

GCP Ground Control Points 

GPS  Global Positioning System 

GT Ground Truth 

HFOV Horizontal Field of View 

IMU Inertial Measurement Unit 

IMP Improvement 

IOU Intersection over Union 

IPG Iterative Photogrammetry  

IRT Iterative Ray-Tracing  

LiDAR  Light Detection and Ranging 

MAV Micro Air Vehicle 

NDC Normalized Device Coordinates  

NED North-East-Down 

RGB Red Green Blue 

ROpti Recall Optimal 

RT Ray-Tracing  

RTK Real-Time Kinematic  

SAR Search and Rescue  

SAR-DAG Search and Rescue - Detection and 

Geolocation 

SD  Secure Digital 

SfM Structure from Motion 

SLAM Simultaneous Localization and Mapping 

SRTM Shuttle Radar Topography Mission  

TP True Positive 

UAS Unmanned Aircraft System 

UAV Unmanned Aerial Vehicle 

YOLO You Only Look Once 

 

Table 13. YOLOv4 training parameters. 
Parameter Value 

Batch size 64 

Subdivision 32 

Iterations 6000 

Learning rate 0.001 

Momentum 0.949 

Decay 0.0005 
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Network 

resolution 

512×512 

 

Table 14. Proposed geolocation method variables. 
Variable Description 

f normalized device 

coordinates  

t 3D coordinates  

c camera's position  

o camera's orientation 

r raycast direction vector  

p point of intersection  

d distance  
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