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Motivation
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 Global warming and Climate change
 "Global Warming of 1.5 ºC"1

 profound effects on global ecosystems, weather patterns, 
sea level, and human societies,

 threat to planet's biodiversity and sustainable future
 Climate change denial

 Andre et al. [1] – up to 86 % of individuals acknowledge 
human-induced Climate change

 Stems from misguided beliefs and vested corporate 
interest

 Areni [2] – deniers on Reddit rely on alternative sources

1 https://www.ipcc.ch/sr15/

https://www.ipcc.ch/sr15/


ArXiv - Number of Publications
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 Data volume
 Ever-increasing
 Information deluge

 Information extraction (IE)
 The task of automatically 

extracting structured 
information from unstructured 
and/or semi-structured 
machine-readable documents



Outline
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 Domain corpus 
 Scientific papers

 Domain specific language models
 Language model pretraining 
 Domain Adaptive pretraining

 Method for Relation Extraction using BERT-like architectures
 Domain specific NER model
 Domain specific RE model

 Relation Extraction evaluation
 Hand annotated golden dataset

 Climate Research Knowledge Graph (CliReKG)
 ...



Data Collection
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 Data sources for scientific journals on Climate Change:
 Scimago Journal & Country Rank (SJR)1

 ScienceWatch Rank2

 MDPI journals
 Total of 29 journals → ~ 194,000 retrieved research papers

 77% HTML format and 23% PDF format

1 https://www.scimagojr.com/ 
2 https://clarivate.com/?lid=sciencewatch



Data Info
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Journal name # Journal name # Journal name #

International Journal of 
Climatology

3,825 Ecological Applications 4,469 Ecosystem Health and 
Sustainability

831

Energy Policy 1,023 Journal of Climate 15,325 Climate Dynamics 3,943

Global Change Biology 7,103 Journal of Geophysical 
Research: Atmospheres

14,512 NPJ Climate and Atmospheric 
Science

355

NPJ Ocean Sustainability 12 NPJ Climate Action 39 Nature Climate Change 387

Nature Geoscience 560 PNAS 88,534 MDPI water 21,768

MDPI Air 18 MDPI Atmosphere 8.705 MDPI Climate 1,232

MDPI Earth 184 MDPI Ecologies 115 MDPI Energies 8,236

MDPI Hidrology 988 MDPI Forests 10,674 MDPI Fuels 104

MDPI Environments 1,012 MDPI Meteorology 57 MDPI Sustainable Chemistry 116

MDPI Recycling 420 MDPI Oceans 126 Total 185,977
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(Pre)training Data Comparison

¹ Calculated from reported average number of words [6]
² Approximation from tokenizer trained od 10,000 papers sample according to The Tokenization pipeline - https://huggingface.co/docs/tokenizers/python/latest/pipeline.html
³ Approximation from SegtokSentenceSplitter - https://github.com/flairNLP/flair/blob/master/flair/splitter.py

Model Data used CS A\#S

BERT [3] BooksCorpus (800M words) and English 
Wikipedia (2,500M words)

3.30B /

SciBERT [4] Random sample of 1.14M papers from 
Semantic Scholar

3.17B 154

ClimateBERT 
[5]

Climate related news articles, climate-
related papers abstracts and corporate 
climate and sustainability reports

0.22B¹ /

OUR [6] ~ 200,000 climate-related research papers 1.25B² 242³

https://huggingface.co/docs/tokenizers/python/latest/pipeline.html
https://github.com/flairNLP/flair/blob/master/flair/splitter.py
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(Domain Adaptive) Language 
Model Pretraining
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 LM Pretraining – LM training on a vast amount of data in an 
self-supervised manner to learn useful representations of 
(textual) domain. 
 Usually followed by fine-tuning – Training a model on a 

downstream task.
 Domain Adaptive Pretraining – Continued pretraining of a LM 

on a domain specific corpora. [7]
 Vocabulary augmentation:

 Adding additional vocabulary words [5]
 Adding additional vocabulary words as an existing token 

combinations [8]



BERT [3] and (Distil)RoBERTa [9, 10] 
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 BERT and RoBERTa follow original architecture implementation from Vaswani et al. 
[11] 

1 https://sushant-kumar.com/blog/bert

1



"Why another BERT"?
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 BioBERT [12]
 ClinicalBERT [13]
 SciBERT [4]
 LegalBERT [14]
 JuriBERT [15]
 ClimateBERT [5]
 PharmBERT [16]
 ...



ClimateBERT vs OURS
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BERT vs BioBERT vs SciBERT vs OURS
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DAPT?
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Year Vocabulary DAPT/From scratch

BioBERT 2019 Original DAPT
ClinicalBERT 2019 Original DAPT

SciBERT 2019 New From scratch

LegalBERT 2020 Original / New (equal size) From scratch / DAPT

JuriBERT 2021 New From scratch

ClimateBERT 2022 Augmented DAPT
PharmBERT 2023 Original DAPT



BERT and RoBERTa 2

16

BERT RoBERTa

Parameters Base: 110M Base: 125M

Layers / Hidden 
Dimensions / Self-
Attenton Heads

Base: 12 / 768 / 12 Base: 12 / 768 / 12

Pretraining data BooksCorpus + English 
Wikipedia = 16 GB

BERT + CCNews + OpenWebText 
+ Stories = 160 GB

Method MLM & NSP Dynamic MLM & NSP

Tokenizer WordPiece Byte-level BPE



Trained BERT-like Models
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 Domain adaptive pretraining on SciBERT model → 
CliSciBERT model ✓

 Domain adaptive pretraining on ClimateBERT (distill 
RoBERTa) model → SciClimateBERT  ✓

  Climate change research model from scratch  (BERT) → 
CliRe(search)BERT ✓

 Climate change research model from scratch (distill RoBERTa) 
model → CliReRoBERTa ✓

 SpanBERT [36], DeBERTa [37], ELECTRA [38], … ?



Hardware and Energy

18

Parameter Value

GPU Nvidia Quadro RTX 6000

CPU AMD Ryzen Threadripper 3960X 24-Core 
Processor

Power GPU 0.26 kW

Power CPU 0.013 kW

Total Power (TP) 0.273 kW

Location Rijeka, Croatia
Energy Mix (EM) 224.71 gCO2eq/kWh

 Total CO2 Emission (TCE) = TP * TIME(h) * EM



Model Reports
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 CliSciBERT model 
 Training time: 463h ~ 19 days
 Energy report: TP * 463h * EM = 28,403.12 g CO2 ~ 28kg CO2 emitted

 SciClimateBERT 
 Training time: 300h ~ 12.5 days
 Energy report: TP * 300h * EM = 18,403.75 g CO2 ~ 18kg CO2 emitted

 CliReBERT
 Training time: 463h ~ 19 days
 Energy report: TP * 463h * EM = 28,403.12 g CO2 ~ 28kg CO2 emitted

 CliReRoBERTa 
 Training time: 300h ~ 12.5 days
 Energy report: TP * 300h * EM = 18,403.75 g CO2 ~ 18kg CO2 emitted

Towards Climate Awareness in NLP Research [18]
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Relation Extraction (RE)
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 Relation extraction (RE) is the subtask of Information 
extraction (IE) consists of identifying relations between entities 
in each sentence, paragraph, or larger unit of text. 

"El Niño–Southern Oscillation (ENSO) is another important 
factor for winter temperature in China."

(ENSO, affects, winter temperature in China)



Relation Extraction (RE)
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 Relation extraction (RE) is the subtask of Information 
extraction (IE) consists of identifying relations between entities 
in each sentence, paragraph, or larger unit of text. 

 Variable number of entities: Two
 Defined (finite) or undefined set of relations
 Marked or unmarked entities
 At sentence, few sentence (bag) or document level

 Relation Extraction as multi-class sentence level 
classification.



Relation Classification
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 Pipeline based approach – NER + Relation classification
 NER and RE tasks are trained separately, therefore the RE 

model expects already extracted entities in the input text → 
may be of lower quality, propagating the error

 IDEA: "Dissect the problem and revisit the paradigm when it 
works!"
 Relation Extraction: Perspective from Convolutional Neural Networks (2015.) [19]
 Attention-Based Bidirectional Long Short-Term Memory Networks for Relation 

Classification (2016.) [20]
 Improving Relation Extraction by Pre-trained Language Representations (2019.) 

[21]
 Matching the Blanks: Distributional Similarity for Relation Learning (2019.) 

[22]

Relation extraction with deep learning methods (2023.) [23]



Joint Extraction Approaches
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A comprehensive survey on relation extraction: Recent 
advances and new frontiers (2024.) [24]



Span-based Approach – "UniRel"

25UniRel: Unified representation and interaction for joint 
relational triple extraction (2022.) [25]

 Process each text into 
spans – perform 
classification on spans

 Usually utilize 
pretrained Transformer 
encoders



Seq2Seq-based Approach – "REBEL"

26REBEL: Relation extraction by end-to-end language 
generation (2021.) [26]

 Recieve unstructured text as input and directly generate (head 
entity – relation – tail entity) as  sequential output

 Utilizes translation setup with Encoder-Decoder Transformer 
model (T5, BART, ...)



MRC-based Approach – 
"Asking Effective and Diverse Questions"
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Asking effective and diverse questions: a machine reading 
comprehension based framework for joint entity-relation 
extraction (2020.) [27]

 Utilizes machine reading 
comprehension (MRC) 
and multi-turn question 
answering (QA)

 Exploits well-developed 
(MRC) models - extract 
text spans in passages 
given queries



Named Entity Recognition (NER)

28

 Named-entity recognition (NER) is a subtask of information 
extraction that seeks to locate and classify named entities 
mentioned in unstructured text into pre-defined categories 
such as person names, organizations, locations, etc.1

"El Niño–Southern Oscillation (ENSO) is another important 
factor for winter temperature in China."

El Niño–Southern Oscillation (ENSO) – Meteorological phenomena [MP]
winter temperature in China – Meteorological attribute [MA]
China – Location [LOC]

1 https://en.wikipedia.org/wiki/Named-entity_recognition



Data Exploration
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 Sample of 10,000 (~5%) research papers
 Part-Of-Speech (POS) tagger¹:

 Noun phrase (NP) → potential entity
 Verb phrase (VP) → potential relation

 Named Entity Recognition (NER) model²:
 Named entity

 of-the-shelf NER & POS from FLAIR framework for state-of-
the-art NLP 

¹ https://huggingface.co/flair/pos-english
² https://huggingface.co/flair/ner-english-large

https://huggingface.co/flair/pos-english
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Towards Dataset for Extracting Relations in the Climate-
Change Domain (2024.) [39]
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Distant Supervision
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 Can automatically generate large scale labeled training 
dataset by aligning entities in texts with the entities in 
knowledge bases (KBs) (eg. Wikidata)

 The distant supervision (DS) assumption:
Assume that if a pair of entities has a relation in the KBs, then 
all sentences that mention the pair of entities will express this 
relation.
 Suffers from noisy labeling!
"The 2000 Dutch Open was an ATP tennis tournament staged in SUBJ{Amsterdam}, 
OBJ{Netherlands} and played on outdoor clay courts." → (Amsterdam, capital of, Netherlands)

"Aggregate reviews on OBJ{Amazon.co.uk} and SUBJ{Goodreads} are a little more positive." → 
(Goodreads, owned by, Amazon.co.uk)



LLM Annotation Setup

33

 Unconstrained 3-shot learning prompt with LLM to obtain 
possible (noisy) entites and relations

 USING: microsoft/Phi-3-mini-4k-instruct
 Tested: qwen:32b-text, mixtral:8x7b, gemma:7b-instruct-q8_0, 

llama3:8b
 Libraries/Frameworks:

 Transformers → using
 Ollama – https://ollama.com/ 
 Vllm – https://github.com/vllm-project/vllm



LLM Prompt Template
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    Text:
    Rain spells are a key parameter in examining rainfall regime.
    Triples (entity, relation, entity):
    ('Rain spells', 'are_a_key_parameter_in', 'examining'), ('Rain spells', 'are_a_key_parameter_in', 'rainfall regime')

    Text:
    A rain spell is defined as a series of consecutive days above a certain daily rainfall threshold (DRT).
    Triples (entity, relation, entity):
    ('rain spell', 'is defined as', 'series of consecutive days'), ('series of consecutive days', 'above', 'daily rainfall threshold'), ('daily 
rainfall threshold', 'has', 'certain DRT')

    Text:
    For each rain spell, its duration (RSD), yield (RSY) and average intensity (RSI), as well as their total number (NRS) in each 
year, were calculated.
    Triples (entity, relation, entity):
    ("rain spell", "has attribute", "duration"), ("rain spell", "has attribute", "yield"), ("rain spell", "has attribute", "average intensity"), 
("rain spell", "calculation involves", "its duration"),

    Text:
    {INPUT_SENTENCE}
    Triples (entity, relation, entity):
    



LLM Annotation Results
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INPUT_SENTENCE: Excavation work primarily attributes to particulate matter (PM) pollution on construction sites.
OUTPUT:  ('Excavation work', 'attributes to', 'particulate matter pollution')

INPUT_SENTENCE: Under these synoptic conditions, rainfall is generally measured in Trentino 1 day out of 2, and 
extreme rainfall days are more frequent than average in all seasons.
OUTPUT: ("rainfall", "measured under", "synoptic conditions"), 

("Trentino", "occurs on", "1 day out of 2"), 
("extreme rainfall days", "occur more frequently than", "average")

INPUT_SENTENCE: The inversion base height, on the other hand, has an annual cycle similar to that of the inversion 
top, but it shows also a strong autumn cooling, which is responsible for the large annual cycle in inversion strength 
observed in Fig. 4b.
OUTPUT: ("inversion base height", "shows", "annual cycle")

("inversion base height", "shows", "autumn cooling")
("autumn cooling", "causes", "large annual cycle in inversion strength")

   
INPUT_SENTENCE:    Like many tree species, the suitability of Northern China’s habitat will benefit from climate 
change [61,62].
OUTPUT: ('tree species', 'include','many’),

('climate change', 'benefit', 'habitat suitability’), 
('Northern China’s habitat', 'will benefit from', 'climate change')

 



LLM Annotation - Graph e.g. 1
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LLM Annotation - Graph e.g. 2
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Relation Clustering
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"Unsupervised Relation Extraction (RE) aims to identify relations 
between entities in text, without having access to labeled data 
during training. This setting is particularly relevant for domain 
specific RE where no annotated dataset is available and for open-
domain RE where the types of relations are a priori unknown. " - 
[28]

 Related work:
 SelfORE: Self-supervised Relational Feature Learning for Open Relation Extraction [29]
 A Relation-Oriented Clustering Method for Open Relation Extraction [30]
 A Unified Representation Learning Strategy for Open Relation Extraction with Ranked 

List Loss [31]
 Unsupervised Relation Extraction: A Variational Autoencoder Approach [32]
 Entity, Relation, and Event Extraction with Contextualized Span Representations [33]
 Element Intervention for Open Relation Extraction [34]
 A Frustratingly Easy Approach for Entity and Relation Extraction [35]



LLM Annotation - Graph e.g. 2  
"under an observent eye"

39NOTE that this is a cherry-picked graph!
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(Expected) Results
 New corpus: 

 Scientific papers in Climate Change Domain
 4 Domain specific language models

 2 Language model pretraining 
 2 Domain Adaptive pretraining OR
 2 BERT
 2 RoBERTa

 Method for Relation Extraction using BERT-like 
architectures
 Pipline approach → Span-based approach 

 Relation Extraction evaluation
 (LLM??) Hand annotated golden dataset on ENSO

 Climate Research Knowledge Graph (CliReKG)
 ...



Open questions
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 Relation Extraction
 How to model the data? Which relation types are relevant and 

present in the domain?
 OpenRE approach with clustering to form relation types - Labels

 Named Entity Recognition
 How to model the data once again? Which entity types are 

relevant and present in the domain?
 Entity Disambiguation approach through Wikidata and usage of 

existing taxonomy and structure of Wikidata to inherit entity types 
- Labels 

 Evaluation – Golden Dataset ENSO
 Which data to use for KG construction?
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