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Abstract – Lately, there is a huge interest in the computer 
vision and its applications due to the discovery of algorithms 
capable of performing a variety of tasks closely related to the 
visual observation of surrounding environment, in some 
cases even better than humans do. The purpose of this paper 
is to build up such a system which could, with some fine 
tuning, achieve object detection and even action recognition, 
from the ground up. In order to succeed several problems 
must be addressed. Previous studies of this research filed 
must be examined which will help in determining the 
waypoints, specific task must be defined which computer 
must accomplish, right dataset for training and testing have 
to be selected or even built, computer-generated knowledge 
in a form of an algorithm needs to be applied and finally 
everything must be put together to make it work. By the end 
of this article, one will possess the knowledge to build such a 
system and use it as a foundation for further research. 

Keywords – computer vision; action recognition, custom 
dataset; YOLO; Mask R-CNN; Ball detection 

 

I. INTRODUCTION 
 

Action recognition in video material is too complex for a computer to 
handle without prior data preparation and therefore needs to be 
disassembled into smaller tasks, small enough to be able to process it using 
simple mathematical representation. This traditional approach can be 
figuratively described through layers. At the far bottom layer, information 
from the camera feed or similar sensors is transformed into data bits, 
usually, these are a numerical interpretation of pixel intensity, which are 
then by the use of simple but very time and power consuming 
mathematical calculus pushed to an upper layer with requests for fewer 
resources but more knowledge. This is propagated through all layers until 
reaching the last one holding the information about the observed activity 
or set of actions.  

These mathematical layers joined together in different logical areas 
can be observed through workflow, like shown in the Fig 1., which takes 
training data, prepares it in a described way, applies learning algorithm to 
it and builds a model used to make a prediction in a similar fashion.  

Since, like in any other problem-solving puzzles, here also are many 
ways to come to a solution. At the early stages of computer vision research 
simpler techniques were used, mostly based on handcrafted features 
which, for the time being, gave promising results. Even though these were 
successful they needed many hours of human labor, intense supervised 
knowledge and they were hard to adapt to a classification of another object.   

 Thanks to the results of AlexNet [2] introduced in 2012, deep 
convolution neural networks (CNN) become intensely researched. They 
overcome shortcomings previously mentioned methods have and even 
outperform them in a sense of recall and precision but require more 
computing power and are very time-consuming. With a constant 
development of computer hardware, this disadvantage has lower 
significance with each passing day.  

This research follows the mainstream and uses latest state-of-the-art 
methods based on CNN to achieve its goal of providing an optimal solution 

for an object detection which by use of some semantics will through a 
further research result in action recognition.  

 Picking the appropriate dataset for training and testing is essential for 
a positive outcome of the experiment and therefore part of this paper will 
include applicable publicly available datasets along with the dataset 
obtained from the real world sports footages. 

 

II. OVERVIEW 

A. Models and Methods 
 

Images used for classification usually contain, due to extremely high 
dimensionality, too much information irrelevant for modeling. For this 
reason, machines perform classification based on primary elements called 
low-level features. The first step after dataset is acquired is features 
extraction. Features are, essentially, the interesting parts of the image 
altered in a way that machine can use.  Common low-level features include 
edges - border between lighter and darker part of the image, corners - edges 
intersection, blobs – separate regions of image not sharply divided to be 
considered as an edge, etc. 

When we talk about action recognition, features are separated into 
those which encode positions or trajectories of different body parts, those 
encoding whole body figure and into local features which are not related 
to a logical shape but operate on finding interest points. The whole body 
and body part features require additional video processing for detecting, 
segmenting and tracking such an object opposite to local features where 
no person localization is needed. For this reason, local features have been 
a primary choice an interest of many researchers in the field. 

 

1) Body based models 
 

Action recognition feature representations based on human body, 
whole or just part of it, use 2D and 3D features. Figures Fig. 2, Fig 3 and 
Fig. 4 shows human body features using sticks [3], silhouettes [4] and 
volumes [5] respectfully. 

Most techniques use an explicit model of human body, such as a stick 
figure model, and strive to optimize the match between the model 
projections and an observed image frame while simultaneously keeping 
a correspondence of joints between frames. The resulting representation 
is a set of joint trajectories in 2D-time space or 3D-time space, as shown 
in Fig. 5. 

 

 

 Figure 1. Traditional model of action recognition [1] 



 

 

 

 
2D pose estimations, opposite to 3D, are less complex and therefore 

much easier to extract, but, since usually only one camera is used for 
input, occlusion makes a great difference in creating model for action 
recognition. Also 2D is very view-dependent meaning that the features 
for the same action will be very different depending on the relative 
orientation of the camera and the person performing the action. This can 
be improved by using footage from few different sources, but like 
mentioned before, it affects complexity and cost.  

With a rising interest in computer vision new type of sensors are 
developed each day which allow capturing depth of an observing figure 
more easily. Some of those are RGB depth cameras which provide info 
about distance from camera based on infrared sensor and multiple camera 
feeds at fixed distances. This resembles human vising using both eyes. 

 
2) Bag of visual words models 

 
Major advantage of local features and bag of words over approaches 

relaying on the body model is that extraction of local features doesn’t 
require human model or person localization. Features are extracted first by 

using an interest point detector which than describes local descriptor of 
that interest point. The descriptors are clustered into visual words. Swarm 
of visual words for each input image are called bag of visual words (BOW) 
and are used for learning process like shown in Fig. 6. 

 

 

 
According to division in [6], interest point detectors are divided into 

contour based, intensity based and parametric based. To find edges and 
corners of the most interest contour based detectors are used. Intensity 
based detectors compute interest points solely on grey values of an image 
and parametric based combine previously mentioned detectors analytic 
approximation [7]. For example Harris 3D detector [8] computes spatio-
temporal corners and determines space-time interest points by a local 
maximum. Cuboid detector is based on Gabor filters [9] which detects 
regions with spatially unique characteristics under a complex motion. 
Hessian [10] is used to detect space-time blobs and dense sampling [11] 
extracts 3D patches at fixed positions with scale variance.  

When points of interest or trajectories information about form and 
movement are detected, interest point descriptors are used. Feature 
trajectories are usually extracted by matching SIFT [12] descriptors 
between frames or by using Kanade-Lucas-Tomasi (KTL) tracker [13]. 

Vast majority of descriptors are spectra descriptors based on 
calculated quantities, such as light and color intensity, local area gradient, 
statistical features and moments, surface normal and data sorted in 
histograms. At the time of writing this paper descriptor showing 
promising results, based on familiar 2D methods and capable of 
combining data from 3D sensors and accelerometers are 3D HOG [14], 
3D SIFT [15] and HON 4D [16]. 

Further features processing is done with use of BOW or Fisher 
Vector approach [17] and then classified via common methods such as 
Multi-Layer Perceptron (MLP) in [18], and Support Vector Machine 
(SVM) [9] [8] [19] [20]. 

 
3) Deep learning approaches 

 
During the last few years, the world is witnessing a steep 

development of neural networks, such as convolutional neural networks 
(CNNs) [21], used in image and video classification [22]. There are 
models which have a remarkable ability, compared to other previously 
mentioned state-of-the-art approaches, to make a prediction of the desired 
object in the photo and video material in non-staged, real-world 
conditions.  

CNNs automatically extract features from the large number of 
images or frames inside datasets inspired by the biological neural 
networks that are found in human brain. These feedforward neural 
networks typically comprise three basic types of neural layers as shown 
on Fig. 7: convolutional layers, pooling layers and fully connected layers. 
Convolutional layer utilizes kernels (feature detectors) which when 
applied to the entirety of the image transform the information into a 

 
 

Figure 2. Stick figure from the Cornell Activity Datasets database 
 

 
 

Figure 3. A video frame depicting a person walking (left) and the 
corresponding silhouette mask (right) 

 

 
 

Figure 4. Volumes formed by stacking the silhouettes of persons while 
performing actions 

 

 
 

Figure 5. Tracked trajectories of joints generated by performing 
different actions 

 

 

 
Figure 6. Bag-of-features learning diagram 

 
 

Figure 7. Typical convolutional neural networks 
 



feature maps for further processing. Due to its benefits, several studies 
such as [23], [24] proposed replacing fully connected layers to reduced 
learning time. Pooling layers takes convolution layers output and reduce 
its width and height before pushing it to another convolution layer. This 
subsampling (also called downsampling) doesn’t affect depth dimension 
but leads to a certain information loss. Although, information is lost this 
behavior is favorable for its ability to decrease computational overhead 
and overfitting impact. The most used pooling techniques are max 
pooling [25] and average pooling [26]. There are also techniques like 
stochastic pooling [27], spatial pyramid pooling [28] and def-pooling 
[29]. Usually behind set of convolution and pooling layers high level 
reasoning is performed by fully connected layers. Opposite to 
convolution layers here are neurons connected to all activation in the 
previous layers. This  

 
 layers convert 2D feature maps into 1D feature vector which could 

be either forwarded to a set of categories intended for classification [30] 
or could be used as a feature vector in further handing [31].  

There is a variety of the CNNs used for action recognition and many 
of them take different approach of achieving this task. For example, 
Authors of [32] implement the image classification by extending CNN to 
handle the temporal dimension of videos using several layers of 3D 
convolution starting with 7-frames deep cube. Others like proposed in 
[33] use two parallel networks capturing spatial and temporal 
information. First network obtains action information from a still image 
on individual video frame, while second one operates on the optical flow 
precisely describing the motion between frames and forms the temporal 
recognition stream. The networks outputs are merged into a final decision 
score using a classifier. 

 

B. Activity understanding 
 
The methods mentioned before are very accurate in object and simple 

action recognition still they have trouble dealing with complex and 
stratified actions and activities. For this reason, more descriptive model 
and logical operators with a help of expert knowledge should be used. 

Current research in the field of activity understanding can be 
observed trough explanation provided in [34]. Motion image is first 
processed in Abstraction phase using either pixel features, objects and 
their properties or logical facts of knowledge. In the second phase Action 
modeling includes traditional classification methods via pattern 
recognition, for knowledge representation uses state models in a space-
time domain and semantic models for understanding sequential actions. 
Examples of State modeling formalisms are finite state machines (FSMs), 
Bayesian networks (BN), HMM, etc. Semantic model requires expert 
knowledge of interesting subset of actions to be able to combine semantic 
relationships between sub-actions which is applied in cases where more 

complex actions vary in their appearance [35] [36] [37].  
Semantic models include grammars, Petri nets, constraint 

satisfaction, etc. Inaccuracies in lower-level recognition makes semantic 
models more unreliable due to it deterministic nature that’s why the 
mechanism of fuzzy reasoning is desired to deal with doubt in observation 
and interpretation [38]. Research in [39] [40] takes a fuzzy knowledge 
representation scheme which enables uncertain knowledge modeling 
about associations between objects that could be used for indistinct 
interpretation of borders between actions in video sequence.  

 
 

III. EXPERIMENT 

A. Description 
 

In order to address a problem of action recognition it was decided to 
solve a problem of object detection on still images first then to deal with 
tracking objects in motion to make a prediction of an action.  

Object detection combines both classification and localization of 
desired object. It strives to present this object with some sort of marking, 
usually it is a bounding box around it that is labeled with its corresponding 
class label. 

Authors of Viola-Jones algorithm [41] presented one of the first 
effective object detectors specialized in face detection. At the time of it 
release it was the most precise and very fast, capable of performing 
detection in real-time on webcam feed based on hand-coded Haar features 
and a cascade of classifiers. Since then there have been a few notable 
methods, one of them is Histograms of Oriented Gradients (HOG) [42] 
with remarkable capability of detecting human figure, but still requiring a 
had-coded features. In 2012 with a release of [2] deep learning came into 
focus providing some decent results in classification [24] [43]. Later on 
CNNs became capable of effective object detection with a release of 
methods like Region with CNN features (R-CNN) [44] and its related 
cousins Fast R-CNN [45] and Faster R-CNN [46], Spatial Pyramid 
Pooling (SPP-net) [28], Single Shot Detector (SSD) [47], etc.  

Because, at present time, deep learning approach is showing the most 
promising results CNNs with emphasis on speed and accuracy were taken 
into consideration. Among diversity of CNN methods YOLO [48] [49] 
was picked as faster representative and Mask R-CNN [50] as more precise 
one. There was another method used for comparison also called Mixture 
of Gaussians (MOG) [51] to CNN methods but since it holds only an 
information about “objectness” score it couldn’t be used on its own to 
achieve desired purpose.   

Experiment was performed on a custom dataset which consists of 
indoor and outdoor handball sports footage during practice and 
competition. It contains 751 videos with 1920x1080 resolution at 30 
frames per second, and the total duration of the recorded material is 1990 
s. The scenes were captured using stationary GoPro cameras from different 
angles and in different lighting conditions. The cameras in indoor scenes 
were mounted at a height of around 3.5 m to the left or right side of the 
playground. Outdoor scenes have the camera at a height of 1.5 m. 
Depending on the players average height, location and the camera 
viewpoint the size of the player in the image ranges from 40 to 240 pixels.  

Both YOLO and Mask R-CNN were applied using only the CPU on 
the same hardware inside separate virtual machines for most reliable 
comparison. Publicly available pre-trained models were used with their 
corresponding weights build on COCO dataset, with no additional training 
with our own dataset.  

To perform tests a high-level neural networks API Keras was applied 
on top of an open-source machine learning framework Tensorflow with a 
use of Python programing language in Ubuntu Linux environment.  

According to [49] YOLO, performs real-time object detection at 45 
frames per second on a Titan X GPU and a fast version runs at more than 
150 fps. Mask R-CNN in addition to bounding box provides also a 
segmentation mask on every pixel which desired object holds. This adds a 
slight computational overhead [50] but offers much more information 
about the body posture. 

Speed test in [52] using only the CPU, took on average 18.47 seconds 
for Mask-RCNN to process a 1920x1080 RGB color video frame, while 
YOLO performed much faster, with 0.94 seconds per frame.  

Detectors performance were compared with the ground truth and 
evaluated in terms of recall, precision and F1 score [53]. For MOG all 
detections were considered and for YOLO and Mask R-CNN only those 
whose confidence is greater than 85% to avoid a large number of false 
positives. 

Condition for a detection to be considered as true positive more than 
half of the area object belongs to must be inside bounding box. The factors 
which have a great impact on the detector efficiency are size of an object 
and the percentage of occlusion.  

 

 

Figure 8. Activity understanding model after [34] 



B. Detection of players and balls using Mask R-CNN, YOLO and 
MOG  
 

Fig. 9 shows results of detection in case of simple and complex 
scenario. A simple scenario includes fewer objects, up to 8, close to the 
camera. A complex scenario is when the number of objects on the scene is 
equal and greater than 9, away from the camera and with the occlusions. 

Example indoor images of detection results, after they have been fine 
tuned for the best possible outcome, are presented in the Fig. 10. Bottom 
3-image row shows results of detection using Mask R-CNN, middle row 
using YOLO and top one using MOG.  

Analysis of first column shows that YOLO has difficulty detecting 
objects smaller than 50 pixels in height compared to Mask R-CNN but is 
more precise than MOG. An anomaly here is that YOLO managed to make 
a TP of a sitting person far back but fails to detect closer objects. MOG is 
more successful in detecting moving objects but since it lacks knowledge 
about object it is more influenced by noise due to often highly reflective 
playing field, light changing and shadows that players cast under artificial 
illumination. Since body parts of certain players move in different speed 
MOG detects them separately opposite to Mask R-CNN and YOLO. Also 
objects in a distance, small and not moving sufficiently are not detected by 
MOG.  

YOLO detection in second row successfully detects less than half 
individuals count including coach dresses in blue. This is interesting since 
players further away are detected. It seems that YOLO have problems 
distinguishing floor color from coach’s wear. MOG was more successful 
in this case but far best results were achieved using Mask R-CNN. 

In the last row YOLO outperformed other methods. It even detected 
sports ball through the net. Mask R-CNN had a problem from the 
occlusion caused by the net and made a FP based on the ground reflection. 

The most unproductive method was MOG which detected only net 
segments moving and no objects of interest at all.  

Fig. 11. shows results in a simple outdoor scene. The figure contains 
three players, with no occlusion, a ball and car partly visible but non 
important for the sport of interest. Object detectors have performed well, 
but background extractor resulted with few FPs and missed detections 
(FN). 

All methods struggle with sports balls detection. Fig 12. Describes 
this behavior where Mask R-CNN was unable to detect the ball, while 
YOLO and MOG detected one out of two balls. Mask R-CNN however 
detected one more person at a distance than YOLO. It is important to notice 
that shadows which can be misdetected as real objects have not confused 
YOLO and Mask R-CNN. 

Obtained results shows that Mask R-CNN is more appropriate in the 
footages of team sports due to its ability to successfully detect individual 
players even when they are inside a group and further away from the 
camera. An additional benefit Mask R-CNN provides is a mask around the 
detected object, which can be obtained with slightly more computation 
power. The advantage of YOLO method lays in speed performance 
allowing more time for testing and tuning in final model. Also it has proven 
to be sufficient and in a case of occlusion even better than Mask R-CNN. 
MOG was the fastest method but has proved to have too many FP in 
comparison with other two methods. 

 

This is expected due to fact that MOG is a binary background 
foreground distinguisher working only on motion data. 

The object all three methods have problem detecting is sports ball. 
Since ball detection is a vital aspect of the further research it was decided 
to improve performance of tested methods by adopting models to this 
unique object. MOG was taken out of the further experiment as the worst 
of the three and because it can’t be used on its own to achieve additional 
improvements. 

 

C.  Ball detection using custom trained Mask R-CNN and YOLO models 
 

To stay consistent with a previous experiment both YOLO and 
MASK R-CNN were trained and tested using CPU only on the same 
hardware inside same virtual environment (VMware) but on separate 
virtual machines with installed software as before for most reliable 
comparison.  

 

 

 
 

Figure 9. Evaluation results in simple and complex scenarios for Mask 
R-CNN, YOLO and MOG 

 

 

 
 

Figure 10. Indoor sport detection results of MOG (upper row), YOLO (middle row) and Mask R-CNN (lower row) 



 

In order to improve ball detection, models were trained using dataset 
specifically annotated for sports ball classification. Dataset consists of 
approximately 800 images divided in even ration on custom and public 
dataset.  

Custom dataset was acquired out of the frames randomly selected 
from the video footages previously mentioned with resolution of 
1920x1080 pixels and publicly available images sizing from 174x174 up 
to 5184x3456 pixels from various sources. Publicly available dataset is 
used to avoid overfitting. 

Annotations were generated manually with both masks and square 
bounding boxes. Due to fact that ball objects vary in size, to achieve 
optimal results, rescaling of input images is needed. For this reason and 
for sake of equality CNN architecture was altered in a way to have 
comparable input size. YOLO has input image 1088x1088 and Mask R-
CNN 1024x1024 RGB input size. Transfer learning [54] is applied to both 
methods which reduce training requirements. Weights trained on COCO 
dataset [55] are used to avoid training a model from scratch. COCO dataset 
consists of over 123 000 images including sports ball class, therefore the 
features usually found in images are already fused into trained weights. 
This way information learned in the experiment from the custom dataset 
is just add up on the top of the publicly available COCO weights.  

In case of YOLO to avoid excessive speed variance tiny-yolo is used 
for training.  

Training was performed through series of 5000 steps where weights 
at each hundredth step is saved to test its performance. One with the 
smallest loss was picked for final model. Batch size i.e. the number of 
samples that are passed through the network at one time was dynamically 
changed for better efficiency. First 2000 steps were trained with a lower 
value (YOLO: 2 and Mask R-CNN:1) and the second part with a higher 
value (up to 32). As with batch size, learning rates were also made variable 
by using higher learning rate at the beginning of training to more quickly 
descend to a local minimum and lower learning rate at the end to avoid 

overshooting minimum loss. YOLO took approximately 97 hours and 
Mask R-CNN around 25 hours for a complete cycle of training. 
Performance of sports ball detectors is measured as before with a same 
threshold values of 85% for both methods. 

Results are divided in 2 groups describing F1 score values for custom 
and publicly available model for each method as described in a Fig. 13. 
Custom trained models have better overall results thanks to improvement 
of detection on custom dataset. Recall values are higher and precision 
values are lower when models trained on a custom dataset are used as seen 
on Fig. 14. 

 
 

Figure 11.Sports ball detection results of MOG (up), YOLO (middle) 
and Mask R-CNN (down) 

 

 
 

Figure 12. Outdoor sport detection results of MOG (up), YOLO 
(middle) and Mask R-CNN (down) 

 

 
 

Figure 13. Score on custom and publicly available dataset for both 
methods on ball objects 
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On this example image in Fig. 15 all models failed to detect ball close 
to the camera easily distinguished to a human observer. Pretrained models 
failed to detect all ball objects while custom trained models showed 
significant improvement by correctly detecting one of two closest balls. 
Compared to Mask R-CNN, YOLO has much higher number of FP but 
can handle further object with better effectiveness than before as described 
on Fig 16. 

 

 
 

Some degradation in precision are noticed with models trained with 
only ball objects. Fig 17 is one of the examples. Object correctly detected 
as person using pretrained model is partly and falsely detected as ball with 
custom trained model. 

 

 

In a case of a public dataset Mask R-CNN performs better and handles 
closer objects more successfully even in case they are heavily occluded. 

 

 
Figure 18. Custom Mask R-CNN and YOLO on publicly available 

image 
 

Detection speed decreased for YOLO model by 43% but still performs 
quicker than Mask R-CNN. Speed difference between Mask R-CNN 
models is in favor to custom trained model by 37%. 

 
 

Figure 14. Precision and recall of trained and pretrained models on 
public and custom dataset combined 

 

 
 

Figure 15. Indoor detection using (starting from the top) custom Mask 
R-CNN and YOLO following pretrained ones 

 
 

Figure 16. Custom Mask R-CNN model unable to detect ball objects 
compared to YOLO 

 

 
Figure 17. Pretrained and custom trained Mask R-CNN model 
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IV. DATASETS 
 

Besides custom dataset obtained personally by authors of the [1] [52], 
public datasets are available for scientific research of action recognition. 
They include constantly growing datasets with additional information 
acquired using RGB-D sensors, accelerometers and position markers 
placed directly on an observed model, multiple sources, etc. Following 
datasets are good starting ground when no custom dataset is available. 

Princeton Tracking Benchmark [56] datasets introduced in 2013 
include real world footage of variety of actions performed by humans, 
pets and object presentations in form of RGB images with its 
accompanying depth. Along with 100 RGB-D tracking datasets comes 
tracking software. Annotations are for every frame in a form of bounding 
box around target object. Example is shown on Fig. 19. 

 

 
Cornell Activity Datasets: CAD-60 & CAD-120 [57] [3]. They 

come with 60 RGB-D and 120 RGB-D videos receptively. CAD-60 
includes 2 male and 2 female persons in usual domestic environment 
(kitchen, bedroom, bathroom, and living room) performing 12 activities: 
rinsing mouth, brushing teeth, wearing contact lens, talking on the phone, 
drinking water, opening pill container, cooking (chopping), cooking 
(stirring), talking on couch, relaxing on couch, writing on whiteboard, 
working on computer, like in Fig. 20. CAD-120 consists of videos with 
same number of people in similar environment. Activities are divided into 
10 high-level activities (making cereal, taking medicine, stacking objects, 
unstacking objects, microwaving food, picking objects, cleaning objects, 
taking food, arranging objects, having a meal) and 10 sub-activity labels 
(reaching, moving, pouring, eating, drinking, opening, placing, closing, 
scrubbing, null) with 12 object affordance labels (reachable, movable, 
pourable, pourto, containable, drinkable, openable, placeable, closable, 
scrubbable, scrubber, stationary). Skeleton joint position and orientation 
is labelled on each frame. RGBD data has resolution of 240 by 320. RGB 
is saved as three-channel 8-bit PNG file and depth is saved as single-
channel 16-bit PNG file.  

 

 
Northwestern-UCLA Multiview Action 3D Dataset [58] contains 

RGB, depth and human skeleton data captured simultaneously by three 
Kinect cameras. This dataset includes 10 action categories: pick up with 
one hand, pick up with two hands, drop trash, walk around, sit down, 
stand up, donning, doffing, throw, carry (Fig. 21). Each action is 
performed by 10 actors in a library from a variety of viewpoints.  

 

RGB-D People Dataset [59] was gathered by a three vertically 
mounted Kinect sensors on a tower at approximately 1.50 m height. It 
contains of 3000+ RGB-D frames acquired in a university hall and 
contains mostly upright walking and standing persons seen from different 
orientations and with different levels of occlusions, Fig. 22. Annotations 
are made in a form of a square box. Depth images are saved as 16 bits, 1 
channel PGM images - 640 by 480. They contain the raw data content 
from the Kinect sensor. Namely, each pixel has value between [0, 1084]. 
RGB images are saved as 8 bits, 3 channels PPM images - 640 by 480. 
Dataset doesn’t provide activity annotations but offers material for an art 
gallery research [60]. 

 

 
 

UTD Multimodal Human Action Dataset (UTD-MHAD) [61] is a 
collection of videos using a Kinect sensor and a wearable inertial sensor 
in an indoor environment. The dataset contains of 27 actions performed 
by 4 females and 4 males with 4 times action repetition. The dataset 
includes 861 data sequences. Four data modalities of RGB videos, depth 
videos, skeleton joint positions, and the inertial sensor signals were 
recorded in three channels or threads (Fig. 23). One channel was used for 
simultaneous capture of depth videos and skeleton positions, one channel 
for RGB videos, and one channel for the inertial sensor signals (3-axis 
acceleration and 3-axis rotation signals). For data synchronization, a time 
stamp for each sample was recorded. The inertial sensor was worn on the 
subject's right wrist or the right thigh (see the figure below) depending on 
whether the action was mostly an arm or a leg type of action.  

 

 
 

Figure 19.  Princeton Tracking Benchmark 
 

 
 

Figure 20. Cornell Activity Datasets: CAD-60 & CAD-120 
 

 
 

Figure 21. Northwestern-UCLA Multiview Action 3D Dataset 
 

 

 
 

Figure 22. RGB-D People Dataset 
 

 

  

 
Figure 23. UTD Multimodal Human Action Dataset (UTD-MHAD) 



   Berkeley Multimodal Human Action Database (MHAD) [62] 
contains 11 actions performed by 12 subjects (7 male and 5 female) in the 
range 23-30 years of age with an exception of one elderly subject. All the 
subjects performed 5 repetitions of each action, coming to an about 660 
action sequences (around 82 minutes of video). In addition, a T-pose for 
each subject was recorded which can be used for the skeleton extraction 
along with the background data (with and without the chair used in some 
of the activities). The specified set of actions comprises of the actions 
with movement in both upper and lower extremities, actions with high 
dynamics in upper extremities and actions with high dynamics in lower 
extremities. Each action was simultaneously captured by five different 
systems: optical motion capture system, four multi-view stereo vision 
camera arrays, two Microsoft Kinect cameras, six wireless 
accelerometers and four microphones (Fig. 24). 

 
Dataset of a human performing daily life activities in a scene with 

occlusions [63] consists of 12 RGB-D video sequences of a person 
moving in front of a Kinect in a scene with obstacles, Fig.25. In addition 
to the depth and RGB image, each sequence contains the synchronized 
ground truth data obtained from a Qualisys motion capture system with 8 
infrared cameras. 3D representation of a human model is achieved by 
using 15 position markers: one for a head, neck and torso and 2 for 
shoulders, elbows, wrists, hips and knees.  

 

Building custom dataset by recording video is very time consuming 
and it requires significant resources to collect desired footages however, 
using private dataset allows customization to adopt to a desired method. 

During this process one of the things that needs consideration is 
number of capturing sources. If one camera is used depth perception and 
occlusion are problems which are hard to solve. Multiple cameras, on the 
other hand, concentrate on an object from different angles to give much 
more information. The position of cameras can be calculated like in [64] 
for an optimal solution. Multiple cameras can be set up two ways. Camera 
fields can overlap, which is more suitable for detail action examination, 
or side by side in sequence (art gallery), mostly used in surveillance 
mode. Art gallery, also, allows greater filed coverage with a same 
resource but shares the problem as one camera approach, only partial 
image is visible. Overlapping cameras provide info about the object from 
different perspectives but there is still an occlusion problem. This can be 
avoided by with approach described in [65] where different cameras are 
used sequentially which also require less samples and computational 
power.  

With development in game industry affordable RGB-D sensors like 
Microsoft Kinect and Asus Xtion give depth based on two cameras and 
infrared spectrum sensor. Even though these sensors give more flexibility 
they are still inferior compared to marker based systems [64]. 

  

 

V. CONCLUSION 
Thanks to constantly developing hardware and accompanying 

software solutions computer vision is becoming more and more similar to 
a human vision and even better in some cases. Recent approaches based 
on deep learning give another dimension of machines learning to 
distinguishing objects and actions with little or non prior knowledge which 
is expected to continue even faster with constantly bigger and bigger “Big 
Data”.  

Overview presented in this paper gives a good foundation for 
experimenting with different approaches to extend computer vision even 
further. Approach used in this paper shows the possibility of implementing 
player object detection and even improving sports ball object detection, 
essential for further research of activity recognition in sport video, by 
taking published studies in combination with a custom dataset. It also 
describes difficulties and diversity of obtaining training datasets and what 
should be considered when one is doing so. There is still a lot of space for 
improvement but that is reasonable if taken in consideration how young 
this research field is. For more complex activity recognition and detection, 
it is advisable to use some sort of semantic models based on expert 
knowledge. This is also the next step author of this paper is intend to do.   
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