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Faculty of Informatics, Juraj Dobrila University of Pula
robert.sajina@unipu.hr

Abstract—A new and fast-emerging paradigm of Federated
Learning is enabling collaborative learning of deep neural net-
works on the edge devices by orchestrating the learning process
from a central point. However, this centralization often imposes
a communication bottleneck and raises privacy concerns requir-
ing a more decentralized approach. In decentralized systems,
edge devices mutually collaborate in a peer-to-peer manner.
Decentralized or peer-to-peer collaborative learning techniques
have increasingly attracted researchers’ interest in recent years.
Several decentralized approaches are already proposed. However,
it is important to understand and analyze their properties. For
a decentralized network of smart agents, it is important that
the learning process is communication-efficient, tolerant of faulty
or malicious agents, and protects agents’ data privacy. This
paper analyzes these properties for some of the latest proposed
approaches.

Index Terms—peer-to-peer, gossip averaging, decentralized
learning, neural network, machine learning

I. INTRODUCTION

With an increasing amount of connected edge devices
such as mobile phones, tablets, and laptops, a vast amount
of valuable but mostly private data can be used to train
machine learning models, often in the form of Deep Neural
Networks (DNNs). There is a growing research interest in
utilizing edge devices’ local data. A centralized approach
would require pooling all edge devices’ local data and training
one model. However, that would violate the data privacy of
edge device owners. Instead, efforts were made to utilize edge
devices’ computational capabilities to train a model locally and
exchange this model collaboratively with other devices. This
way, local data never leaves the device. An edge device can
be considered as any device containing memory, computing
power, internet access, and potentially valuable data that can
be used as a model training dataset. These components can
be utilized to perform model training on the device using
the local device training data. Collaborative learning aims
to ensure data privacy by only sharing the model with the
outside world while keeping the data private. From hereafter,
we refer to an edge device as an agent and as a node
if considered as a part of network topology. We may also
use these terms interchangeably. Each agent contains local
data, which is private and never shared, a machine learning
framework, such as Tensorflow [1], or PyTorch [2], and a
pre-trained or randomly initialized machine learning model
(see figure 1). The model architecture and parameters are, in
general, specified upfront by the learning process.

A collaborative approach between agents may be based on
a parameter-server paradigm or may be decentralized. Studies

Fig. 1. Agent contains local data, machine learning framework and a model
which is trained by the ML framework.

were conducted in both settings to address the data imbalance
between agents. Local data between agents may have similar
or different data distributions. Considering the MNIST [3]
dataset of handwritten digits, an example of a balanced dataset
is that all agents own a similar number of examples for
each digit (similar distribution). Contrary, if some agents only
own examples of odd digits and others own only even digits,
then the distribution between agents’ datasets is different. We
formalize this balanced and unbalanced data setting in Section
II. Section II also describes the differences between parameter-
server and decentralized approaches, which are then discussed
in more detail in Sections III and IV, respectively.

II. BACKGROUND

The agent’s local data consists of any data collected by the
agent. This data includes images, texts, sensors, locations data,
etc. Since agents are all individual devices, they generate or
possess different data [4] also known as non independently or
identically distributed (non-IID). Non-IID is the opposite of
the IID case, where the distribution of data samples between
agents is identical. Having IID data at the agents means that
each batch of data used for an agent’s local model update
is statistically identical to a uniformly drawn sample (with
replacement) from the entire training dataset, which is the
union of all local datasets of the agents.

Consider a dataset of numeric values. A sample of size n
consist of n random values: {X1, X2, ..., Xn}. This sample is
IID if the random values have the following properties:

Independent: The random values X1, X2, ..., Xn are indepen-
dent, meaning that the occurrence of any Xi does not depend
on any other Xj .
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Identically Distributed: The random values X1, X2, ..., Xn

are from the same population and thus have the same distri-
bution or cumulative distribution function (CDF) F :

Fx1
= Fx2

= ... = Fxn
= Fx

Training on IID data is easier and faster because all model
updates converge toward one global solution. Oppositely, when
agents have non-IID data, one global model solution is not
optimal for all agents, making this case a challenging learning
problem. Unfortunately, non-IID data is a common occurrence
[5, 6], where the edge device’s data differ in size, label
mapping, etc., posing a challenge for collaborative training
of the NN models. Culture, language, and usage patterns are
just some factors that influence these data differences.

An agent can only train its model using its data. However, it
is known that Deep Learning techniques produce better results
with large quantities of data [7, 8]. Even though agents, in
general, do not share data, exchanging model (or model pa-
rameters/weights) between agents (or a server) helps a model
”see” more training data, making the model more accurate
and robust. This vital collaboration between agents can either
be guided by a central server or organized in a decentralized
manner. In a decentralized system, the agent communicates
with other agents in the network. These neighboring agents
in the network are often referred to as peers. Each agent is
responsible for its learning process, including communicating
with peers and receiving and processing incoming messages.
If the training process is orchestrated by a parameter-server,
the agent, in general, communicates only with the server.
Parameter-server learning system offers more control over the
learning process and validation but imposes a communication
bottleneck since all the communication must go through a
central server computer (there can also be multiple server com-
puters). A decentralized learning system nullifies this concern
but presents a synchronization problem between agents. In this
paper, we are focused on decentralized systems, but we still
present some of the main approaches taken in a parameter-
server paradigm.

III. FEDERATED LEARNING

One of the fastest emerging and most commonly researched
collaboration approaches is Federated Learning (FL) [9].
Federated Learning is a parameter-server paradigm used for
orchestrating the process of training a global model using
decentralized agents’ data. The overview of the process is
shown in figure 2. In each training round, the server selects
a subset of currently online agents and sends them a copy of
the current global model. Selected agents then train the global
model on their local data for a specified number of iterations,
utilizing their local computation capabilities and local (private)
data. After an agent has finished training the model, it sends
the model (or its delta) back to the central server. When most
agents submit their updates to the server, the server proceeds
with model averaging and creates a new global model. This
process repeats until global model convergence.

Since the real-world agent datasets are mostly non-IID,
efforts were made to improve the FL in that setting. Works

such as [10, 11] use a public dataset to tackle the non-IID data
setting. Recently, FedMD [10] has been proposed to enable
Federated learning for heterogeneous models on non-IID data.
This approach transfers knowledge to the server through model
distillation [12]. Model distillation is a knowledge transfer
technique that enables training a small model using a more
knowledgeable larger network (see figure 3). For more details
on different knowledge transfer approaches, refer to [13].
FedMD method presumes a public dataset similar to agents’
private data. Each agent shares class scores on a public dataset
with the server; the server then averages received scores and
distributes updates to agents. These agents then train their
models on a public dataset and private data. This cycle repeats
a specified amount of times. Training on a public dataset
(which may be large) is not feasible for agents. Furthermore,
this means that agents would need to download this dataset for
training purposes. In [11], a similar approach is proposed. An
unlabeled public dataset is assumed, and instead of returning
a model to the server, agents send their predictions of the
public dataset. The server aggregates these predictions using a
custom aggregation algorithm [14]. Agents then update their
local models using their respectable data and the received
updates from the server.

Approaches that adopt a similar algorithm as in [10, 11]
are not feasible for the real world, as they have too many
presumptions and communication restrictions. However, other
approaches can be adopted when solving this problem [15]:
(I) personalization, (II) multi-task learning, and (III) meta-
learning.

On-device personalization of the previously learned global
model implies performing a specific number of training itera-
tions after the training is finished. This process can improve an
individual agent’s model accuracy [16]. On-device personal-
ization is a sensitive operation since too much personalization
will cause model overfitting, which degrades model accuracy.
If done right, such an optimization method greatly improves
the accuracy of local models, which deviate the most from the
global model [17].

Each agent’s problem is considered a separate task in a
multi-task setting. The goal of the training process is to train
one model per task [15, 18–23]. The relationship between
agents’ local datasets and learning tasks can be reconsidered
as observing points on a spectrum between a single global
model and different models for every agent. In multi-task
learning, a subset of agents representing a task can be chosen
explicitly (e.g., based on geolocation, agent device or user
characteristics, etc.) or based on a learned clustering of the
connected agents.

Meta-learning is another promising approach for studying
personalization and non-IID data. This approach aims to meta-
learn (train) a global model that can be used as a starting point
for training a model adapted to a given task. Studies such as
[24–26] show that this setting is a relevant framework to model
the personalization objectives for FL.

IV. DECENTRALIZED LEARNING

The learning outcome of parameter-server may be a single
global model or multiple personalized models (if applying
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Fig. 2. Lifecycle of Federated Learning process and FL-trained global model. In each training round, the server chooses a subset of the online agents and
sends them a copy of the current global model. Agents perform local training steps on the received model before returning the model to the server. This cycle
is repeated for a finite number of rounds and, as a result, produces a robust global model. This model is then deployed as a part of an application and used
by the users during regular application usage.

Fig. 3. Abstract teacher-student technique for knowledge distillation.
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some of the mentioned techniques). The same can be consid-
ered in a decentralized system. Agents can collaboratively train
one model or selfishly try to maximize the model’s accuracy
for their purpose (on their dataset), which we can consider
as personalized models. Before analyzing these approaches, a
detailed description of decentralized prerequisites is studied.

A. Network topology

The main difference between parameter-server and a de-
centralized system is that in a decentralized (or peer-to-peer)
system, agents must organize the communication themselves.
This main difference exposes various problems such as agent
synchronization, agent trust, and data privacy.

Communication links between agents can be captured
through a communication graph G = (JNK, E,W ) where
JNK = {1, ..., N} is a set of all nodes in the network,
E ∈ JNK × JNK is the set of edges, and W ∈ RN×N is
a nonnegative weighted matrix. Weight of edge (i, j) ∈ E is
given by Wij with the convection Wij = 0 if (i, j) /∈ E
or i = j. An agent i only sends messages to agent j if
Wij > 0, which means that agent i communicates with peers
Ni = {j : Wij > 0} without knowledge of other peers in
the network, and operates without synchronisation with non-
connected peers (Wij = 0).

The resulting graph matrix shows the connection between
agents. Consider the next matrix W ∈ R4×4:

W =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0


Column indices of matrix W correspond to sending nodes,

while row indices correspond to receiving nodes. For the
node with index 0, Node0, sending indices (column) are
{0, 1, 0, 1}, meaning that Node0 sends its message to nodes
Node1 and Node3. Row at index 0 shows that Node0 receives
messages from both Node1 and Node3. This matrix example
demonstrates an undirected/symmetric communication graph.
The opposite of this is directed/asymmetric communication, in
which an agent can send messages to a set of neighbors but
receive messages from a completely different set of neighbors.
In a directed graph, an agent has in-neighbour if (i, j) ∈ E
and out-neighbor if (j, i) ∈ E. Out-neighbor set represents
the agents to which the agent sends the messages, while the
in-neighbor set represents the agents from which messages are
received. The number of in and out neighbors is, in general
identical.

Commonly, the mixing matrix is comprised of fractions
rather than integers. These fractions may signal the trust
between agents or are simply a method of a decentralized
approach to control the contributions of each agent. Consider
the next matrix Wm ∈ R4×4:

Wm =


1/2 0 0 1/3
1/2 1/2 0 0
0 1/2 1/2 1/3
0 0 1/2 1/3



In the mixing weights matrix, sending or receiving agents
use these fractions to weigh individual agents’ contributions
depending on the approach. The sending agent may pre-weight
outgoing messages in one approach, while the other approach
may weigh in received messages. It is important to note that
an agent has a connection with itself. An agent takes an
equal share of its contribution in a uniform mixing matrix
when aggregating received contributions from neighbors. All
columns of matrix Wm sum to one, making this matrix column
stochastic. If all agents have equal numbers of in and out
neighbors (which is not the case in Wm), the matrix may be
doubly stochastic (rows and columns sum to one).

A few examples of the most common network topologies
are shown in figure 4. Depending on the topology used,
an arbitrary number of in-out neighbors can be set. Due to
their design, ring, fully connected, or torus topologies do not
allow setting a custom number of neighbors. An agent in
ring topology has two neighbors in undirected communication
and one neighbor in directed communication. There is no
difference between undirected and directed communication for
a fully connected graph. However, the number of neighbors is
fixed to N−1 in a network of N fully connected nodes. Sparse
networks have the ability for each node to choose the number
of neighbors, and in directed communication, an agent may
have more in-neighbors than out-neighbors or vice-versa.

B. Learning process

Each agent’s goal is to train its local model by leveraging its
local dataset Di and information received from its neighbors
to minimize its average loss function Fi. In an IID data
environment, an agent’s local dataset Di can be assumed to
be a uniform sample example in the global dataset D. At the
same time, in a non-IID environment, this assumption is not
valid. An agent uses this local data Di to train a local model
by calculating mini-batch gradient

`
Fi(xi; ξi), ξi ∼ Di and

updating its local model xi = xi − ηFi(xi; ξi), ξi ∼ Di for E
batch iterations, where η denotes the learning rate. Parameter
E is set to one when the communication is performed after
each training batch or increased to any arbitrary number to
increase local computation and reduce communication steps.

The local training step is followed by a communication
step in which agents exchange information. Algorithm 1
shows an abstract agent training scheme. Agents initialize
their respectable model parameters with identical values as
it aids in a faster and smoother learning curve. The learning
process is executed in parallel, i.e., each agent performs train
and communication steps in a loop. Different approaches
include different message content exchanged between agents,
and commonly, an agent must send its message to all its out-
neighbors and receive all messages from its in-neighbors. A
loss of a message in this phase may stall the overall learning
process since an agent may forever wait for a message that
never arrives. This one stalled agent may trigger a domino
stalling effect of other agents. The neighbors of the stalled
would be the first ones to wait to receive a message, followed
by the neighbors of neighbors and so forth. We term this
synchronous undirected communication. If an approach has
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Fig. 4. Examples of network typologies in a undirected and directed communication.

a synchronization barrier but supports directed communica-
tion, we term it synchronous directed communication. Several
approaches modify the communication step so that an agent
continues the training process and processes messages upon
arrival. We term this asynchronous directed communication.
Another possible occurrence is when two agents communi-
cate asynchronously (not disturbing the learning process) but
require that messages are sent and received between agents.
We term this case asynchronous undirected communication.

Algorithm 1 Agents abstract training process
Require:

Initialize η > 0, agents A, communication matrix W ,
number of local batch iterations E
xi = 0 for all agents i ∈ A ▷ Initialize all agents models
to identical value

1: repeat for agent i ∈ A ▷ In parallel
2: for e = 0, 1, 2, ..., E, at agent, i do
3: ξi ∼ Di ▷ Sample new mini-batch from local

distribution
4: xi = xi − ηFi(xi; ξi) ▷ Train model on batch
5: SEND(xiWji) ▷ Send model to out-neighbors
6: RECEIVE(xjWij) ▷ Receive model from in-neighbors
7: xi = AGGREGATE(xjWij)
8: until Maximum iteration reached

Output: 1
N

∑N
i=1 xi or xi∀i ∈ A ▷

Output is either one global model produced by averaging
all models or personal model for each agent

C. Learning objective

The learning objective of collaborative learning is most
commonly to produce a single global model by averaging
the model parameters of all agents at the end of the training
process:

xglobal =
1

N

N∑
i=1

xi

A neural model trained multiple times with different initial
parameter values may find many different ”optimal” solu-
tions each run. The variance between solutions is reduced
when model averaging is performed, often producing a robust
model that performs fairly on the test dataset. Producing one
global model is generally considered in big machine learning
facilities to speed up the learning process by employing
multiple training agents. Averaging model parameters might be
troubling when specific layers are used. As an example, Batch
Normalization layer (BN) [27] imposes averaging problems
because it contains some statistical parameters that represent
the statistical information, such as the mean and variance of the
feature maps, which are solely contained in the normalization
layers. BN is a normalization technique that is widely used in
DNN [28–31] as it aids in smoother convergence and stability
when training deep neural networks. Authors of [27] argue it
reduces internal covariate shift, which dramatically accelerates
the training of DNN models, makes training more resilient to
large learning rates, and prevents model gradients from explod-
ing or getting stuck in the poor local minima. The utilization
of these favorable properties of the BN layer is somewhat
limited in model averaging because special techniques must
be developed to include statistical information produced by
each BN layer in the aggregation phase. FedBN [30] and
MTFL [31] use BN layers in FL but do not include them
in the averaging process. Instead, BN layers stay only on the
client, representing a form of model personalization. FedDNA
[32] decouples standard model aggregation and statistical
information aggregation by aggregating statistical parameters
with an importance weighting method to reduce the divergence
between the local models and the central model. Statistical
parameters are optimized collaboratively by an adversarial
learning algorithm based on a variational autoencoder (VAE).
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Custom aggregation server-side rule is also considered in
FedBS [33] as the mean of aggregating agents’ statistical
information.

Alternatively, each agent may have its learning objective,
which means that the result of the training process may be
one model per agent. Here, each model is personalized to each
agent, performing best when used by the agent who trained
the model and performing with deficient performance if used
on an agent with different data distribution.

D. Approaches

Recently studied approaches are based on or modify the
algorithm presented in 1. Table IV-D list these approaches
and classifies some of their main properties.

Topology. A substantial number of approaches is open to using
any topology [34, 36, 38, 39, 44–50, 54]. We classified these
typologies based on the analysis conducted by the authors in
their respectable papers. Approach working in any topology
is a benefit since organizing complex typologies in the wild
is not an easy task. Constraining the learning process to only
some of the typologies [35, 40, 51–53] limits the applicability
of the approach. Note that some approaches propose only com-
municating with one random node in the network [37, 41–43]
which means that a node must have a list of all nodes in the
network at all times. To conform to the algorithm 1, in these
approaches, we can presume that the communication matrix
W is a directed ring that changes each communication round.
Some approaches [44, 45, 48] use this idea with neighbor
communications. Even though these approaches support any
topology, each agent only communicates with one random
neighbor in each communication step. In theory, lowering
the communication may negatively impact synchronization
between agents. Column # Wij /step of table IV-D displays
the number of communicating neighbors in each each agent’s
communication step. The absence of a number implies that
the number of neighbors depends on the chosen topology.

Communication direction. Since the topology often dictates
the number of neighbors, it is important to analyze whether the
communications are directed or undirected. In an example of
undirected ring topology, each agent has two neighbors, while
in the directed ring topology, each agent has only one neighbor
(see figure 4). A majority of approaches rely upon or only
support undirected communication, while some approaches
[37, 38, 40, 43, 46] only work with directed communication.
Only OverlapSGD [36] supports both directed and undirected
communication.

Synchronisation. Synchronization is an important part of
decentralized systems. It dictates a strategy that an agent
obeys when communicating with neighbors. There is often a
synchronization barrier in synchronous systems that stops the
agent’s learning process while all messages are exchanged.
This approach can be as simple as sending messages to all
out-neighbors and waiting for all in-neighbor messages. Given
that all agents must perform the same steps, all agents can only
continue the learning process once all messages are exchanged
between neighbors. Since we study decentralized approaches,

there is no central authority controlling the learning process.
However, agents may follow a central clock for synchroniza-
tion purposes. Alternatively, the asynchronous time model [55]
enables each agent to locally track time with independent clock
by ticking at a Poisson distribution [34, 46, 47]. Since all
local clocks can be considered IID, they can equivalently be
considered as a single global clock ticking at a rate N Poisson
process, which wakes one or more network agents uniformly
at random. This is especially useful when two agents must
wake up and communicate simultaneously.

Combining the synchronization and communication prop-
erties, we can classify all the approaches to the groups men-
tioned above. Synchronous undirected communication [34–36,
39, 49, 50, 52–54] implies that all agents have a synchro-
nization barrier in which all messages are exchanged in
an undirected communication. We note that authors of [36]
proposed an approach to prevent waiting at the synchronization
barrier by potentially delaying synchronization for a specific
number of iterations. Here, messages are processed as they
come, but they still need to come in the expected order. The
authors of [50] also proposed an asynchronous approach in
which the agent firstly asks which neighbors will participate in
the following communication step. We interpret this approach
also as synchronous since there is no difference compare to the
standard approach besides the potentially smaller number of
neighbors. Querying alive neighbors could instead be classified
as an attempt at a fault-tolerant or strangler-free solution.
Communication can be executed in a directed manner but
still require synchronization by requiring all neighbor in-
messages before continuing the learning process [36, 38, 40].
In asynchronous undirected communication [34, 41, 42, 44,
45, 47, 48, 51], the communication between agents does not
impede the learning process but still requires that both agents
exchange messages between themselves in the same time
interval. The most lenient of the four is the asynchronous
directed communication [37, 43, 46]. Here, the communication
is asynchronous and does not impede the learning process,
nor does it require a reply message from the receiving agent.
Each agent performs local training steps undisturbedly and
only aggregates contributions received from in-neighbors as
they come.

Objective, model and heterogeneity. Optimizing each agent’s
model performance (or loss function) is considered in [40,
42, 44–50], while other approaches form an aggregated global
model at the end of the learning process. It is important
to note that approaches [44–46, 48, 49] are restricted to
linear models, and Dada [47] extend these works with a
boosting-based approach. Other approaches are applicable to
DNN models, while authors of [41] only offered a theoretical
analysis without any application in mind. Out of the listed
approaches, only the approach presented in [42] offers support
for heterogeneous model architectures by splitting the network
into slices and averaging each slice with the specified peer
group. Each agent has complete freedom in defining which
parts of the neural network are averaged. This is a positive
feature of a decentralized system since agents may have
different performance capabilities, requirements, and amounts
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Approach Topology Comm. # Wij /step Sync Objective Model Heterogeneus
Colin et. al [34] complete, ring, watts-strogatz U 1 Sync, Async global NN x
GossipGraD [35] hypercube, dissemination-based U 1 Sync global NN x
OverlapSGD [36] any D, U - Sync global NN x
GoSGD [37] sent to random node D 1 Async global NN x
Online Push-Sum [38] any D - Sync global NN x
CHOCO-SGD [39] any U - Sync global NN x
Lalitha et. al [40] aperiodic graph D - Sync individual NN x
Pilet et. al [41] sent to random node U 1 Async global - x
Pilet et. al [42] sent to random node U 1 Async individual NN ✓
PeerSGD [43] sent to random node D 1 Async global NN x
Vanhaesebrouck et. al [44] any (sent to random neighbor) U 1 Async individual Linear x
DJAM [45] any (sent to random neighbor) U 1 Async individual Linear x
Bellet et. al [46] any D - Async individual Linear x
Dada [47] any U - Async individual Linear x
CDPL [48] any (sent to random neighbor) U 1 Async individual Linear x
Li et. al [49] any U - Sync individual Linear x
DP-SGD [50] any U - Sync individual NN x
AD-PSGD [51] ring, ring-based (2i + 1 hop neighbors) U 1 Async global NN x
D-PSGD [52] ring U - Sync global NN x
D2 [53] ring U - Sync global NN x
Cooperative SGD [54] any U - Sync global NN x

Table 1. Analysis and comparison of main decentralized properties between studied approaches. Topology column list all possible typologies studied in each
respectable study. Column Comm. list if the communication is directed (D) or undirected (U). Column # Wij /step shows the number of neighbors with whom
an agent communicates in each communication round. If there is no number in the table, that means that an agent communicates with all neighbors prescribed
by the communication topology. Some approaches only communicate with one neighbor, instead of respecting the communication topology (marked with
number one). Column Sync describes whether there is a communication barrier to which an agent must obey, or the communication with the neighbors is
asynchronous. The objective of the learning process may be one global (aggregated) model, or an individual model for each agent. This is described in the
column Objective. Some of the approaches are strictly bounded to linear models, and are not applicable to NN models. Column Model states the model
type used by each approach. Out of the listed approaches, only approach presented in [42] offers support for heterogeneous model architecture (column
Heterogeneous).

of training data.

E. Communication compression

Communication between agents can present a challenge
when the model architecture comprises millions of parameters.
For example, the popular ResNet-50 architecture comprises
over 23 million parameters and has 97MB in size. Commu-
nicating big models over the internet may take a long time
which may slow down the learning process, especially the
synchronous approaches. Strides were made in this area to
reduce the size of the outgoing model parameters by applying
gradient compression. The main approaches in compressing
the models are gradient quantization and gradient sparsifica-
tion. Gradient quantization [56] lowers the precision values
representing model weights to a lower precision order. For
example, rather than representing each weight as a float 64,
weights are represented as a float8 (or even an integer).
Reducing the precision of weight values also reduces overall
model knowledge, which is the cost of reduced weight size.
Gradient sparsification technique [57] limits the weights ex-
change if the absolute gradient values exceed a predetermined
threshold. Only weights exceeding the threshold are allowed
to be transmitted. Increasing the threshold reduces the number
of exchanged weights; thus, communication is also reduced.
Tuning this threshold parameter can be a challenge due to
gradient value variations. Out of the approaches mentioned
earlier, only CHOCO-SGD [39] considers using either gradient
sparsification or gradient quantization. Experiments showed
that this gradient compression method could reduce the total
number of exchanged bits while reaching almost the same

performance as the exact algorithm without communication
restrictions.

F. Privacy
Data stored on agents is their personally generated data

which is never shared with the outside world. However, when
training a model, model parameters could learn this dataset
very well, revealing sensitive information when transmitted to
the neighboring peer. Differential privacy [58–60] offers strong
mathematical guarantees for privacy by adding random noise
to the model parameters during the training process. This way,
the models do not learn or remember any specific details about
any agent’s data. The noise is, in general, generated using a
Gaussian distribution [61]. The gradient clipping technique is
commonly performed alongside adding random noise. Gradi-
ent clipping bounds the influence of each individual training
example to the gradients by clipping each gradient in ℓ2
norm; a gradient vector g is replaced by g/max(1, ∥g∥2

C ) for
a clipping threshold C.

Two metrics are used to express the privacy guarantee for
a DNN model:

• Delta (δ) - bounds the probability of the privacy guarantee
not being respected. In general, it is recommended to set
this parameter to the inverse value of the dataset size. For
a dataset of 10,000 examples, the value should be set to
10−5.

• Epsilon (ε) - a measure of the privacy budget. A smaller
ε value implies a better privacy guarantee. This parameter
is a bound of a variation of particular model output. Since
ε is an upper bound, a larger value could still mean a good
privacy guarantee in practice.
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To formalize, let M be a randomized mechanism tak-
ing a dataset as an input, and let ε > 0, δ ≥ 0, then
M is (ε, δ)-differentially private if for all agents datasets
D = {d1, ..., di, ..., dn}, S′ = {d1, ..., d′i, ..., dn} differing
in a single data point and for all sets of possible outputs
O ⊆ range(M) holds that:

Pr[M(S) ∈ O] ≤ eεPr[M(S′) ∈ O] + δ

In a decentralized system, a (ε, δ)-differential privacy guar-
antees that for any neighboring agents datasets Di and Dj ,
it is very likely that retroactively, the value of M(Di) will
have a similar probability to be generated from the Di or Dj

dataset. For all agents, the absolute value of the privacy loss
will be bounded by ε with a probability of privacy guarantee
of at least 1 − δ. Differential privacy is extensively studied
in Federated Learning [62–65] but requires more research in
decentralized systems. In [46] differential privacy was obtained
by generating noise from a Laplace distribution, while the
authors of [41] only provided a theoretical analysis of an
approach where agents only add random noise for a specific
number of communications. Authors of [50] had a similar idea.
Their approach was to lower the generated noise scale over
time to ensure better model accuracy. A visual example of the
privacy budget impact on the data reconstruction is shown in
figure 5 [66]. Figure provides four visual examples on four
datasets: MNIST [3], Fashion-MNIST [67], LFW [68], and
CIFAR10 [69] under three scenarios: (I) non-private, (II) DP-
baseline with fixed parameter setting of clipping bound C = 1
and noise scale σ = 1, and (III) DP-baseline with clipping
bound C = 4 and noise scale σ = 6, where σ is standard
deviation of a Gaussian noise function, and C is the clipping
threshold of the ℓ2 norm of gradient vector. An example of
different privacy budgets is given in the example of MNIST
reconstructions with gradients clipping of a maximum ℓ2 norm
of 1 and ε = 10−5 [70] (see figure 6). It is important to note
that by increasing the privacy of the amount of added noise and
gradient clipping, the overall training loss also increases [70].
This is the reason why limiting the number of iterations in
which the differential privacy methods are applied was initially
proposed [41, 53].

G. IID vs. Non-IID data

The agent’s local data should never be exchanged with
the neighbors to ensure privacy. However, approaches such
as [34, 35] consider shuffling the data between agents to aid
in convergence and accuracy, and only IID data environment
is considered or assumed in [36, 37, 43–46, 48–52, 54].
An updated version of GoSGD [43] performed well in a
churn setting (agents joining/leaving the network) in an IID
data environment. However, the proposed approach could not
converge in a non-IID data environment where each agent
received examples of only one class. Authors of CDPL [48]
also observed that in the case of peers holding non-iid data,
CDPL failed to drive the peers to generalize their models and
reach a good accuracy, even after running the algorithm for 200
rounds. Efforts were made to address the non-IID data envi-
ronment. In [38], the authors split the dataset into two subsets:

Fig. 5. Visual examples on MNIST, Fashion-MNIST, LFW, and CIFAR10
datasets under three scenarios: non-private, DP-baseline with fixed parameter
setting of clipping bound C = 1 and noise scale σ = 1 and DP-baseline with
clipping bound C = 4 and noise scale σ = 6.

Fig. 6. Example of MNIST reconstructions under different differential privacy
budgets, with gradients clipping of a maximum ℓ2 norm of 1 and ε = 10−5.

the stochastic data and the adversarial data. The stochastic data
was generated by allocating a fraction of samples (e.g., 50%
of the whole dataset) to agents randomly and uniformly. The
adversarial data was generated by random sampling on the
remaining dataset to produce N clusters and then allocating
every cluster to an agent. Experiments showed that decreasing
the stochastic-adversarial ratio causes increase in the average
loss value. A non-IID data environment was considered in
[39] where each agent only received samples from one or two
classes. The authors reported that the IID data experiments
performed better than the non-IID data experiments. However,
it is unclear by which amount since they did not quantify the
results. Similar data separation was considered in [53]. In a
five agent setting, and by assigning the agents with only the
samples of two classes, the authors show that D2 outperforms
D-PSGD [52] under high data variance, achieving comparable
performance as a centrally trained model. Comparing the IID
and non-IID data environments for their approach, the authors
of [40] reported an accuracy drop of around 2% on the MNIST
fashion dataset [67] in a two agent network. In [42] the authors
experimented with the FEMNIST [71] dataset of 62 classes
of handwritten characters by assigning samples from exactly
one writer to each agent. All writers’ sets of samples were
limited to the same size to eliminate bias in results. Since
the authors were conducting experiments measuring accuracy
depending on the averaging level and the number of mini-
batches, no details regarding the class distribution between
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agents were provided, and no IID or centrally trained baselines
were provided. For the Dada [47] approach, experiments were
conducted on realistic datasets that are naturally collected at
the user level, such as Human Activity Recognition With
Smartphones (Harws) [72] and Vehicle Sensor [73]. Results
show that the proposed method achieves a small increase
in accuracy when agents train their models collaboratively,
compared to individual training without any communication.
In a distributed network of sensors, a multi-task approach
was also considered [49]. Experiments were conducted on
temperature sensors of outside and in-house temperatures,
where each sensor was considered a single task. Results,
however, only demonstrate a minute mean error loss when
using the collaborative approach proposed in the study using
regression models.

V. EXPERIMENTS ON IID VS NON-IID DATA

To investigate the differences in convergence and top ac-
curacy, we evaluated several methods in the IID and non-
IID data settings using the ring and sparse topologies. For
each experiment, three separate runs were conducted for each
approach and averaged to produce the final result.

Baseline training methods. We evaluated several methods: (I)
D2 [53] as a representative of the parallel stochastic gradient
descent family (eg. [50–52]) in which the optimal topology
is undirected ring graph (doubly stochastic symmetric); (II)
SGP [74] from the stochastic gradient push family (eg. [36,
38]); (III) GoSGD [37] from decentralized gossip exchange
approaches (eg. [35]). Approaches D2 and SGP are simulated
by synchronously training all agents using a uniformly mixing
communication matrix. A uniformly mixed communication
matrix implies that all received models from peers are equally
important. GoSGD is also simulated by synchronously training
all agents. We modified the communication behavior of the
GoSGD approach so that the agent chooses its neighbor(s)
based on the tested topology. The probability of sending a
model to each peer is set to 0.1 in all experiments. In all
compared methods, agents first perform a local training step,
followed by a communication step, repeating these two steps
in a loop (see figure 7).

Fig. 7. Synchronous agent training, in which all agents first perform a local
training step, followed by a communication step, repeating these two steps in
a loop.

A. Methodology

Dataset. We evaluated the approaches on the MNIST [75]
and Reddit datasets [76]. The MNIST [75] dataset consists

of handwritten digits images and is used in a classification
task. The MNIST dataset was evaluated in multiple settings:
1) IID data setting [9] that distributes all classes uniformly
across different agents; 2) pathological non-IID data setting
[9] that partitions the dataset so that each agent gets only
two classes (out of 10); 3) practical non-IID data setting [22]
that partitions the data between agents so that every agent has
data from all the classes, but with different distributions; some
classes have a higher probability than other. The Reddit dataset
[76] consists of 1,660,820 unique Reddit users and their
comments, and each comment can have multiple sentences.
In the experiments, a single agent dataset consisted of all
comments from a unique Reddit user and is used for solving
a next-word prediction task. Furthermore, agent datasets are
divided into training, validation, and test subsets in a 60%-
20%-20% split. Following the experiments from previous work
[16, 77–80], the vocabulary size was set to 10,000 most
common words. Other words are characterized as an out-
of-vocabulary token and are not considered when calculating
prediction accuracy.

Agent model description. Model architecture used in [9]
was used for the MNIST classification task. For the next-
word prediction task, the model architecture applied on agents
is adopted from [79, 80], however, the Long Short-Term
Memory (LSTM) [81] layer was replaced with a recurrent
neural network layer called Gated Recurrent Unit (GRU) [82].

Metrics. Average User model Accuracy (UA) [31] metric was
used to measure the overall learning process performance. UA
measures the average accuracy across all agents on their local
test data, and can be expressed as:

UA =
1

n

n∑
i=1

acci

where acci is the prediction accuracy of model i on local
test dataset i (both owned by agent i). Prediction accuracy is
calculated as the fraction of correct predictions (TP and TN)
over all predictions (TP, TN, FP, and FN):

acci =
TPi + TNi

TPi + TNi + FPi + FNi
.

B. Experiments

For the MNIST experiments, the batch size was set to
32, and the learning rate to 10−3. In the IID MNIST data
setting, data was distributed uniformly across agents. In the
pathological non-IID data setting, each agent only received
examples of two classes [9]. For the practical non-IID data
setting, each agent received 80% of the two dominant classes,
and 20% of all other classes [22]. For the Reddit experiments,
the batch size was set to 50, and the learning rate to 5×10−3.
All experiments start with identical agent model parameters
and identical agent peer connections.

Experiments in ring topology. We simulated the P2P training
process of 100 agents on D2, GoSGD, and SGP approaches
in a directed and undirected ring topology for 100 agent
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Fig. 8. Test UA of 100 agents for D2, GoSGD, and SGD in undirected/directed ring topology using the IID MNIST, pathological non-IID MNIST, practical
non-IID MNIST and Reddit datasets.

epochs. Figure 8 shows the results of the simulations. In
general, directed communication provided smoother and less
variable convergence curve for the ring topology. IID MNIST
is a slightly easier task to learn compared to the practical
MNIST, resulting in faster UA convergence. In the case of the
pathological MNIST dataset, there are significant deviations
in accuracy, especially in undirected communication. For the
Reddit dataset, GoSGD struggles both in undirected and
directed ring topology, while D2 and SGP achieve greater
top AU in directed communication. There is a noticeable
difference between accuracies achieved for the MNIST and
Reddit dataset. The Reddit dataset can also be considered as a
classification task with 10,000 classes, which makes the task
very difficult (max test UA is around 7%).

Experiments in sparse topology. D2, GoSGD, and SGP
approaches were also evaluated in undirected/directed sparse
topology with fixed number of three in-out neighbors. Figure
9 shows the results of the simulations in sparse topology. As
in ring topology, IID and practical MNIST are relatively easy
tasks to learn, while pathological MNIST caused even worse
UA deviations in sparse topology. For the Reddit dataset,
GoSGD performed fairly even in directed and undirected
communication, but achieved better results compared to the
ring topology. In contrast, D2 and SGP performed worse in
both directed and undirected communication compared to the
ring topology.

Centrally trained model on pooled data. When training one
single model on all Reddit training data pooled, the model,
on average, achieved a maximum accuracy of 12.8%. For
the MNIST dataset, maximum accuracy that a single model
achieved was 99.05%. In both ring and sparse topologies, D2

and SGP achieved a top UA accuracy of around 99% for the

IID and practical MNIST but have had difficulties converging
using the pathological dataset, especially in sparse topology.
The most noticeable accuracy difference between centrally
and peer-to-peer trained models is for the Reddit dataset.
Centrally trained model achieved around 40% higher relative
mean accuracy. This higher accuracy discrepancy between
MNIST and Reddit dataset is probably due to the way MNIST
dataset were partitioned. In all three MNIST settings, agents
had received identical data distributions of training and testing
data, while the Reddit dataset contains data examples that
are only present in the training or testing data. Moreover,
Reddit dataset was used for a next-word prediction task with
a thousandfold more output classes.

VI. OPEN PROBLEMS AND FUTURE RESEARCH

There is undoubtedly a need for more research on decen-
tralized learning techniques and the communication process
between the agents. Research is especially important in volatile
peer-to-peer networks in which agents constantly join and
leave the network, commonly referred to as churn. Authors of
PeerSGD [43] showed that their variant of the GoSGD [37]
approach performed well under high network churn, but only
in strong IID data setting. As mentioned before, we classified
the communication of PeerSGD and GoSGD as asynchronous
directed communication, where each agent sends a message
to its neighbor(s) asynchronously and without waiting for a
response. Under network churn, this feature means that an
agent would not be affected by a neighbor dropping out of
the network. Sending agent is not affected if the receiving
agent is not online. It may only affect the receiving agent’s
learning process since it did not receive an update from the
sending agent. On the other side of the spectrum are syn-
chronous undirected and directed communication approaches.
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Fig. 9. Test UA of 100 agents for D2, GoSGD, and SGD in undirected/directed sparse topology using the IID MNIST, pathological non-IID MNIST, practical
non-IID MNIST and Reddit datasets.

An absence of an agent in synchronous communication may
halt the learning process of all involved agents. If an agent
is absent, its neighbors will wait for a response indefinitely,
causing the neighbors of the neighbors to wait for a response in
the next round, triggering a halting domino effect. Halting may
also affect agents in asynchronous undirected communication
but on a smaller scale. The two agents exchanging information
must send and receive messages before continuing their learn-
ing process. If one of the agents does not send their message,
the other may also wait indefinitely for a response.

There is no supervision over the learning process in decen-
tralized systems as in FL. This absence of control imposes
attack possibilities that other agents may explore to impede a
learning process of an agent. Of course, even FL is not immune
to malicious attacks (refer to [11, 83] for more details).
Online Push-Sum [38] considered a single-sided trust weighted
communication matrix instead of a uniformly mixed matrix.
The matrix weights represent the trust between the nodes, i.e.,
an agent’s impact on another agent. The matrix was presumed
in the research and not learned by the agents. PeerSGD [43]
analyzes the model upon receiving it. The receiving agent
calculates the loss for the receiving and local model on a data
batch. The receiving model will be rejected if the absolute
difference between losses is greater than a preset threshold.
A threshold parameter is considered in CDPL [48] to avoid a
potential accuracy decrease in the agent’s model by rejecting
the received model if its accuracy on the test dataset is not
acceptable. Evaluating model performance on local data may
help an agent preserve itself from malicious attacks, but this is
still an area of open research. A malicious attack may also be
considered as changing the model’s behavior when predicting
just one of the classes. The model could still perform well

on all other classes and ”bypass” the accuracy or loss checks.
For example, in autonomous driving, falsely predicting just
one class may have serious consequences.

Commonly, the communication matrix is predetermined
upfront. A predetermined matrix is a vital presumption, espe-
cially in multi-task approaches. A multi-task approach Dada
[47] considered the process of relations forming between
agents. In Dada, the peer-to-peer connections are learned along
with the model based on agents’ tasks. For the experiment
using a synthetic Moon dataset, agents were clustered based
on the moon rotation. The assumption is that clustering agents
with similar learning goals will enhance their learning ability.
Whether there might be some benefits in mixing agents
between clusters is an interesting future research question.
Since connections between agents can be learned through
services such as random peer sampling service (RPS) [84],
and potential neighbors can join and leave at any time, it
is crucial to study the potential sparsity of the network.
Current research is mainly focused on a balanced and fixed
number of neighbors. However, an agent might be limited
to communication with fewer neighbors than other agents.
Reasons may be that peers reject communication requests
due to already reaching the neighbor limit, or, in a multi-
task setting, peers reject communication due to differences in
objectives.

Energy consumption is a concern especially highlighted on
battery-powered devices such as mobile devices. An economic
research direction should investigate the trade-offs between
communication and local computation. This research should
investigate the effects of increasing the amount of commu-
nication and decreasing the amount of local computation, or
vice-versa. By knowing the cost of communication and local
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computation for each agent, an optimal strategy would be
applied to each agent.

With a vast number of different devices present, such as
sensors, mobile devices, or laptops, there is a need for a
collaborative approach that supports heterogeneous models. By
slicing the network into pieces, in a multi-task environment,
agents were able to average only parts of the network in
[42]. This approach still requires that two models share the
architecture of some layers. Future research could consider the
model distillation approach as a method of knowledge transfer
between heterogeneous models.

VII. CONCLUSION

Peer-to-peer learning is an area of great research interest.
This paper presents an overview of the recent advances and
general approaches in decentralized learning techniques. The
main difference between parameter-server (FL) and decen-
tralized learning approaches is the process of orchestrating
the collaboration between agents. The lack of central author-
ity guiding the collaboration in decentralized systems puts
more accountability on agents, making them responsible for
orchestrating the collaboration process. Before collaborating,
agents must discover each other. Since the collaboration graph
is commonly assumed in studies, future research needs to
study agent discovery and conditions of forming connections
between agents. When collaborating, it is essential to consider
what information is being conveyed and how. Agent’s privacy
should be preserved to prevent private data leakage, and
the communication between agents must be fault-tolerant to
prevent errors. Directed asynchronous communication presents
a good solution, but more research needs to be conducted to
understand churn and network sparsity scenarios. In decentral-
ized unsupervised systems, invalid models may be exchanged
between agents maliciously or unknowingly. Future studies
should address this problem in more detail rather than just
validating the model on test data. To better understand the
applicability of these decentralized approaches in real systems,
studies should be carried out with realistic non-IID data.
As considered agents are mostly battery-powered, particular
interest should be dedicated to optimizing the amount of local
computation and communication. Future research should also
address model heterogeneity. An approach supporting knowl-
edge transfer between heterogeneous models would enable
each agent to own a custom personalized model that best meets
its needs.
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