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Rijeka, 2025



Supervisor: prof. dr. sc. Marina Ivašić-Kos
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Abstract

The primary objective of this dissertation is to advance multi-person pose forecasting,

a computer vision task with broad applications in human-computer interaction, autono-

mous systems, and sports analytics. Multi-person pose forecasting involves predicting the

future poses of multiple individuals based on historical pose sequences, requiring models

that can accurately capture both spatial configurations and temporal dynamics of hu-

man motion. A key contribution of this work is the introduction of a lightweight neural

network architecture called MPFSIR, specifically designed for multi-person pose forecas-

ting. MPFSIR includes a dedicated component for social interaction prediction, enabling

it to model and anticipate interactions between individuals in a shared space. Despite its

simplicity, MPFSIR achieves performance comparable to more complex state-of-the-art

(SOTA) models, while using up to 30 times fewer parameters, making it highly suitable for

real-time and resource-constrained applications. In addition, the dissertation proposes a

novel hybrid architecture named GCN-Transformer, which combines Graph Convolutional

Networks (GCN) and Transformers to jointly capture spatial dependencies among joints

and temporal evolution of motion. The GCN-Transformer consistently outperforms com-

peting methods across multiple datasets. Based on the MPJPE metric, it demonstrates

an average 4.15% improvement over the closest SOTA model across four benchmark da-

tasets. Unlike other models whose performance varies across datasets, GCN-Transformer

shows consistent results, underscoring its robustness and generalization capability across

different domains. This is further supported by the minimal variation in its improvements

over the Zero Velocity baseline, with a standard deviation of only 1.69% in two-person sce-

nes and just 0.1% in three-person scenes. Another major contribution is the development

of a novel loss function that enhances training effectiveness. This loss integrates two key

components: Velocity Loss (VL), which captures movement velocity consistency across

frames, and Multi-Person Joint Distance Loss (MPJD), which models spatial coherence

between individuals in the scene. These terms guide the model to produce motion that is

both realistic and interaction-aware. Finally, the dissertation introduces a new evaluation

metric named FJPTE that addresses the limitations of existing approaches. This metric

jointly considers both local movement trajectories and the final global position, offering a
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more comprehensive and fine-grained assessment of forecasting accuracy than traditional

metrics such as MPJPE or VIM. Extensive experimental validation on benchmark data-

sets, including SoMoF, ExPI, CMU-Mocap, and MuPoTS-3D, confirms the effectiveness

of the proposed models, training strategies, and evaluation metric. The results highlight

meaningful improvements in forecasting precision, efficiency, and generalization, establi-

shing a strong foundation for practical deployment in complex, real-world multi-person

scenarios.

Keywords: multi-person pose forecasting, neural network architecture, spatial and

temporal features, graph convolutional network, Transformer model, pose estimation, pose

tracking
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Prošireni sažetak

Cilj ove disertacije je unaprijediti područje predvidanja poza vǐse osoba, zadatak iz

domene računalnog vida koji ima široku primjenu u interakciji čovjeka i računala, sportu,

robotici i autonomnim sustavima. Predvidanje poza vǐse osoba podrazumijeva automat-

sko modeliranje i predvidanje budućih položaja tijela vǐse pojedinaca u sceni, temeljem

prethodnih sekvenci njihovih kretnji. Rješavanje ovog zadatka zahtijeva pouzdano generi-

ranje točnih vremenskih sekvenci poza iz videozapisa, što uključuje korǐstenje sofisticiranih

metoda za estimaciju 2D i 3D poza te njihovog praćenja kroz vrijeme. U ovoj disertaciji

predstavljeno je vǐse znanstvenih doprinosa koji se bave ključnim izazovima u području

predvidanja poza vǐse osoba.

Prvi doprinos odnosi se na razvoj učinkovite arhitekture duboke neuronske mreže, na-

zvane MPFSIR, koja koristi prostorne i vremenske značajke sekvence poza kako bi precizno

predvidala buduće poze. Osim toga, MPFSIR uključuje i komponentu za predvidanje so-

cijalnih interakcija, što omogućuje modelu da prepozna i predvidi medudjelovanja izmedu

pojedinaca u sceni. Ovaj model uspješno održava ravnotežu izmedu točnosti i složenosti,

postižući rezultate usporedive s najnaprednijim (state-of-the-art) modelima, ali s do 30

puta manjim brojem parametara, čineći ga pogodnim za primjene u stvarnom vremenu i

na uredajima s ograničenim resursima.

Drugi doprinos disertacije predstavlja nova arhitektura temeljena na kombinaciji graf

konvolucijskih mreža (engl. Graph Convolutional Network – GCN) i Transformer modela.

Ova hibridna arhitektura, nazvana GCN-Transformer, koristi snagu GCN-a za modelira-

nje odnosa izmedu zglobova unutar svake poze, dok Transformer slojevi omogućuju učenje

vremenskih odnosa izmedu poza kroz cijelu sekvencu. GCN-Transformer nadmašuje druge

modele, pri čemu na temelju MPJPE metrike pokazuje prosječno pobolǰsanje od 4,15%

u odnosu na najbliži SOTA model na četiri evaluirana skupa podataka. Osim toga, za

razliku od ostalih modela čije performanse znatno variraju ovisno o skupu podataka,

GCN-Transformer pokazuje konzistentne rezultate, što potvrduje njegovu robusnost u

predvidanju poza vǐse osoba i čini ga odličnom osnovom za primjenu u različitim dome-

nama.
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Uz arhitektonska rješenja, u disertaciji se predlaže i nova funkcija gubitka koja po-

bolǰsava treniranje modela. Funkcija uključuje dva specifična izraza: Velocity Loss (VL),

koji se odnosi na brzinu kretanja zglobova, te Multi-person Joint Distance Loss (MPJD),

koji modelira udaljenosti izmedu zglobova različitih osoba. Ova funkcija gubitka omogućuje

modelu da uči realističnije obrasce kretanja i bolje razumije prostorne odnose medu poje-

dincima, što omogućuje generiranje realističnijih i vjerodostojnijih predvidanja. Učinkovitost

predložene funkcije gubitka je potvrdeno empirijskim pobolǰsanjem preciznosti modela na

standardnim evaluacijskim metrikama.

Dodatno, disertacija uvodi novu metriku za evaluaciju modela, nazvanu FJPTE, koja

omogućuje detaljniju evaluaciju performansi prediktivnih modela. Za razliku od tradici-

onalnih metrika koje promatraju samo trenutni položaj zglobova ili završni okvir, FJPTE

uključuje i evaluaciju cijele putanje kretanja te razlikuje lokalnu dinamiku pokreta od

globalnog pomaka tijela. Time se omogućuje dublji uvid u stvarne prednosti i slabosti

pojedinih modela.

Sve predložene metode i doprinosi su validirani kroz opsežna eksperimentalna ispitiva-

nja na standardnim skupovima podataka, uključujući SoMoF Benchmark, ExPI, CMU-

Mocap i MuPoTS-3D. Rezultati pokazuju značajna pobolǰsanja u točnosti predikcije i

učinkovitosti modela, kao i sposobnost prilagodbe različitim vrstama scena i interakcija

medu osobama. Zaključno, ova disertacija donosi niz inovacija koje zajednički unapreduju

područje predvidanja poza vǐse osoba. Predložene arhitekture, specijalizirana funkcija gu-

bitka i nova metrika evaluacije omogućuju izgradnju naprednijih modela koji preciznije,

učinkovitije i robusnije predvidaju kretanje ljudi u složenim scenarijima. Time se postav-

ljaju čvrsti temelji za daljnji napredak u ovom području računalnog vida.

Ključne riječi: predvidanje poza vǐse osoba, arhitektura neuronske mreže, prostorne

i vremenske značajke, graf konvolucijska mreža, Transformer model, predvidanje poza sa

slike, praćenje poza
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1. INTRODUCTION

In recent years, the field of computer vision has seen significant advancements driven

by the growing computational power and sophisticated algorithms. One of the challenging

areas within computer vision is pose forecasting, particularly for scenarios involving mul-

tiple individuals. Multi-person pose forecasting in dynamic scenes involves predicting the

future poses of several people in a scene based on historical sequences of poses [52, 48, 36,

55, 35, 37, 13]. This task can be applied in numerous applications, including autonomous

driving, human-computer interaction, surveillance, and sports analytics [11, 16, 28, 30].

Pose forecasting is a sequence prediction problem where the model predicts the fu-

ture positions of body joints based on observed past movements. This requires a deep

understanding of both spatial and temporal dynamics. Spatial dynamics refer to the rela-

tionships and dependencies between different body parts, while temporal dynamics involve

the changes in these relationships over time. Capturing these intricate patterns is partic-

ularly challenging in multi-person scenarios due to the interactions between individuals

and varying motion patterns. Early methods for pose forecasting often relied on Multi-

Layered Perceptron networks (MLP) [6, 12, 43] or Recurrent Neural Networks (RNN)

[33], which struggle to capture the complex nature of human motion. Recent approaches

have leveraged advanced deep learning techniques, particularly Graph Convolutional Net-

works (GCNs) [28, 51, 37] and Transformer models [52, 48, 55, 35], to effectively model

these complexities. However, these methods still face limitations in handling long-term

dependencies and interactions between multiple individuals.

The increasing availability of video data from surveillance systems, mobile devices,

and other sources has provided lots of data for training and evaluating pose forecasting

models. However, transforming this raw data into accurate sequences of poses involves

several steps, including pose estimation and tracking. Pose estimation detects the posi-

tions of key body joints in individual frames, while pose tracking ensures the consistency

of these positions across frames, connecting them into coherent sequences. Despite ad-

vancements in these areas, the quality of pose data remains an essential factor influencing

the performance of forecasting models.
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1.1. Purpose of research

The main objective of this research is to advance the field of multi-person pose forecast-

ing by tackling the significant challenges existing methods encounter. This dissertation

focuses on the creation of sophisticated deep neural network architectures designed to cap-

ture both spatial and temporal dynamics in multi-person environments effectively. This

study aims to develop more precise and reliable forecasting models using techniques like

Multi-Layered Perceptions (MLP), Graph Convolutional Networks (GCNs), and Trans-

former models. Moreover, the research includes the design of a specialized loss function

and a comprehensive evaluation metric to enhance the training and performance evalu-

ation of these models. The ultimate goal is to provide practical solutions that can be

utilized across various applications, improving the interaction between humans and ma-

chines in dynamic settings.

1.2. Research motivation

This research is motivated by the increasing need for intelligent systems capable of

predicting human actions and responding effectively. In autonomous driving, predicting

pedestrian movements can be used for enhancing safety and optimizing traffic flow. In

human-computer interaction, predicting user behavior can lead to more intuitive and

responsive interfaces. In sports analytics, anticipating athletes’ movements offers valuable

insights for improving performance and making strategic decisions. Despite these potential

benefits, many existing pose forecasting methods still face challenges with forecasting

error and efficiency, particularly in complex scenarios involving multiple individuals. This

dissertation aims to address these shortcomings by utilizing the latest advancements in

deep learning to develop more effective and practical pose forecasting models. The goal is

to contribute meaningfully to the field of multi-person pose forecasting and its real-world

applications.
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1.3. Hypotheses and scientific contributions of research

As previously described, this dissertation’s primary objective is to advance the field

of multi-person pose forecasting by addressing its key challenges through innovative solu-

tions.

Scientific hypotheses are:

• H1: A model utilizing spatial and temporal pose features can achieve equivalent

multi-person pose forecasting performance as more complex SOTA models while

using significantly fewer parameters.

• H2: Combining the architectures of graph convolutional networks and Transformers

can create a model that has a lower error in multi-person pose forecasting compared

to existing SOTA model architectures.

• H3: A loss function that includes movement velocity error and joint distance error

between individuals contributes to the effective training of the model.

Realized scientific contributions are:

• A lightweight neural network architecture and model, named MPFSIR, for multi-

person pose forecasting based on spatial and temporal features.

• A neural network architecture and model, named GCN-Transformer, for multi-

person pose forecasting comprising a graph convolutional network and a Trans-

former.

• A loss function for effective training of pose forecasting models that includes move-

ment velocities (Velocity Loss - VL) and joint distance between individuals (Multi-

person Joint Distance - MPJD).

• An evaluation metric, named FJPTE, for pose forecasting that considers the move-

ment trajectory and the final position.
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The organization of this doctoral thesis is designed to systematically explore and val-

idate the research hypotheses, detailing scientific contributions across multiple sections.

The thesis began with an introduction that outlined the purpose of the research, the

motivations driving the study, and a clear presentation of the research hypotheses and

scientific contributions. Following the introduction, the elaboration section dives deep

into the subject of multi-person pose forecasting. It discusses social interactions, problem

formulation, metrics, and the datasets used in this study, setting the stage for subse-

quent detailed discussions on individual contributions. Each major contribution is then

explored in its dedicated subsection. The thesis first presents a lightweight neural network

architecture designed for efficient multi-person pose forecasting, followed by comprehen-

sive experimental results across the SoMoF Benchmark, CMU-Mocap and MuPoTS-3D

datasets. Next, it discusses a combined approach using Graph Convolutional Networks

and Transformer to enhance multi-person pose forecasting, demonstrating results on the

SoMoF Benchmark, ExPI, CMU-Mocap and MuPoTS-3D datasets. Further, the thesis

discusses an innovative loss function tailored to effectively train pose forecasting models,

including an ablation study to showcase its efficacy. This is complemented by a section

on a new evaluation metric specifically developed for pose forecasting evaluation, along-

side results highlighting its advantages over standard metrics. The practical application

of these methodologies is then illustrated through a detailed pipeline for real-world pose

forecasting, focusing on 2D and 3D pose estimation, tracking, and a thorough evalua-

tion on a specific HBS dataset. The conclusion synthesizes the findings, reaffirming the

validity of the scientific contributions and hypotheses, and outlines future research direc-

tions. This is followed by abstracts of articles from the doctoral research, which provide

summaries of key papers published during the study.
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2. ELABORATION

2.1. Multi-person pose forecasting

The task of multi-person pose forecasting has gained substantial attention in recent

years, driven by the need for accurate and efficient models that can predict future human

poses based on historical data. Early models in this field, such as the Zero Velocity

model, established a simple yet effective benchmark for pose forecasting. This model

predicts future poses by repeating the last observed pose for all future frames, effectively

assuming no additional movement will occur. While conceptually straightforward and

requiring no learning process, the Zero Velocity model has proven to be a surprisingly

strong baseline, often matching or even outperforming more complex methods, especially

in short-term forecasting scenarios where minimal movement occurs between frames.

Initial work predominantly concentrated on single-person pose forecasting. The LTD

model, introduced by Mao et al. in [28], stands out for its use of Graph Convolutional

Networks (GCNs). This model employs 12 GCN blocks with residual connections, along

with additional graph convolutional layers at the start and end. These components work

together to encode temporal information and refine features for pose prediction. Another

noteworthy contribution is the Future Motion model by Wang et al. in [51], which also

uses 12 GCN blocks but enhances performance through data augmentation, curriculum

learning, and Online Hard Keypoints Mining (OHKM) loss. In contrast, Parsaeifard et

al. in [33] proposed DViTA, which decomposes human movement into the global trajec-

tory and local pose dynamics. This model utilizes a Long-Short Term Memory (LSTM)

encoder-decoder network for trajectory forecasting and a Variational AutoEncoder (VAE)

LSTM for local pose dynamics. Although innovative, the model’s reliance on separate en-

coders for different dynamics introduces complexity that may impact scalability. The

work of Chiu et al. in [11] and Mao, Liu, and Salzmann [26] explored hierarchical RNNs

and GNNs for motion prediction, respectively. The latter utilizes graph attention net-

works to improve prediction across multiple entities. Guo et al. in [12] demonstrated

that a simple MLP network with skip connections could outperform state-of-the-art mod-

5



els with significantly fewer parameters. Models like HR-STAN proposed by Medjaouri

and Desai in [30] and GAGCN proposed by Zhong et al. in [56] have made strides by

combining spatial and temporal components in their architectures. HR-STAN utilizes

high-resolution spatio-temporal attention mechanisms to directly map a fixed-length pose

history to a fixed-length pose forecasting sequence, eliminating the need for separate en-

coding and decoding steps and using dilated convolutions to increase the receptive field

without compressing features. GAGCN, on the other hand, employs spatial and temporal

gating networks to adaptively blend dependencies, deriving blending coefficients through

a Kronecker product that captures the spatio-temporal dependencies for better motion

representation.

Recent developments in multi-person pose forecasting have increasingly integrated

social interactions and dependencies. Guo et al. in [13] introduced a model with two

parallel pipelines for leader and follower individuals, incorporating attention mechanisms

and GCN-based predictors. The Multi-Range Transformer (MRT) model proposed by

Wang et al. in [52] utilizes a transformer-based architecture to capture both local indi-

vidual motion and global social interactions. The MRT decoder forecasts future poses

by attending to features from both local and global encoders, incorporating a motion

discriminator to maintain natural motion characteristics. This approach enhances the

model’s robustness but may be computationally intensive. Similarly, the SoMoFormer

model proposed by Vendrow et al. in [48] employs a standard Transformer Encoder to

jointly predict pose trajectories for multiple individuals by encoding joint positions as

Discrete Cosine Transform (DCT)-encoded padded trajectories. Peng et al. in [36] pro-

posed model SoMoFormer2, which captures both local and global pose dynamics using

components like the displacement sub-sequence encoder (DSE), social interaction encoder

(SIE), and Transformer predictor. The DSE employs multiple GCN units to extract fea-

tures from sub-sequences, while the SIE simultaneously models individual motion and

social interactions by capturing past displacements, temporal information, spatial rela-

tions, and social-aware attention. In contrast, JRTransformer, proposed by Xu et al. in

[55], models future joint positions and relationships by analyzing temporal differentiation

and explicit joint relations. TBIFormer model proposed by Peng, Mao, and Wu in [35]

approaches the problem by decomposing poses into body parts and modeling their in-

teractions separately. The Temporal Body Partition Module transforms sequences into

6



body-part sequences, which are then processed by a Transformer Decoder for forecasting.

Recent approaches like SocialTGCN, proposed by Peng et al. in [37], integrate a Pose

Refine Module with GCN layers and a Social Temporal GCN encoder, which includes

GCN and Temporal Convolutional Network (TCN) layers.

2.1.1. Social Interaction

Effective modeling of social interactions in multi-person settings has become an im-

portant aspect of pose forecasting. Models typically handle social interaction implicitly

by processing all individuals in the scene simultaneously, requiring the model to implicitly

learn social dynamics through interaction patterns. However, some models have intro-

duced additional mechanisms or modules specifically designed to enhance the model’s

ability to capture and represent these social interaction dependencies more explicitly.

Early models like SocialPool [1] aggregated information based on proximity but failed to

account for the absence of social interaction despite spatial closeness. SocialPool uses

pooling operations to combine neighboring individuals’ features, which are then inte-

grated with individual features for subsequent layers. While this approach simplifies

interaction modeling, it does not fully capture the nuances of social dynamics. SoMo-

Former [48] addressed some limitations of SocialPool by incorporating a grid positioning

method to represent social connections. Each cell in the grid has a learnable positional

embedding, and individuals are associated with specific cells based on their joint posi-

tions. This method improves spatial understanding but still lacks consideration for cases

where individuals are close without social interaction. In contrast, Guo et al. in [13]

introduced Cross-Interaction Attention (XIA), which models social interactions between

dancers through a cross-interaction attention module. XIA refines pose information by

updating keys and values using multi-head self-attention, enhancing the accuracy of mo-

tion forecasting through collaborative human motion prediction. Similarly, Peng et al. in

[36] proposed a social interaction encoder (SIE) based on the Transformer model. SIE

includes components for time encoding, spatial encoding, and social-aware motion at-

tention. This approach effectively models social dynamics by integrating individual and

social interactions, improving multi-person motion forecasting. Peng et al. in [37] ad-
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dresses social interaction by constructing a Spatial Adjacency Matrix based on Euclidean

distances between body root trajectories, which is fed to the model. Peng, Mao, and Wu

in [35] proposed the Social Body Interaction Multi-Head Self-Attention module, which

uses an attention mechanism to model both the dynamics of individual body parts and

the interaction dependencies between body parts of multiple individuals. Overall, these

advancements highlight the importance of incorporating social interactions into pose fore-

casting models. However, challenges remain in fully capturing the complexity of social

dynamics and integrating them seamlessly into pose forecasting models, an aspect that

this dissertation directly addresses through the development of models and loss functions

specifically designed to model interpersonal interactions.

2.1.2. Problem formulation

In the multi-person pose forecasting task, the goal is to forecast the movements of

multiple individuals within a given scene. Each individual is represented by a set of

anatomical joints, such as elbows, knees, and shoulders. The objective is to forecast the

trajectories of these joints over a future period, typically defined as T timesteps. To

achieve this, the model is provided with a sequence of historical poses for each individual.

These historical poses contain the positional data of each joint in three-dimensional Carte-

sian coordinates within a global coordinate system. For any individual n = 1, . . . , N , each

historical pose is described by a vector of J dimensions, where J represents the number

of tracked joints. Therefore, the complete historical sequence for individual n is denoted

as Xn
1:t, capturing the temporal progression of poses up to the current time. The length

of the input sequence of poses is represented as t and determines the number of past

poses utilized by the model for making predictions. The index n ranges from 1 to N ,

where N is the total number of individuals observed in the scene. The model’s primary

task is to generate future poses for each individual, denoted as Xn
t+1:T . Here, T indicates

the number of timesteps into the future that the model needs to forecast. The problem

formulation is visually represented in Figure 1.
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Figure 1: Problem formulation for predicting the future poses of multiple individuals.
Each individual is represented by joints, and the task is to forecast their trajectories
over T timesteps. The model uses a historical sequence of poses Xn

1:t for each individual,
containing joint positions in 3D coordinates, to predict future poses Xn

t+1:T [45].

2.1.3. Metrics

To evaluate the performance of pose forecasting models, several metrics are commonly

used. The Mean Per Joint Position Error (MPJPE) is a key metric for assessing the error

of predicted poses. It calculates the average Euclidean distance between predicted and

ground truth joint positions across all joints. A lower MPJPE value indicates a closer

alignment of predicted poses to the actual positions. The MPJPE is defined as:

EMPJPE(ŷ, y, φ) =
1

Jφ

Jφ∑
j=1

∥∥∥P (f)
ŷ,φ(j)− P (f)

y,φ(j)
∥∥∥
2

(1)

where f denotes the time step, and φ represents the skeleton. Here, P
(f)
ŷ,φ(j) and P

(f)
y,φ(j)

are the predicted and ground truth positions of joint j, respectively. Jφ is the total number

of joints, and ∥·∥2 denotes the Euclidean distance.

Another important metric is the Visibility-Ignored Metric (VIM), introduced by Adeli

et al. in [2]. VIM measures the mean Euclidean distance between predicted and actual

joint positions at the final pose T . This metric involves flattening the joint positions into

a single vector with dimensionality 3J , where J is the number of joints. The VIM score

is defined as:

EVIM(ŷ, y, φ) =
1

3Jφ

3Jφ∑
j=1

∥∥∥P (j)
ŷ,φ − P (j)

y,φ

∥∥∥
2

(2)

where P
(i)
y,φ and P

(i)
ŷ,φ represent the flattened ground truth and predicted joint i positions,

respectively. 1
3Jφ

∑3Jφ
j=1 computes the mean distance across all joints, while ∥·∥2 denotes

the Euclidean distance.
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2.1.4. Datasets

To train and evaluate a multi-person pose forecasting model, several datasets capturing

a variety of human motions and interactions can be employed. Standard methodology,

as used in prior works such as SoMoFormer [48] and MRT [52], utilizes the 3D Poses in

the Wild (3DPW) [50] and the Archive of Motion Capture As Surface Shapes (AMASS)

[25] datasets. The 3DPW dataset includes over 60 video sequences of human motion in

real-world settings, offering accurate 3D pose annotations in various natural scenes, such

as people communicating, engaging in sports, or walking, recorded with a moving hand-

held camera. However, 3DPW is used in the form of the SoMoF Benchmark [2], which

inverts the standard train-test split, training the model on the test set and evaluating it

on the train set. The AMASS dataset provides an extensive repository of motion capture

data, comprising over 40 hours of motion and 11,000 single-person sequences presented as

SMPL mesh models. For training, the CMU, BMLMovi, and BMLRub subsets of AMASS

are typically used, as they encompass a broad range of motions. To generate multi-person

training data from the single-person sequences, data syncretization is needed by combining

sampled sequences, thereby creating multi-training scenarios.

Supporting datasets for additional evaluation include the CMU-Mocap [8] and MuPoTS-

3D [31] datasets. The Carnegie Mellon University Motion Capture Database (CMU-

Mocap) and the Multi-person Pose Estimation Test Set (MuPoTS-3D) contain three-

person scenes with diverse motions, such as communication gestures and waving. How-

ever, these two datasets often feature simpler movements with minimal interactions. For

a more challenging evaluation involving complex interactions and varied human motions,

the Extreme Pose Interaction (ExPI) [13] dataset is preferred. ExPI includes dynamic se-

quences involving two couples of dances engaging in extreme movements and interactions,

such as aerial maneuvers, resulting in a collection of 115 sequences and 60,000 annotated

3D body poses.
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2.2. A lightweight neural network architecture for multi-person

pose forecasting

The Multi-Person Pose Forecasting with Social Interaction Recognition (MPFSIR)

[43] model is an advanced neural network architecture designed to enhance multi-person

pose forecasting by integrating temporal, spatial, and social interaction information. The

model architecture consists of several distinct modules: two temporal modules, a temporal

context module, a spatial context module, and a social interaction auxiliary module. The

architecture of the MPFSIR model features a series of fully connected layers integrated

with skip connections to enhance information flow and gradient propagation. Each mod-

ule in the model consists of fully connected layers interspersed with Parametric Rectified

Linear Unit (PReLU) activation functions, layer normalization, and dropout for regular-

ization. Skip connections are strategically implemented to link the initial and final layers

within each module, ensuring that important information is preserved and facilitating

more efficient learning. This design approach allows the model to effectively capture and

utilize both temporal and spatial dependencies while also improving the robustness of the

training process.

Initially, pose sequences are preprocessed by padding them with the last known pose

to a uniform length and applying a Discrete Cosine Transform (DCT) to convert the hu-

man motion data into the frequency domain. This transformation helps capture motion

dynamics more efficiently, as demonstrated in previous studies like SoMoFormer [48] and

LTD [28]. After preprocessing, the model processes two separate pose sequences from the

same scene, denoted as S1 and S2, through the first temporal module (T1). This module

extracts temporal features from each sequence. The output sequences from T1 are then

fed into the temporal context module (TCTX), which captures temporal dependencies

between the two sequences, enabling the model to learn complex temporal interactions.

Following the temporal context processing, the spatial context module (SCTX) captures

spatial dependencies between the pose sequences. In parallel, the social interaction auxil-

iary module (SCINT) evaluates the nature of social interactions between the individuals

represented by the sequences. SCINT classifies the relationships into categories: social

interaction, no social interaction, or only one person in the scene, which enhances the
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model’s ability to interpret social dynamics. After extracting features from these mod-

ules, the output sequences are fed into the temporal module T2 to refine the prediction

of the sequences along the temporal dimension. Finally, the output sequences from T2

undergo an Inverse DCT (IDCT) to revert the data from the frequency domain back

to Cartesian coordinates. In cases where a scene contains more than two individuals,

the model processes the data by forming all possible pairs of individuals, performing

two-person forecasting for each pair independently, and subsequently combining these

pairwise predictions to produce the final multi-person forecast for the entire scene. The

model architecture, along with sequence processing, is visually represented in Figure 2.

Figure 2: The figure depicts the MPFSIR model architecture. Input sequences S1 and
S2 are padded and transformed using Discrete Cosine Transform (DCT) for frequency
domain encoding. The model processes these sequences through several modules for pose
forecasting and social interaction classification. Finally, the sequences are converted back
to Cartesian coordinates using Inverse DCT (IDCT) to produce the predicted poses [43].
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2.2.1. Training

Training the MPFSIR model involves several key steps to ensure robust and precise

pose forecasting. The network learns to forecast future poses and classify the type of

social interactions by minimizing a combined loss function that evaluates both pose error

and type of interaction predictions. The loss is calculated as follows:

L = Lrec + Lscir × γ (3)

Lrec =
1

N

N∑
i=1

(yi − ŷi)
2 (4)

Lscir = −
1

n

n∑
i=1

C∑
j=1

yi,j log(ŷi,j) (5)

where Lrec measures the reconstruction error for pose forecasting, and Lscir repre-

sents the classification loss for predicting the type of social interaction. The hyperparam-

eter γ controls the relative importance of the interaction classification loss in the total

objective. In the Lrec loss term, N denotes the number of individuals in the scene, yi rep-

resents the ground-truth pose sequence for the i-th individual, and ŷi is the corresponding

predicted pose sequence. This term minimizes the mean squared error (MSE) between

predicted and ground-truth joint positions. In the Lscir loss term, n is the number of

total interactions in the scene (n = N − 1), C is the number of interaction classes (e.g.,

interacting, not interacting, single person), yi,j denotes the ground-truth interaction type

between individuals i for class j, and ŷi,j is the corresponding predicted probability.

During training, the γ factor was set to 0.01 to ensure that pose forecasting remains

the dominant learning objective. The model is trained for 500 epochs with a batch size

of 256 using the Adam optimizer with an initial learning rate of 0.01, decayed by 0.1 at

epochs 10, 200, and 400.

Additionally, data augmentation techniques are employed to aid the training process

controlled by a probabilistic algorithm that determines whether and how to apply these

techniques, ensuring diverse training examples and robust performance in real-world ap-

plications. Employed data augmentation techniques include sequence reversal, random
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scaling, random rotation, random positioning, and random person permutation.

2.2.2. Experimental results

The experimental evaluation of the MPFSIR model was conducted across three datasets:

the SoMoF Benchmark, CMU-Mocap, and MuPoTS-3D. For the SoMoF Benchmark, re-

sults of the other models were sourced directly from the official website at

https://somof.stanford.edu. In contrast, for CMU-Mocap and MuPoTS-3D, all pre-

sented models were re-evaluated using their respective implementations and training

strategies to ensure a fair comparison, given the inherent randomness in the dataset

creation process.

2.2.2.1. Results on SoMoF Benchmark

The SoMoF Benchmark [1, 2] is designed to evaluate the performance of multi-person

pose forecasting methods. The benchmark involves predicting the next 14 frames (930

ms) using 16 frames (1070 ms) of input data. This input data includes joint positions for

multiple people, and the results are reported as the mean VIM at multiple future time

steps. Consistent with the methodology in [51] and [48], the 3DPW [50] and AMASS [25]

datasets are used for training, providing both multi-person and single-person data. During

training, only the 13 joints evaluated in SoMoF are used. Table 1 compares different

methods on the SoMoF 3DPW test set, showing that the MPFSIR model consistently

achieves competitive results with significantly fewer model parameters.

The results from the SoMoF Benchmark demonstrate the effectiveness of the MPF-

SIR model in multi-person pose forecasting. When comparing VIM values at various time

steps, MPFSIR performs competitively against other state-of-the-art methods, such as

SoMoFormer and Future Motion, while utilizing up to 30 times fewer parameters. Al-

though SoMoFormer achieves the best overall performance with the lowest VIM values

across all time steps, MPFSIR’s results are close, particularly considering its significantly

smaller number of parameters (0.15 million compared to SoMoFormer’s 4.88 million).

This highlights MPFSIR’s efficiency and ability to maintain low predictive error with a
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Table 1: Comparative performance analysis of different models on the SoMoF Benchmark
test set using the VIM metric. Lower VIM values indicate a lower error in joint position
predictions. The MPFSIR model demonstrates competitive performance relative to state-
of-the-art methods, as shown by the official dataset page https://somof.stanford.edu
results [43].

Method
3DPW Prediction in Time Size

100ms 240ms 500ms 640ms 900ms Overall #Param (M)

Mo-Att [27] + ST-GAT [16] 62.1 97.7 155.2 185.0 251.0 150.2 NA

SC-MPF [1] 46.3 73.9 130.2 160.8 208.4 123.9 15.65

Zero Velocity 29.4 53.6 94.5 112.7 143.1 86.7 0

TRiPOD [2] 30.3 51.8 85.1 104.8 146.3 83.7 NA

DViTA [33] 19.5 36.9 68.3 85.5 118.2 65.7 0.13

Future Motion [51] 9.5 22.9 50.9 66.2 97.4 49.4 2.56

SoMoFormer [48] 9.1 21.3 47.5 61.6 91.9 46.3 4.88

MPFSIR (our) [43] 11.5 25.5 54.7 70.6 101.5 52.76 0.15

lighter model. The compact architecture of MPFSIR makes it suitable for applications

with limited computational resources, providing a practical alternative without a sub-

stantial loss in prediction precision. Notably, methods Mo-Att and SC-MPF perform so

poorly that they fail to even outperform the Zero Velocity model, which only repeats the

last known pose. Overall, the table indicates that MPFSIR strikes a favorable balance

between model complexity and performance.

2.2.2.2. Results on CMU-Mocap and MuPoTS-3D

Additionally, MPFSIR is compared with the state-of-the-art models HRI [27], LTD

[28], MRT [52], and SoMoFormer [48] on the CMU-Mocap and MuPoTS-3D datasets.

Consistent with their respective protocols, models are trained using a synthesized dataset

created by combining sampled motions from the CMU-Mocap database to generate three-

person scenes. Evaluations are performed on both the CMU-Mocap and MuPoTS-3D

datasets, while the models are trained only on the CMU-Mocap training set. For input, 15

frames (equivalent to 1000 ms) of historical data are provided, and the models are tasked

with predicting the subsequent 45 frames (corresponding to 3000 ms). Performance is

measured by reporting the Mean Per Joint Position Error (MPJPE) at 1, 2, and 3 seconds
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into the future. To ensure a fair comparison, the code and data provided by [52] are used

to train and evaluate each method. The findings, presented in Table 2, show that the

MPFSIR model consistently outperforms competing methods on both the CMU-Mocap

and MuPoTS-3D datasets.

Table 2: Comparative analysis of model performance on the CMU-Mocap and MuPoTS-
3D test sets using the MPJPE metric (in meters). Lower MPJPE values indicate a lower
error in joint position predictions. The MPFSIR model outperforms other models in pose
forecasting on both datasets [43].

Method
CMU-Mocap Test Set MuPoTS-3D Test Set Size

1 sec 2 sec 3 sec Overall 1 sec 2 sec 3 sec Overall #Param (M)

LTD [28] 4.03 7.06 9.91 7.00 1.75 2.98 4.10 2.94 2.61

MRT [52] 4.46 7.94 10.94 7.78 1.87 3.40 5.04 3.44 6.62

SoMoFormer [48] 4.50 8.15 11.27 7.79 1.69 3.02 4.15 2.95 4.88

MPFSIR (our) [43] 3.94 7.04 9.87 6.95 1.67 2.87 3.93 2.82 0.24

The MPFSIR model shows notable improvements over other methods in pose forecast-

ing in multi-person scenes. On the CMU-Mocap test set, it achieves an overall MPJPE

of 6.95, outperforming SoMoFormer, which achieves 7.79, and other models such as LTD

and MRT. Similarly, on the MuPoTS-3D test set, the MPFSIR model achieves an overall

MPJPE of 2.82, demonstrating better performance than SoMoFormer, which achieves

2.95, and LTD, which achieves 2.94, while the MRT achieves a significantly worse result

of 3.44. The MPFSIR model’s ability to accurately forecast future poses, especially in

datasets involving multiple individuals, highlights its effectiveness in capturing complex

interactions. Furthermore, it achieves these results with significantly fewer parameters

(0.24M), making it more efficient than other state-of-the-art methods like SoMoFormer,

which has 4.88M parameters. It should be noted that the number of parameters depends

on the model’s input and output sequence lengths, as well as the number of joints being

predicted. For example, in configurations such as the SoMoF Benchmark, which uses

shorter sequences with fewer joints, MPFSIR operates with as few as 0.15M parameters.

This efficiency, combined with its superior performance, underscores the robustness and

potential of the MPFSIR model in multi-person pose forecasting tasks.
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2.3. Graph Convolutional Network and a Transformer for multi-

person pose forecasting

The GCN-Transformer [45] for multi-person pose forecasting is a hybrid architecture

that integrates Graph Convolutional Networks (GCNs) and Transformer modules to lever-

age their complementary strengths in short and long-term forecasting. The idea for this

combination arose from experiments conducted in prior research [42], which demonstrated

that Transformer-based models generally perform better in short-term pose forecasting,

while GCN-based models perform better in long-term forecasting. By integrating both

approaches, GCN-Transformer aims to achieve strong performance across both time hori-

zons, combining the strengths of Transformers with the capabilities of GCNs.

The model is composed of two main modules: the Scene Module and the Spatio-

Temporal Attention Forecasting Module. It begins by preprocessing input sequences of

poses, padding them with the last known pose, and augmenting the data with temporal

differentiation to create enriched sequences. Temporal differentiation refers to the pro-

cess of computing the difference between joint positions across consecutive time steps to

obtain motion velocity or first-order dynamics. Formally, for each person n, we compute

∆Xn
t = Xn

t+1 − Xn
t , and we concatenate this velocity signal with the original sequence

along the joint feature’s dimension. These sequences are then fed into the Scene Mod-

ule, which encodes the poses into an embedding space using a Spatio-Temporal Fully-

Connected module. This process prepares the input data for the next step, where the

Spatial-GCN network, composed of 8 GCN blocks, captures the social features and inter-

action dependencies between individuals in a scene. The Spatial-GCN network processes

the relationships between people in the scene, extracting spatial patterns while considering

each individual’s joint positions and movements relative to one another. This module in-

corporates techniques like batch normalization, dropout, and Tanh activation to optimize

feature extraction, ensuring the preservation of the spatial structure in the data. Addi-

tionally, the model computes joint distance loss between individuals to maintain realistic

spatial relationships between individuals.

Once the Scene Module extracts the social context, the enriched representation is

passed to the Spatio-Temporal Attention Forecasting Module. This module is responsible
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for predicting future poses by processing the enriched sequence, scene context, and a

positional query token that represents the position of each individual in the scene. The

Spatio-Temporal Attention Forecasting Module splits the task between two submodules:

the Spatio-Temporal Transformer Decoder and the Temporal-GCN. These two operate

in parallel, simultaneously handling different aspects of the prediction task. The Spatio-

Temporal Transformer Decoder processes the spatial and temporal dependencies in the

data through two attention blocks. The first block focuses on spatial features, while

the second block specializes in temporal patterns using Temporal Convolutional Network

(TCN) layers to handle long-term temporal dependencies. In parallel, the Temporal-GCN

submodule, which consists of 8 GCN blocks, refines the temporal dependencies of the

sequences, enhancing the overall temporal representation of the data. After processing,

the outputs from both the Spatio-Temporal Transformer Decoder and Temporal-GCN

modules are concatenated and passed through another Spatio-Temporal Fully-Connected

module to produce the final prediction of the future pose sequence.

Interestingly, the GCN-Transformer model avoids conventional preprocessing tech-

niques, such as encoding pose data with the Discrete Cosine Transform (DCT) or pre-

dicting temporal differentiations that add to the last known pose. Instead, the model

directly processes raw pose data, meaning the unaltered 3D joint Cartesian coordinates

as directly obtained from pose estimation systems or datasets, allowing it to learn the in-

herent structures and dynamics of human motion without relying on artificially smoothed

or transformed input. This decision was made to preserve the nuanced complexities of

human movement that are often lost in conventional preprocessing techniques. The ar-

chitecture of the GCN-Transformer model is illustrated in Figure 3.

Ultimately, the GCN-Transformer model represents a sophisticated blend of Trans-

former and GCN architectures. By leveraging the Transformer’s strength in capturing

temporal dependencies over short horizons and the GCN’s effectiveness in modeling spa-

tial dependencies and long-term temporal patterns, it offers a powerful tool for multi-

person pose forecasting. Its ability to fuse features from multiple spatial, temporal, and

social contexts ensures that it can make accurate and realistic predictions for future poses

in complex social scenes.
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Figure 3: The figure illustrates the architecture of the GCN-Transformer model. The
input sequences are first padded and enriched with temporal differentiation, forming se-
quences processed by the Scene Module, which extracts social features and dependen-
cies. These features are combined with a positional query token and fed into the Spatio-
Temporal Attention Forecasting Module, which uses a Spatio-Temporal Transformer De-
coder and a Temporal-GCN to produce the final pose predictions for each individual in
the scene [45].

2.3.1. Experimental results

The experimental evaluation of the GCN-Transformer was performed on four challeng-

ing multi-person pose forecasting datasets: the SoMoF Benchmark, the Extreme Pose

Interaction (ExPI) dataset, the Carnegie Mellon University Motion Capture Database

(CMU-Mocap), and the Multi-person Pose Estimation Test Set (MuPoTS-3D). In all

cases, the model was trained over 512 epochs with a batch size of 256, using the Adam

optimizer. The initial learning rate of 0.001 was reduced to 0.0001 after 256 epochs to

ensure stable convergence. Importantly, all models presented in the experimental results,

including GCN-Transformer, were retrained from scratch using their official implementa-

tions, with the exception of Future Motion, which we re-implemented based on the details

provided in the original paper. All models were trained using the same formulation for the

pose forecasting problem, predicting the next 14 frames based on 16 preceding frames.

This differs from methods such as Future Motion, SoMoFormer, and JRTransformer,

which divide the task into short-term and long-term forecasting, a strategy that typically

boosts performance. Our experiments retained a unified problem formulation, allowing

for a fair comparison of general model capability across forecasting horizons. In the up-
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coming section, we present experimental results on the CMU-Mocap and MuPoTS-3D

datasets. The primary analysis will then shift to the SoMoF Benchmark and the Extreme

Pose Interaction (ExPI) dataset, both of which feature two-person interactions and pose

greater challenges due to their complex and realistic multi-person motion dynamics.

2.3.1.1. Results on CMU-Mocap and MuPoTS-3D

We evaluated the GCN-Transformer model against several state-of-the-art multi-person

pose forecasting methods using the CMU-Mocap and MuPoTS-3D datasets, both designed

to test models on three-person interaction scenarios. All models were trained using the

same synthetic data based on the CMU-Mocap setup to ensure fair comparison, and

performance was measured using the MPJPE metric at various time intervals.

The experimental results, presented in Table 3, show that the GCN-Transformer con-

sistently performs best across both datasets and all forecast horizons. It outperforms all

baseline methods in the short term and maintains this superiority as the prediction inter-

val extends, demonstrating a robust capacity to model long-term motion trajectories. The

model’s generalization across two different datasets further underscores its adaptability

to varied motion patterns and scene complexities.

Among the baseline models, MPFSIR, JRTransformer, and LTD show relatively com-

petitive performance, although they remain behind GCN-Transformer in all metrics. LTD,

in particular, performs well despite its original design for single-person forecasting tasks.

Conversely, models such as MRT, SoMoFormer, and Future Motion exhibit significantly

higher error rates, especially at longer forecast intervals. This suggests that while these

models may handle short-term dependencies adequately, they struggle to maintain ac-

curacy over extended predictions, likely due to limited temporal modeling capacity or

weaker handling of movement dynamics dependencies.

Notably, we also observed a shift in performance rankings between the CMU-Mocap

and MuPoTS-3D datasets. This change highlights the sensitivity of many models to

dataset characteristics and reveals potential limitations in their generalization capabili-

ties. In contrast, GCN-Transformer maintained top-tier performance on both datasets,

indicating a stronger ability to generalize across data domains with varying levels of com-
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Table 3: Comparison of model performance on the CMU-Mocap and MuPoTS-3D test
sets, both of which include three-person scenes. The evaluation uses the MPJPE met-
ric (measured in meters), where lower scores indicate better performance. The GCN-
Transformer model demonstrates superior performance, outperforming all other evaluated
methods across both datasets [45].

Method
CMU-Mocap Test Set MuPoTS-3D Test Set Average

Overall1 s 2 s 3 s Overall 1 s 2 s 3 s Overall

Zero Velocity 5.55 9.23 12.30 9.03 2.05 3.43 4.57 3.35 6.29

MRT [52] 4.46 7.94 10.94 7.78 1.87 3.40 5.04 3.44 5.61

SoMoFormer [48] 4.50 8.15 11.27 7.79 1.69 3.02 4.15 2.95 5.37

Future Motion [51] 4.08 7.24 10.21 7.18 1.98 3.40 4.57 3.31 5.25

JRTransformer [55] 4.08 7.47 10.47 7.34 1.61 2.90 4.06 2.86 5.16

LTD [28] 4.03 7.06 9.91 7.00 1.75 2.98 4.10 2.94 4.97

MPFSIR (our) [43] 3.94 7.04 9.87 6.95 1.67 2.87 3.93 2.82 4.89

GCN-Transformer (our) [45] 3.53 6.58 9.25 6.46 1.39 2.41 3.39 2.40 4.43

plexity and realism.

These findings validate the design of the GCN-Transformer model and confirm the

effectiveness of combining graph-based spatial reasoning with Transformer-based temporal

modeling. Its consistent performance across datasets and prediction ranges reflects a

robust understanding of human motion dynamics in multi-person contexts. Building on

this foundation, the next sections focus on evaluating the model under even more socially

complex conditions using the SoMoF Benchmark and the ExPI dataset, which feature

highly dynamic and interactive multi-person scenes.
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2.3.1.2. Results on SoMoF Benchmark

The SoMoF Benchmark, derived from the 3DPW dataset, is a standard test for multi-

person pose forecasting. The GCN-Transformer consistently achieved state-of-the-art

performance across multiple evaluation metrics, including the Visibility-Ignored Metric

(VIM) and the Mean Per Joint Position Error (MPJPE). As shown in Table 4, GCN-

Transformer outperformed other state-of-the-art models, particularly excelling in short

to mid-term forecasting (100ms to 640ms). For instance, GCN-Transformer achieved an

overall VIM score of 48.02 and an MPJPE score of 61.90, surpassing strong competitors

such as SoMoFormer, which obtained an overall VIM of 48.19 and MPJPE of 62.62.

Additionally, the performance of the GCN-Transformer is significantly improved when

incorporating the validation set from the 3DPW into the training set, resulting in an

enhanced overall score of 46.21 on VIM and 59.48 on MPJPE.

Table 4: Comparison of performance on the SoMoF Benchmark test set, evaluated using
the VIM and MPJPE metrics, where lower scores indicate better performance. The GCN-
Transformer model achieves state-of-the-art results. The model noted with an asterisk (*)
was trained with the validation dataset included and currently ranks first on the official
SoMoF Benchmark leaderboard at https://somof.stanford.edu [45].

Method
VIM MPJPE

100ms 240ms 500ms 640ms 900ms Overall 100ms 240ms 500ms 640ms 900ms Overall

Zero Velocity 29.35 53.56 94.52 112.68 143.10 86.65 55.28 87.98 146.10 173.30 223.16 137.16

DViTA [33] 17.40 35.62 72.06 90.87 127.27 68.65 32.09 54.48 100.03 124.07 173.01 96.74

LTD [28] 18.07 34.88 68.16 85.07 116.83 64.60 33.57 55.21 97.57 119.58 163.69 93.92

TBIformer [35] 17.62 34.67 67.50 84.01 116.38 64.03 32.26 53.65 95.61 117.22 160.99 91.94

MRT [52] 15.31 31.23 63.16 79.61 111.86 60.24 27.97 47.64 87.87 108.93 151.96 84.88

SocialTGCN [37] 12.84 27.41 58.12 74.59 107.19 56.03 23.10 40.24 76.91 96.89 139.01 75.23

JRTransformer [55] 11.17 25.73 56.50 73.19 106.87 54.69 18.44 35.38 72.26 92.42 135.12 70.73

MPFSIR (our) [43] 11.57 25.37 54.04 69.65 101.13 52.35 20.31 35.69 69.58 88.36 128.37 68.46

Future Motion [51] 10.76 24.52 54.14 69.58 100.81 51.96 18.66 34.38 69.76 88.91 129.18 68.18

SoMoFormer [48] 10.45 23.10 49.76 64.30 93.34 48.19 17.63 32.42 63.86 81.20 117.97 62.62

GCN-Transformer (our) [45] 10.14 22.54 48.81 63.67 94.94 48.02 17.11 31.48 62.62 80.14 118.14 61.90

GCN-Transformer* (our) [45] 9.82 21.80 46.61 60.88 91.95 46.21 16.41 30.36 60.31 76.94 113.36 59.48

This consistent superiority is notable across various time steps, where GCN-Transformer

showed minimal degradation in performance as the forecasting horizon increased, under-

scoring its robustness. While models such as JRTransformer and MPFSIR exhibited

reasonable short-term forecasting performance, their ability to predict accurately deteri-

orated significantly over long-term horizons (e.g., 900ms). In contrast, GCN-Transformer
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maintained competitive performance throughout both short and long-term intervals, with

the SoMoFormer coming close only in the longest time frames (e.g., 900ms). JRTrans-

former, although a strong competitor, failed to match the performance of GCN-Transformer

across most metrics, particularly struggling with long-term predictions where it exhibited

significantly higher errors.

GCN-Transformer showcased its ability to generate realistic and coherent pose pre-

dictions, as illustrated in Figure 4. Unlike JRTransformer and SoMoFormer, which often

generated invalid poses and unrealistic movements, GCN-Transformer’s predictions ad-

hered closely to the ground truth, reflecting a better understanding of complex human

interactions in motion.

(a) (b)

Figure 4: The figure shows predicted poses on two example sequence from the SoMoF
Benchmark test set, comparing the top-performing models: JRTransformer, SoMoFormer,
and GCN-Transformer, alongside the ground truth (GT). Sequence (a) shows two people
rotating around each other, while sequence (b) shows two people meeting and then walking
together in the same direction. The comparison highlights that while JRTransformer and
SoMoFormer face challenges in producing valid poses, the GCN-Transformer effectively
generates both accurate poses and realistic movements [45].
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2.3.1.3. Results on ExPI Dataset

The ExPI dataset presents an even greater challenge due to its focus on extreme

body poses during dance and aerial movements. On this dataset, GCN-Transformer

once again demonstrated its adaptability and generalization capability, outperforming the

competition across all metrics. As summarized in Table 5, GCN-Transformer achieved an

overall VIM score of 40.64 and MPJPE of 53.45, significantly improving on the next best-

performing models, JRTransformer (VIM of 42.06 and MPJPE of 54.87) and MPFSIR

(VIM of 48.49 and MPJPE of 61.54).

Table 5: Performance comparison on the ExPI test set based on the VIM and MPJPE
metrics, where lower scores reflect better performance. The GCN-Transformer model
achieves state-of-the-art results across both metrics [45].

Method
VIM MPJPE

120ms 280ms 600ms 760ms 1080ms Overall 120ms 280ms 600ms 760ms 1080ms Overall

Zero Velocity 25.61 48.66 84.39 97.41 118.10 74.84 46.16 74.66 124.32 145.22 181.33 114.34

DViTA [33] 15.44 35.27 74.43 91.44 119.51 67.22 28.31 51.63 100.85 124.49 167.98 94.65

LTD [28] 16.22 32.94 62.73 74.60 92.84 55.87 28.83 48.73 87.37 104.82 135.61 81.07

TBIformer [35] 16.96 35.09 67.95 81.22 103.02 60.85 30.59 52.55 95.63 115.19 150.33 88.86

MRT [52] 15.32 32.07 61.84 74.04 94.59 55.57 27.79 47.91 87.01 104.80 137.22 80.95

SocialTGCN [37] 16.79 32.71 62.61 75.24 99.15 57.30 31.14 50.58 89.18 106.95 140.68 83.71

JRTransformer [55] 8.40 21.14 46.20 57.63 76.94 42.06 13.57 28.01 58.47 73.27 101.04 54.87

MPFSIR (our) [43] 9.15 23.05 52.31 65.49 92.46 48.49 15.56 30.55 64.84 81.81 114.94 61.54

Future Motion [51] 16.94 34.83 68.45 83.33 108.03 62.32 30.51 52.37 96.06 116.88 156.04 90.37

SoMoFormer [48] 9.43 23.88 54.78 68.71 92.38 49.84 15.22 31.08 67.33 85.37 119.37 63.67

GCN-Transformer (our) [45] 8.32 20.84 44.56 54.81 74.66 40.64 13.37 27.63 57.27 71.25 97.71 53.45

Interestingly, the performance ranking on ExPI shifted compared to the SoMoF Bench-

mark. JRTransformer, which was less competitive on SoMoF, emerged as a closer con-

tender on ExPI, showing improved results in both short and long-term forecasting. Mean-

while, SoMoFormer, which had been a formidable competitor on SoMoF, experienced a

marked decline in performance on ExPI, particularly in long-term prediction intervals.

This demonstrates that the SoMoFormer model may be more sensitive to dataset char-

acteristics, possibly overfitting to specific data types or motion patterns in the SoMoF

Benchmark, while struggling to generalize to the more diverse and dynamic movements

present in ExPI.

Furthermore, the Future Motion model, which performed well on SoMoF, was sub-

stantially outperformed by most models on ExPI. This highlights a critical limitation in
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the Future Motion model, which seems heavily reliant on the specifics of the training data

and lacks the robustness necessary to handle diverse and complex motion patterns.

In terms of movement realism, GCN-Transformer once again excelled, as depicted

in Figure 5. It managed to predict realistic, dynamic movements, where other models,

such as JRTransformer and SoMoFormer, fell back on repeating the last known pose or

generating erratic, unrealistic motion sequences.

(a) (b)

Figure 5: The figure shows predicted poses on two example sequence from the ExPI
test set, comparing the top-performing models: JRTransformer, SoMoFormer, and GCN-
Transformer, alongside the ground truth (GT). Sequence (a) shows one person jumping
off the shoulders of another, while sequence (b) shows one person performing a cartwheel
assisted by another. While JRTransformer and SoMoFormer tend to repeat the last known
pose, leading to less accurate predictions, the GCN-Transformer successfully generates
more realistic and dynamic movements [45].

Across both the SoMoF Benchmark and ExPI datasets, GCN-Transformer demon-

strated consistent improvements in predictive performance and generalization over prior

state-of-the-art models. Its ability to handle complex multi-person and extreme motion

scenarios makes it versatile for future pose forecasting tasks. Despite the varying nature

of the datasets, GCN-Transformer’s robust architecture allows it to excel in both short

and long-term motion predictions, showcasing its adaptability and effectiveness in diverse

settings.
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2.4. A loss function for effective training of pose forecasting

models

The training process of the GCN-Transformer model is designed to optimize its abil-

ity to forecast future poses by minimizing the difference between predicted and ground

truth pose sequences. To achieve this, the model utilizes a combination of standard and

novel loss function terms that effectively enhance its performance in multi-person pose

forecasting. The standard approach for training pose forecasting models involves mini-

mizing the reconstruction error (REC), which measures the difference between predicted

and ground truth poses. This is typically calculated using the L2-norm to minimize the

Euclidean distance between the predicted and actual poses. While this method is effective

for general pose prediction, it does not explicitly capture the interpersonal dynamics in

multi-person scenarios.

To improve the model’s capability to represent social interactions, in [45], we introduce

the Multi-person joint distance loss (MPJD). This novel loss term encourages the model to

learn the spatial relationships between different individuals within a scene by penalizing

errors in the distances between corresponding joints of different people. By including

this additional loss term, the model is driven to better model the social dependencies

and interactions between individuals, which are crucial for realistic multi-person pose

forecasting.

In addition to the MPJD loss, the novel loss function also incorporates a Velocity loss

(VL) to prioritize learning smooth and coherent pose trajectories over time. Rather than

focusing solely on accurately predicting discrete poses at specific time intervals, this loss

encourages the generation of realistic motion sequences by ensuring that the predicted

velocity of each joint is close to the ground truth velocity. This approach produces more

fluid and natural pose transitions in the final predictions.

The overall loss function combines these three components: Reconstruction loss (REC),

Multi-person joint distance loss (MPJD), and Velocity loss (VL), to create a comprehen-

sive optimization objective. The MPJD and its corresponding Velocity loss are scaled by

a factor γ, allowing for control over the influence of the social interaction terms in the

final optimization. In practice, the γ parameter is set to 0.1, balancing the impact of the
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interpersonal distance losses relative to the reconstruction and velocity losses.

Mathematically, the loss function is defined as:

LREC =
1

N

N∑
n=1

∥ŷn − yn∥2 (6)

LMPJD =
1

N(N−1)

N∑
n=1

N∑
p=1

∥(ŷn− ŷp)−(yn−yp)∥2 (7)

LREC VL =
1

N

N∑
n=1

∥∆ŷn −∆yn∥2 (8)

LMPJD VL =
1

N(N−1)

N∑
n=1

N∑
p=1

∥∥∥∆d̂n,p−∆dn,p

∥∥∥
2

(9)

L = LREC + LREC VL + LMPJD × γ + LMPJD VL × γ (10)

where N represents the number of individuals within the scene. The predicted pose

sequences for the n-th and p-th individuals are represented by ŷn and ŷp, respectively, while

their corresponding ground truth pose sequences are denoted as yn and yp. The symbol

∥·∥2 refers to the Euclidean distance (L2 norm), and the average across all individuals

in the scene is calculated by 1
N

∑N
n=1. Temporal differentiation is indicated by ∆, where

∆yn = ytn − yt+1
n for t = 0, 1, . . . , T − 1 and ∆ŷn = ŷtn − ŷt+1

n for t = 0, 1, . . . , T − 1. The

predicted velocities of the joint distances between individuals are denoted by ∆d̂n,p, while

∆dn,p corresponds to the ground truth velocities of the joint distances between individuals.
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2.4.1. Ablation study

To demonstrate the effectiveness of the proposed loss function, an ablation study

was conducted on the GCN-Transformer model. This experiment evaluated the influ-

ence of different components and methods on the model’s performance in multi-person

pose forecasting. The ablation study followed a step-by-step approach, where components

were progressively integrated into the baseline model, and the results were recorded af-

ter each modification. The experiment established a baseline model that included the

Scene module and the Spatio-Temporal Transformer Decoder. This initial model served

as the foundation for comparison. The next step was to enhance the Spatio-Temporal

Attention Forecasting Module by adding the Temporal-GCN, which led to a noticeable

improvement in the model’s overall performance, particularly by refining the long-term

forecasting performance. Following this, the Multi-person joint distance (MPJD) loss was

introduced, further enhancing the model’s ability to accurately predict short-term and

long-term poses. The MPJD loss contributed to the model’s effectiveness in capturing

the spatial relationships between individuals, improving the overall prediction quality.

The Velocity loss (VL) component was added to refine the model further. This addition

marginally improved overall performance by encouraging the model to produce smoother

and more consistent pose trajectories. Although the inclusion of the Velocity loss slightly

compromised the short-term performance, it improved the long-term motion predictions

and intra-sequence continuity.

Lastly, data augmentation techniques were integrated, resulting in the most substan-

tial boost in performance across all time intervals. Data augmentation improved the

model’s generalization capabilities and improved predictions, significantly enhancing the

short-term, mid-term, and long-term forecasting performance. The results of the ablation

study, presented in Table 6, showcase the cumulative impact of each component. The

integration of MPJD loss and Velocity loss, combined with data augmentation, proved

to be highly effective in enhancing the model’s forecasting performance, particularly in

capturing realistic motion patterns across varying prediction horizons.
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Table 6: The table presents the outcomes of the ablation study conducted on the SoMoF
Benchmark validation set, evaluated using VIM (top) and MPJPE (bottom) metrics. The
baseline configuration consists of the Scene Module and the Spatio-Temporal Transformer
Decoder, with further components being added step by step to measure their impact. All
models are trained exclusively on the SoMoF Benchmark training data without utilizing
the AMASS dataset [45].

Metric Method 100ms 240ms 500ms 640ms 900ms Overall

Baseline 15.39 28.53 55.90 68.72 93.92 52.49

+ Temporal-GCN 12.69 28.96 58.96 69.74 89.56 51.98

VIM + MPJD loss 11.08 28.80 57.52 67.55 87.95 50.58

+ Velocity loss 12.21 28.30 56.12 66.42 87.67 50.14

+ Augmentation 7.56 19.66 44.72 56.08 75.12 40.63

Baseline 31.81 45.19 77.03 93.68 127.60 75.06

+ Temporal-GCN 23.99 41.47 79.33 96.38 127.61 73.76

MPJPE + MPJD loss 18.09 37.54 76.08 92.69 123.51 69.58

+ Velocity loss 22.79 39.90 75.28 91.15 121.77 70.18

+ Augmentation 11.68 24.35 53.50 68.34 96.97 50.97

The ablation study confirms the effectiveness of the proposed loss functions, where

the overall VIM metric improved from 51.98 to 50.14, demonstrating a 3.5% reduction in

prediction error after incorporating the MPJD and Velocity loss during training. Similarly,

for the MPJPE metric, the overall score decreased from 73.76 to 70.18, reflecting a 4.8%

reduction in prediction error.
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2.5. An evaluation metric for pose forecasting

To evaluate the performance of pose forecasting models, it is essential to use metrics

that capture how well the predicted poses match the actual ground truth in terms of

error and realism. The evaluation metrics serve to assess prediction error and to provide

insights into how well models can replicate human motion dynamics.

In the early stages of pose forecasting, metrics borrowed from related fields, partic-

ularly pose estimation, were often employed. One of the most widely used metrics is

the Mean Per Joint Position Error (MPJPE). MPJPE calculates the average Euclidean

distance (L2 norm) between the predicted and actual joint positions over all joints in the

pose sequence. This metric provides an overall measure of the model’s performance in

predicting joints but is limited by its lack of focus on temporal dynamics, essentially treat-

ing each pose in isolation rather than evaluating how well the model predicts movement

over time.

Recognizing the limitations of MPJPE, some works sought to address these shortcom-

ings by introducing more nuanced evaluation metrics. For example, Adeli et al. proposed

the Visibility-Ignored Metric (VIM) in their work [2], which evaluates pose forecasting

performance by focusing solely on the final predicted pose. While VIM prioritizes the

last pose of the sequence, it overlooks the quality of the model’s predictions in earlier

poses, potentially neglecting important aspects of motion forecasting, such as how well

the predicted trajectory mirrors natural human motion.

Another attempt to improve upon MPJPE was introduced by Šajina and Ivasic-Kos

in [43] with the Movement-Weighted Mean Per Joint Position Error (MW-MPJPE). This

metric extends MPJPE by incorporating a weighting factor that considers the magni-

tude of motion in the target sequence, thus differentiating between dynamic and static

poses. The goal is to emphasize joints undergoing significant movement, improving mod-

els’ evaluation in predicting realistic motion dynamics. Still, the focus remains primarily

on evaluating pose error without a deep temporal assessment.

Specifically for the domain of multi-person pose forecasting, Peng, Mao, and Wu in [35]

employed a combination of evaluation metrics. Among these were the Joint Position Error

(JPE), which is similar to MPJPE but generalizes to all individuals in a multi-person
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scenario; Aligned Mean Per Joint Position Error (APE), akin to Root-MPJPE, which

removes global translation to focus on the relative joint positions; and Final Displacement

Error (FDE), which measures the error in global movement trajectory by focusing on the

difference between the final predicted position and the ground truth.

Although metrics such as MPJPE, VIM, and MW-MPJPE offer important insights

into the performance of pose forecasting models, they often focus on limited aspects of

the task. For instance, MPJPE treats each frame independently, while VIM concentrates

solely on the final pose, and MW-MPJPE adds movement consideration but still lacks

a detailed temporal evaluation. These limitations mean that the full complexity of pose

forecasting, which involves predicting both accurate static poses and dynamic motion

sequences, is not fully captured. Consequently, the choice of metric can significantly

influence model rankings, with no single metric providing a definitive evaluation of overall

performance. In recent work [45], we aimed to overcome these shortcomings by proposing

a more comprehensive evaluation metric called the Final Joint Position and Trajectory

Error (FJPTE), which offers a more holistic assessment of pose forecasting performance.

FJPTE evaluates model performance across four key components:

• Final global position error: This component assesses the error in the final predicted

global position (e.g., the pelvis) using the Euclidean distance between the predicted

and actual positions.

• Global movement trajectory error: This component evaluates the error of the model’s

prediction of global movement over time, measuring the Euclidean distance of the

temporal differentiation of the root joint (usually the pelvis).

• Final pose position error: This component removes global movement and evaluates

the error of the final pose using the Euclidean distance between the predicted and

ground-truth joint positions.

• Pose trajectory error: This component assesses the error of the pose trajectory,

excluding global movement, by measuring the Euclidean distance of the temporal

differentiation across all joints in the sequence.
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By incorporating these four components, Final Joint Position and Trajectory Error

(FJPTE) metric provides a comprehensive and balanced evaluation of pose forecasting

models, directly assessing human movement dynamics. This approach ensures that models

are evaluated on their ability to predict individual joint positions and on their proficiency

in forecasting natural and realistic human movements across time. This results in a

more complete and nuanced understanding of model performance, addressing previous

shortcomings in pose forecasting evaluation. An illustrative comparison of joint movement

evaluation using different metrics is presented in Figure 6.

Figure 6: The figure depicts predicted (purple) and ground truth (blue) joint trajectories,
with T representing the time step and the values between the trajectories indicating
their distances at each time step. When the trajectories are similar but slightly shifted,
FJPTE provides results equivalent to MPJPE and VIM. However, when the trajectories
differ significantly, the metrics diverge in their evaluations. While MPJPE and FJPTE
assess the entire joint trajectory, VIM only considers the error at the final time step,
T = 20 [45].

Figure 7 highlights a scenario in which the FJPTE metric offers a more informative

assessment of model performance compared to traditional metrics like MPJPE or VIM.

In the illustrated example, the predicted sequence maintains a correct global trajectory,

yet the individual pose remains unnaturally static, resembling a ghost-like motion drifting

through space, a common failure mode in pose forecasting. Whereas MPJPE calculates

average joint position error over time and VIM considers only the final frame’s accu-

racy, FJPTE evaluates both the internal motion dynamics (FJPTElocal) and the global

movement path (FJPTEglobal). This dual perspective allows FJPTE to reveal whether a

model’s shortcomings lie in predicting realistic motion or in maintaining correct global

displacement. By integrating both aspects into a single score, FJPTE supports a more
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complete and reliable evaluation of forecasting performance.

Figure 7: The figure shows an example comparing predicted (purple) and ground truth
(blue) pose sequences across time, where T denotes the time interval. While the global
path of the predicted sequence closely follows the ground truth, the poses remain un-
naturally static, highlighting a typical challenge in pose forecasting. Unlike MPJPE and
VIM, which either average joint errors over time or consider only the final frame, FJPTE
provides a more detailed analysis by capturing both the quality of joint trajectories and
the distinction between local motion (FJPTElocal) and overall displacement (FJPTEglobal).
MPJPE and FJPTE evaluate the entire sequence, whereas VIM focuses only on the final
time interval at T = 30 [45].

FJPTE is calculated as follows:

Eposition(ŷ, y) =
1

J

J∑
j=1

∥ŷ(j)− y(j)∥2

Etrajectory(Ŷ , Y ) =
1

T − 1

T−1∑
t=1

Eposition(Ŷ
t − Ŷ t+1, Y t − Y t+1)

Eglobal(Ŷ , Y ) = (Etrajectory(Ŷφpelvis
, Yφpelvis

) + Eposition(Ŷ
T
φpelvis

, Y T
φpelvis

))× 1000

Elocal(Ŷ , Y ) = (Etrajectory(Ŷ − Ŷφpelvis
, Y − Yφpelvis

) + Eposition(Ŷ
T − Ŷ T

φpelvis
, Y T − Y T

φpelvis
))× 1000

EFJPTE(Ŷ , Y ) = Eglobal(Ŷ , Y ) + Elocal(Ŷ , Y )

(11)

where ŷ represents the predicted sequence, and y represents the ground truth sequence.

The variable J indicates the number of joints, while T refers to the number of time steps.

The term ∥·∥2 denotes the Euclidean distance (L2 norm), and 1
T−1

∑T−1
t=1 calculates the
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average error across all time steps. The notation Eglobal(Ŷ , Y ) measures the global po-

sition and trajectory error between the predicted and ground truth sequences, focusing

on the pelvis joint. Similarly, Elocal(Ŷ , Y ) captures the error related to local motion dy-

namics, excluding the pelvis joint and overall global movement. The metric EFJPTE(Ŷ , Y )

integrates both local and global errors into a single evaluation metric.

2.5.1. Experimental results using the FJPTE

In our evaluation of the SoMoF Benchmark and ExPI datasets using the proposed

FJPTE metric and its respective components FJPTElocal and FJPTEglobal, we observed

several key insights that highlight the advantages of using these metrics compared to

standard metrics such as VIM and MPJPE.

On the SoMoF Benchmark dataset as presented in Table 7, GCN-Transformer sig-

nificantly outperformed other models when evaluated using FJPTElocal, which measures

movement dynamics. Its superior performance demonstrated the model’s advanced capa-

bility to capture and predict the intricate dynamics of human movement and interaction

over different forecasting intervals. While traditional metrics like VIM and MPJPE also

placed GCN-Transformer at the top, FJPTElocal offered a more nuanced perspective by

clearly showcasing the model’s edge in short-term and fine-grained movement dynamics

over the alternatives.

In contrast, when using the FJPTEglobal metric, which evaluates global movement

and position error, SoMoFormer exhibited a slight advantage in long-term predictions,

reflecting its strength in forecasting global trajectories over extended time horizons. This

distinction was not as apparent in standard metrics such as VIM and MPJPE, which

typically aggregate various aspects of prediction performance without providing insight

into the trade-offs between local movement dynamics and global trajectory error. By using

FJPTEglobal, we uncovered subtle differences in model performance, such as MPFSIR’s

unexpectedly strong results in global position forecasting, outperforming Future Motion

by a significant margin.

On the ExPI dataset, as presented in Table 8, a similar trend emerged. GCN-

Transformer again outperformed all other models across most intervals when evaluated
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using FJPTElocal, demonstrating its robust modeling of movement dynamics, with JR-

Transformer being its closest competitor at the 120ms interval. In comparison, SoMo-

Former struggled significantly, as was also seen in the results using traditional metrics,

though the detailed breakdown provided by FJPTElocal further highlighted its challenges

in capturing short-term dynamics effectively.

Evaluation using FJPTEglobal provided additional insight into long-term prediction

capabilities. Despite JRTransformer’s strong short-term performance, GCN-Transformer

Table 7: Performance comparison on the SoMoF Benchmark test set using the proposed
FJPTE metric. Lower values correspond to better performance. The table separates
FJPTElocal, which captures errors in movement dynamics, from FJPTEglobal, which as-
sesses global position and trajectory errors. The model marked with an asterisk (*) used
the validation set during training [45].

Method
FJPTElocal FJPTEglobal

100ms 240ms 500ms 640ms 900ms Overall 100ms 240ms 500ms 640ms 900ms Overall

Zero Velocity 65.36 97.18 142.35 158.79 178.72 128.48 91.12 146.51 241.69 284.08 363.52 225.38

DViTA [33] 55.15 91.84 147.91 168.07 194.29 131.45 47.60 81.35 162.46 212.71 319.11 164.65

LTD [28] 48.96 78.96 127.59 145.98 170.41 114.38 52.86 88.66 159.64 201.40 290.96 158.70

TBIformer [35] 55.24 88.28 138.76 156.81 178.97 123.61 51.19 84.53 150.47 190.78 283.36 152.07

MRT [52] 56.38 90.59 143.17 162.19 186.11 127.69 46.74 77.70 147.95 189.65 279.84 148.37

SocialTGCN [37] 51.50 83.54 137.45 157.54 183.19 122.64 39.76 65.92 132.28 175.90 271.09 136.99

JRTransformer [55] 41.20 72.47 124.75 145.87 174.81 111.82 26.87 54.81 122.92 166.64 264.94 127.24

MPFSIR (our) [43] 43.53 75.36 127.59 148.60 180.67 115.15 27.37 51.27 109.84 151.17 248.05 117.54

Future Motion [51] 42.74 72.22 122.18 140.77 165.83 108.75 31.04 54.72 117.86 158.93 249.45 122.40

SoMoFormer [48] 37.69 65.48 111.48 128.79 154.44 99.58 26.13 48.37 104.01 139.66 217.92 107.22

GCN-Transformer (our) [45] 37.22 63.78 109.06 126.12 152.72 97.78 24.35 47.42 107.12 146.38 234.51 111.96

GCN-Transformer* (our) [45] 36.76 62.29 104.96 121.68 147.97 94.73 23.63 45.89 102.05 138.45 228.94 107.79

Table 8: Performance comparison on the ExPI test set using the proposed FJPTE metric.
Lower values correspond to better performance. The table separates FJPTElocal, which
captures errors in movement dynamics, from FJPTEglobal, which assesses global position
and trajectory errors [45].

Method
FJPTElocal FJPTEglobal

120ms 280ms 600ms 760ms 1080ms Overall 120ms 280ms 600ms 760ms 1080ms Overall

Zero Velocity 76.63 119.52 182.09 205.19 240.31 164.75 79.80 127.56 201.88 230.77 280.05 184.01

DViTA [33] 56.91 101.25 176.21 206.20 252.27 158.57 45.58 83.58 164.19 202.36 271.01 153.34

LTD [28] 60.27 97.73 159.16 182.82 217.66 143.53 47.42 80.89 141.84 169.41 215.70 131.05

TBIformer [35] 67.38 109.04 174.85 200.29 239.29 158.17 50.23 86.97 155.57 184.96 238.15 143.18

MRT [52] 65.77 107.77 173.87 199.12 236.71 156.65 43.80 75.45 133.75 162.58 214.24 125.96

SocialTGCN [37] 72.62 110.05 174.62 201.84 247.24 161.27 52.04 83.27 149.11 178.12 237.98 140.10

JRTransformer [55] 37.98 71.62 130.94 155.35 197.44 118.67 26.21 52.63 102.44 126.11 168.75 95.23

MPFSIR (our) [43] 41.12 77.88 145.78 174.01 225.03 132.76 27.21 54.68 112.28 140.63 207.33 108.43

Future Motion [51] 64.87 105.26 175.12 206.69 247.48 159.88 48.70 86.51 160.21 197.70 270.41 152.71

SoMoFormer [48] 41.91 80.52 150.92 179.58 224.17 135.42 28.82 57.92 118.39 148.45 204.18 111.55

GCN-Transformer (our) [45] 38.39 71.60 125.41 146.24 181.17 112.56 26.67 52.74 100.23 122.83 172.73 95.04
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achieved superior overall results across broader time intervals. This illustrates how

FJPTEglobal helped clarify the comparative strengths of different models over varying

timeframes, emphasizing long-term forecasting, which standard metrics alone might not

emphasize to the same extent.

When evaluating the models using the combined FJPTE metric, as presented in Ta-

ble 9, which integrates both FJPTElocal and FJPTEglobal, we gained a holistic view of

each model’s forecasting capabilities. On the SoMoF Benchmark dataset, SoMoFormer

emerged as the best-performing model overall, except for GCN-Transformer*, which in-

cluded the validation set during training. This result was consistent with observations

from both the individual FJPTElocal and FJPTEglobal metrics, where SoMoFormer excelled

in global trajectory forecasting but lagged slightly in short-term movement dynamics.

Table 9: Performance comparison on the SoMoF Benchmark test set (left) and the ExPI
test set (right) using the FJPTE metric, where lower scores denote better performance.
The table shows combined FJPTElocal and FJPTEglobal errors for a more holistic as-
sessment of model performance. GCN-Transformer model demonstrates state-of-the-art
performance based on the FJPTE metric. The model incorporating the validation set
during training is marked with an asterisk (*) [45].

Method
SoMoF Benchmark ExPI

100ms 240ms 500ms 640ms 900ms Overall 120ms 280ms 600ms 760ms 1080ms Overall

Zero Velocity 156.48 243.69 384.04 442.87 542.24 353.86 156.43 247.07 383.97 435.95 520.36 348.76

DViTA [33] 102.75 173.20 310.36 380.78 513.40 296.10 102.48 184.82 340.40 408.56 523.29 311.91

LTD [28] 101.82 167.62 287.23 347.38 461.37 273.08 107.69 178.62 301.01 352.23 433.36 274.58

TBIformer [35] 106.43 172.81 289.23 347.59 462.33 275.68 117.61 196.01 330.42 385.25 477.45 301.35

MRT [52] 103.11 168.29 291.12 351.84 465.95 276.06 109.58 183.22 307.63 361.70 450.95 282.62

SocialTGCN [37] 91.26 149.46 269.73 333.44 454.28 259.63 124.66 193.32 323.73 379.95 485.22 301.38

JRTransformer [55] 68.07 127.29 247.68 312.51 439.75 239.06 64.19 124.25 233.39 281.46 366.19 213.90

MPFSIR (our) [43] 70.91 126.63 237.44 299.78 428.72 232.69 68.33 132.56 258.06 314.65 432.35 241.19

Future Motion [51] 73.78 126.94 240.04 299.70 415.28 231.15 113.57 191.77 335.33 404.39 517.89 312.59

SoMoFormer [48] 63.82 113.85 215.50 268.45 372.35 206.79 70.73 138.44 269.31 328.03 428.35 246.97

GCN-Transformer (our) [45] 61.57 111.21 216.17 272.50 387.22 209.73 65.07 124.34 225.64 269.07 353.90 207.60

GCN-Transformer* (our) [45] 60.39 108.19 207.01 260.13 376.91 202.53 - - - - - -

On the ExPI dataset, GCN-Transformer was the top-performing model overall when

evaluated with the combined FJPTE metric, reaffirming its broad capability in both short-

term and long-term forecasting. Although JRTransformer slightly outperformed GCN-

Transformer in short-term dynamics, the combined FJPTE metric highlighted GCN-

Transformer’s superior performance across longer time intervals.

Using the FJPTE metric provided a richer evaluation framework than standard metrics

like VIM and MPJPE. By breaking down performance into local movement dynamics and
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global position errors, FJPTElocal and FJPTEglobal offered more specific and actionable

insights into each model’s strengths and weaknesses. This allowed for a more detailed

comparison of models across different performance dimensions, revealing distinctions that

would otherwise be obscured by aggregate evaluation metrics.

2.6. Pipeline for real-world application of pose forecasting

Implementing a pose forecasting pipeline for real-world applications involves several

key stages, each crucial for accurately predicting future human poses from video data

captured by a monocular camera. The process begins with recording a video using a

monocular camera. This type of camera captures 2D images from a single viewpoint,

which serves as the foundation for subsequent pose estimation and forecasting tasks.

Each frame from the recorded video undergoes 2D pose estimation to detect and identify

the keypoints of the human skeleton. This stage leverages deep learning models to extract

the 2D coordinates of joints from each image, where the goal is to accurately map out the

human body’s joints and their spatial relationships in two dimensions. Once 2D keypoints

are obtained, they are transformed into 3D coordinates using 2D-to-3D pose estimation

models. This lifting process typically involves applying deep learning techniques that

infer depth information from the 2D poses, resulting in a 3D representation of the human

body. In dynamic scenes, such as sports events, it is essential to track individuals across

frames to maintain the continuity of the pose sequences. Multiple Object Tracking (MOT)

algorithms are used to assign consistent identifiers to each person in the video. This

ensures that the sequences of poses belong to the correct individuals throughout the

video, even as they move and interact. With individuals consistently tracked, sequences

of poses are collected for each person. This involves grouping the 3D poses frame by frame,

creating a continuous series that represents the person’s movement over time. Finally, the

collected sequences are then fed into the pose forecasting model to predict future poses

based on the collected sequences of poses. The procedure for obtaining a sequence of

poses and forecasting future poses is shown in Figure 8.
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Figure 8: Creating a sequence of poses using human pose estimation to produce human
skeleton keypoints and object tracking for grouping collected poses across frames (t) into
a single sequence of poses. After that, the sequence of poses is then fed into the pose
forecasting model to produce a forecasted sequence of poses (figure based on [44]).

2.6.1. 2D pose estimation

Human pose estimation (HPE) has developed significantly over the years, transitioning

from traditional methods reliant on handcrafted features to deep learning approaches that

have revolutionized the field. Initially, traditional methods for 2D pose estimation utilized

low-level features such as Histogram of Oriented Gradients (HOG), contours, and color

histograms, combined with machine learning algorithms like Random Forests to detect and

classify body joints. These methods, however, struggled with occlusions and cases where

body parts were not clearly visible, limiting their applicability in real-world scenarios. The

advent of deep learning marked a significant shift in HPE. Toshev and Szegedy pioneering

work, DeepPose [47], introduced the first deep convolutional neural network (CNN) for

human pose estimation. The model directly regressed the coordinates of body joints from

images, demonstrating that deep networks could effectively model hidden and occluded

joints, significantly improving accuracy compared to traditional approaches. This work

laid the foundation for subsequent research, broadly categorizing deep learning-based

methods into single-person and multi-person approaches.

In the single-person approach, the problem is framed as a regression task, where the

goal is to predict the keypoints of a person in an image. This approach can be further

divided into direct regression-based frameworks and heatmap-based frameworks. In the
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direct regression framework, as seen in DeepPose, the network directly outputs the coordi-

nates of keypoints. Carreira et al. in [9] refined this approach by introducing an iterative

error feedback mechanism that significantly enhanced accuracy. Luvizon, Tabia, and Pi-

card in [24] further improved the regression-based method by integrating a soft Argmax

function to convert feature maps into keypoint coordinates, achieving results competitive

with heatmap-based methods. Conversely, the heatmap-based framework, which gener-

ates heatmaps indicating the likelihood of keypoints at various locations in the image, has

been widely adopted due to its robustness. Notable contributions include Newell, Yang,

and Deng stacked hourglass network [32], which emphasized the importance of repeated

bottom-up and top-down processing to refine pose predictions. This architecture became

a cornerstone for many subsequent HPE models.

Multi-person pose estimation presents additional challenges due to the unknown num-

ber and people’s positions in an image. Approaches to this problem are generally cat-

egorized into top-down and bottom-up pipelines. The top-down approach first detects

individual persons within an image, typically using object detection methods, and then

applies a single-person pose estimation model to each detected region. The Mask R-

CNN model by He et al. in [14] is a prominent example, extending the Faster R-CNN

model [40] to predict both object masks and keypoints, thereby streamlining the process

of multi-person pose estimation. In contrast, the bottom-up approach first detects all

keypoints in an image and then groups them into individual persons. Pishchulin et al.

with DeepCut [38] introduced this paradigm by formulating the task as a joint problem

of partitioning and labeling keypoints, accounting for geometric and visual constraints.

Subsequent improvements, such as Part Affinity Fields (PAFs) proposed by Cao et al. in

[7], refined the bottom-up approach by learning associations between detected keypoints,

allowing for real-time multi-person pose estimation.

2.6.2. 3D pose estimation

Pose forecasting models typically require 3D pose data, which can be obtained either

by lifting 2D poses into 3D space or by directly applying 3D pose estimation on images,

bypassing the need for intermediate 2D pose estimation. Early research focused on di-
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rectly predicting 3D poses from images. Li and Chan in [22] were pioneers in this area,

using deep learning to regress 3D keypoints directly from images. Their approach demon-

strated that convolutional neural networks (CNNs) could outperform traditional methods

by learning the complex spatial relationships between different body parts without relying

on handcrafted features or explicit correlation constraints. Following this, Tekin et al. in

[46] extended this concept by introducing auto-encoders in the latent space to represent

3D poses. By training an auto-encoder to reconstruct 3D poses, they leveraged the la-

tent space representation to capture the inherent constraints of the human body, which

improved pose consistency and reduced errors in keypoint localization. However, direct

prediction of 3D poses from images posed challenges, particularly in terms of accuracy

and error propagation from earlier stages of processing. To address these issues, Martinez

et al. in [29] proposed a paradigm shift by lifting 2D keypoints into 3D space using a

deep feed-forward network. This approach separated the 2D pose estimation from the 3D

pose reconstruction, allowing for independent optimization of each step. This not only

improved accuracy but also provided a clearer pathway for debugging and enhancing each

component of the pipeline.

Recent studies have increasingly focused on exploiting temporal information from se-

quences of images to improve 3D pose estimation. Rayat Imtiaz Hossain and Little in [39]

introduced a sequence-to-sequence network using layer-normalized LSTM units, which

utilized temporal context from previous frames to generate more consistent 3D pose pre-

dictions across a sequence. This method reduced errors that typically accumulate over

time, providing more stable and reliable 3D reconstructions. Building on the importance

of temporal data, Pavllo et al. in [34] introduced a method based on dilated temporal

convolutions applied to 2D keypoint trajectories. Their approach combined the tempo-

ral context with a semi-supervised learning strategy that utilized unlabelled video data

to enhance performance, especially in scenarios with limited labeled data. This method

addressed issues of pose drift over long sequences, a common problem in LSTM-based

models.

Occlusions and missing data due to out-of-frame targets have been another significant

challenge in 3D pose estimation. Cheng et al. in [10] tackled this by integrating graph con-

volutional networks (GCNs) and temporal convolutional networks (TCNs). Their method

modeled the relationships between bones and joints through a human-bone GCN and a
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human-joint GCN, which enabled the system to estimate 3D poses even in the presence

of occlusions. By incorporating a joint TCN for spatial consistency and a velocity TCN

for temporal smoothness, they achieved robust performance without relying on camera

parameters, making the system more versatile and adaptable. Finally, the problem of

dataset bias in 2D-to-3D networks was addressed by Li et al. in [21], who proposed a novel

augmentation method capable of synthesizing a vast amount of training data. Their data

evolution strategy generated new poses by applying mutations and crossovers to existing

data, which significantly expanded the diversity and coverage of training datasets. This

approach, combined with a cascaded 3D coordinate regression model, provided a scal-

able solution to improve the generalization of 3D pose estimation models across different

datasets and scenarios.

2.6.3. Tracking

A multiple object tracking (MOT) algorithm is essential to accurately track the po-

sitions and maintain consistent identities of multiple objects across frames, ensuring reli-

able sequences of poses. This challenge becomes particularly pronounced in dynamic and

crowded environments, where objects frequently change direction, speed, and visibility,

often leading to occlusions and identity switches. Over the years, various approaches

have been developed to address these challenges, focusing on improving detection, motion

modeling, and feature extraction.

Motion-based tracking methods have traditionally relied on techniques such as back-

ground subtraction and frame differencing to detect moving objects. These methods are

computationally efficient and often robust under controlled conditions but can struggle in

more complex environments. A classical example of motion-based tracking is the Kalman

filter [20], which has been widely used to estimate the position of objects by predicting

their future states based on their previous movements. The Kalman filter assumes linear

motion and Gaussian noise, which makes it suitable for applications like tracking vehi-

cles on the road but less effective in scenarios involving erratic movements. To address

the limitations of the Kalman filter, SORT (Simple Online and Realtime Tracking) was

introduced by Bewley et al. in [5], combining the Kalman filter with the Hungarian algo-
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rithm for data association. While SORT efficiently tracks objects in real time, it does not

account for visual features, making it prone to identity switches, especially in crowded

scenes.

To improve the robustness of motion-based tracking, optical flow methods have been

employed, which estimate the motion of objects by analyzing the changes in pixel inten-

sities between consecutive frames. Methods like those proposed by Lucas, Kanade, et al.

in [23] calculate a 2D motion field, which is particularly useful in scenarios where ob-

jects undergo non-linear motion or where frame registration is imperfect. Various works

have used optical flow, such as in [3] and [19], to separate foreground objects from the

background, thereby improving tracking performance in cluttered environments.

On the other hand, feature-based tracking approaches focus on objects’ appearance

to maintain their identities over time. These methods segment objects based on features

such as color, texture, and shape and track them by matching these features across frames.

Wojke, Bewley, and Paulus in [53] extended the SORT framework by introducing a deep

association metric, which captures object features within the bounding box to improve

tracking accuracy, particularly during occlusions. This deep feature-based approach sig-

nificantly reduces identity switches, a common issue in simpler motion-based trackers.

Further advancements have integrated object segmentation techniques within the track-

ing pipeline, as seen in [49], where objects are segmented within detected bounding boxes

to enhance the accuracy of the tracking process.

Pose tracking represents a more specialized branch of tracking, focusing on tracking

human body poses across video frames. Iqbal, Milan, and Gall in [18] introduced the

concept of Multi-Person PoseTrack, addressing the challenges of tracking multiple people

in dynamic scenes by representing body joints as a spatiotemporal graph. Subsequent

methods, such as PoseFlow by Xiu et al. in [54], further refined pose tracking by in-

troducing techniques like Pose Flow Builder (PF-builder) and Pose Flow non-maximum

suppression (PF-NMS), which stabilize pose tracking by associating poses across frames

more effectively. More recent approaches, like those by Bao et al. in [4], have integrated

pose estimation with tracking-by-detection frameworks, utilizing temporal information to

improve detection accuracy and employing graph convolutional networks to model rela-

tionships between detected persons and their poses. These advancements have made pose

tracking more robust to occlusions and complex human interactions, particularly in sports
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and other dynamic environments.

2.6.4. Evaluation of the pipeline on a Handball Jump Shot dataset

In this section, we evaluate our 3D pose estimation and pose forecasting pipeline

using a custom dataset tailored for this purpose. The Rijeka Handball Shot (RI-HBS)

dataset [44, 41] was compiled from handball scenes recorded during training sessions

in Rijeka. Handball, a fast-paced Olympic team sport, is widely popular in Europe

but underrepresented in publicly available datasets for sports scenes, making RI-HBS

a valuable resource for this domain. The dataset consists of 21 short video clips, each

averaging 9 seconds, capturing two different players executing several handball jump shots.

To ensure the precision of the recorded joint positions, both players were equipped with

Wear-Notch motion capture sensors, which boast a static accuracy of approximately 1–2°

in yaw, tilt, and roll. The recording was performed with a single stationary camera

positioned 1.5 meters above the ground, and the players were located 7–10 meters away

from the camera, capturing video at a resolution of 1920x1080 pixels.

2.6.4.1. Evaluation of 3D Pose Estimation

For the 3D pose estimation evaluation, the RI-HBS dataset was prepared by synchro-

nizing the motion capture data with the video frames. The ground truth positions of the

players’ joints, as recorded by the Wear-Notch sensors, were used to train and evaluate

the 3D pose estimation models. The synchronization process involved aligning the video

footage with the sensor data, ensuring that each video frame corresponded accurately

to the recorded joint positions. This setup enabled us to assess the performance of 3D

pose estimation models in a real-world sports context, characterized by rapid, dynamic

movements and frequent occlusions typical of handball actions.

Several well-established and high-performing models were selected to assess their ef-

fectiveness on the RI-HBS dataset of handball players performing handball shots. The

primary objective of this evaluation was to identify a combination of models that deliv-

ers the best overall results in an unseen sports environment, such as handball, which is
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characterized by dynamic and complex motions.

Four state-of-the-art models were considered for 2D pose estimation: PoseRegression

[24], ArtTrack [17], Mask R-CNN [14], and UDP-Pose [15]. These models were chosen for

their proven track records in accurately estimating 2D poses in various challenging sce-

narios. PoseRegression and ArtTrack were trained using the MPII training dataset, while

Mask R-CNN and UDP-Pose were trained using the COCO 2017 training dataset. For 3D

pose estimation, three prominent models were evaluated: GnTCN [10], EvoSkeleton [21],

and VideoPose3D [34]. These models predict 3D poses based on the outputs of the 2D

pose estimation models, creating a pipeline where 2D pose predictions are lifted to 3D.

The 3D pose estimation models, GnTCN, EvoSkeleton, and VideoPose3D, were trained

using the Human3.6M training dataset, ensuring a consistent basis for fair evaluation and

comparison. Each of these models has distinct strengths: GnTCN leverages graph-based

neural networks for capturing temporal dependencies, EvoSkeleton utilizes evolutionary

algorithms to refine skeleton predictions, and VideoPose3D applies convolutional neural

networks to temporal sequences of 2D poses for predicting 3D poses.

In total, 12 combinations of 2D and 3D models were evaluated to determine the

best-performing pipeline for 3D pose estimation on the RI-HBS dataset. Experiments

utilizing top-down methods were provided with ground truth bounding boxes to ensure

that the assessment focused purely on pose estimation accuracy, eliminating potential

errors from object detectors. The performance of different 3D pose estimation model

combinations on the RI-HBS dataset is summarized in Table 10, with the best results

highlighted in bold. The upper portion of the table presents results based on 2D pose

estimation models pre-trained on the Human3.6M dataset, while the lower portion shows

results after fine-tuning the Mask R-CNN and UDP-Pose models on the RI-HBS dataset.

The two models were chosen for fine-tuning based on the best performance during the

pre-trained evaluation, resulting in noticeable improvements after fine-tuning. Among all

combinations, the UDP-Pose and EvoSkeleton models consistently performed the best,

with the lowest PA-MPJPE score of 0.073 after fine-tuning. This demonstrates that fine-

tuning the models on the RI-HBS dataset enhances the accuracy of 3D pose estimation

in the specific context of handball player movements.
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Table 10: Evaluation results of 3D pose estimation model combinations on the RI-HBS
dataset. The best-performing results are highlighted in bold. ”PA” denotes Procrustes
alignment, which uses Procrustes analysis to align and compare poses across all axes
before evaluation [44].

Training of 2D models 2D Model 3D Model ▼PA-MPJPE

PoseRegression GnTCN 0.150

PoseRegression EvoSkeleton 0.144

PoseRegression VideoPose3D 0.154

ArtTrack GnTCN 0.106

ArtTrack EvoSkeleton 0.107

Pre-trained on Human3.6M ArtTrack VideoPose3D 0.151

Mask R-CNN GnTCN 0.098

Mask R-CNN EvoSkeleton 0.094

Mask R-CNN VideoPose3D 0.124

UDP-Pose GnTCN 0.083

UDP-Pose EvoSkeleton 0.074

UDP-Pose VideoPose3D 0.117

Mask R-CNN GnTCN 0.090

Mask R-CNN EvoSkeleton 0.086

Fine-tuned on RI-HBS Mask R-CNN VideoPose3D 0.118

UDP-Pose GnTCN 0.080

UDP-Pose EvoSkeleton 0.073

UDP-Pose VideoPose3D 0.115
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2.6.4.2. Evaluation of Multi-Person Pose Forecasting models

In the context of multi-person pose forecasting, the RI-HBS dataset was further re-

fined to facilitate the training and evaluation of pose forecasting models. The dataset

was divided into a training set, comprising 7 scenes, and a test set, comprising 3 scenes,

with both sets including two players performing handball shots. The motion capture

data, recorded at 40 frames per second, provided approximately 4000 unique poses across

the dataset, offering a robust foundation for pose forecasting tasks. The sequences were

standardized to align with the SoMoF Benchmark, using a sampling frequency of 2, re-

sulting in input sequences covering 775 milliseconds and output sequences spanning 675

milliseconds.

The evaluation of multi-person pose forecasting models on the RI-HBS dataset was

conducted in two phases: first using models pre-trained on the 3DPW and AMASS

datasets, and then fine-tuning these models specifically on the RI-HBS dataset with an ad-

ditional 50 epochs. Previous research [41] has demonstrated that fine-tuning pre-trained

models on a custom dataset can significantly enhance performance by allowing the mod-

els to adapt to the specific characteristics of the new data. Building on this finding, we

applied fine-tuning to improve the models’ ability to predict poses in the RI-HBS dataset.

By doing so, we aimed to leverage the generalization capability obtained from pre-training

on larger, diverse datasets while refining the models for the nuances of the RI-HBS test

set. The results of these evaluations are detailed in Tables 11 and 12 respectively, with

clear improvements after fine-tuning, validating the effectiveness of this approach.

In the pre-trained phase, as shown in Table 11, the GCN-Transformer and MPFSIR

emerged as the top performers across both VIM and MPJPE metrics, demonstrating

superior performance, particularly at short-term intervals. It was closely followed by

the Future Motion model, which also performed well, though marginally less accurate in

longer-term predictions than the GCN-Transformer or MPFSIR. The JRTransformer and

SoMoFormer models also delivered competitive results, showing strength in predicting

short to mid-term future poses but lagging slightly in long-term predictions. Notably,

models like SocialTGCN and DViTA, while effective in mid-term forecasting, showed more

significant performance degradation as the prediction horizon extended, highlighting their
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Table 11: Evaluation results of multi-person pose forecasting models on the RI-HBS test
dataset when pre-trained on the 3DPW and AMASS datasets. The table presents model
performance at various time intervals using VIM and MPJPE metrics. GCN-Transformer
leads in the overall ranking, with MPFSIR and Future Motion close behind [41].

Method
VIM MPJPE

75ms 175ms 375ms 475ms 675ms Overall 75ms 175ms 375ms 475ms 675ms Overall

Zero Velocity 68.91 127.67 238.84 293.51 382.84 222.35 133.27 212.36 360.59 435.76 581.38 344.67

LTD [28] 46.11 90.26 178.25 223.02 300.20 167.57 87.30 144.15 255.39 313.85 431.48 246.44

MRT [52] 40.09 82.53 165.42 205.49 292.87 157.28 74.41 128.96 237.56 292.73 407.81 228.29

TBIformer [35] 41.81 81.85 154.54 187.42 245.39 142.20 78.22 129.46 225.61 272.18 363.06 213.70

DViTA [33] 37.85 80.51 156.37 191.77 251.66 143.63 67.42 120.32 222.83 273.44 369.93 210.79

JRTransformer [55] 29.74 72.82 152.65 189.85 262.80 141.57 50.77 104.17 212.17 264.53 368.22 199.97

SocialTGCN [37] 33.20 72.15 149.28 181.05 232.54 133.64 60.61 109.14 209.62 257.78 345.65 196.56

SoMoFormer [48] 27.71 65.76 142.36 179.64 253.39 133.77 48.36 95.02 193.19 243.78 346.59 185.39

Future Motion [51] 28.22 65.20 136.23 169.33 239.72 127.74 49.60 95.59 188.73 235.01 328.81 179.55

MPFSIR (our) [43] 28.62 66.33 135.35 166.32 259.55 131.24 50.04 94.71 186.88 231.47 325.19 177.66

GCN-Transformer (our) [45] 26.15 64.07 135.94 171.18 249.45 129.36 44.30 90.60 186.54 234.46 332.34 177.65

limitations in capturing the dynamics of long-term pose evolution.

Table 12: Evaluation results of multi-person pose forecasting models on the RI-HBS test
dataset after fine-tuning on the RI-HBS training set for an additional 50 epochs. The
table shows performance across multiple time intervals using VIM and MPJPE metrics.
Significant improvements are observed across all models after fine-tuning, with GCN-
Transformer retaining its top position and LTD showing a notable rise in performance,
now ranking just behind SoMoFormer [41].

Method
VIM MPJPE

75ms 175ms 375ms 475ms 675ms Overall 75ms 175ms 375ms 475ms 675ms Overall

Zero Velocity 68.91 127.67 238.84 293.51 382.84 222.35 133.27 212.36 360.59 435.76 581.38 344.67

DViTA [33] 37.31 76.43 138.81 167.55 217.20 127.46 68.16 116.27 203.72 244.76 323.45 191.27

TBIformer [35] 37.29 72.05 126.37 148.89 185.48 114.02 70.09 114.83 194.66 229.93 293.37 180.58

SocialTGCN [37] 33.41 68.88 123.90 148.17 186.50 112.17 61.66 106.83 185.64 222.11 288.52 172.95

JRTransformer [55] 28.76 68.50 125.15 148.69 194.49 113.12 49.13 98.16 181.45 217.98 288.36 167.01

Future Motion [51] 29.52 63.61 123.63 152.41 210.23 115.88 53.61 96.93 178.56 219.05 298.66 169.36

MRT [52] 34.65 68.22 115.83 135.10 167.65 104.29 63.99 108.21 180.22 210.96 267.67 166.21

MPFSIR (our) [43] 29.02 65.79 123.73 146.99 199.59 113.02 50.43 96.28 178.51 215.49 287.81 165.70

LTD [28] 33.29 66.19 115.46 132.53 160.87 101.67 61.89 104.01 174.28 205.02 258.65 160.77

SoMoFormer [48] 25.85 58.10 100.79 120.77 157.76 92.65 44.91 85.44 152.55 182.04 238.45 140.68

GCN-Transformer (our) [45] 25.48 56.76 98.32 115.32 142.25 87.63 44.58 85.28 150.55 178.58 226.66 137.13

Fine-tuning the models on the RI-HBS dataset resulted in substantial performance

improvements across all the evaluated models, highlighting the importance of domain-

specific training as shown in Table 12. Every model benefited from this process, showing

reduced errors in both VIM and MPJPE metrics. The GCN-Transformer continued to

excel, maintaining its position as the top performer. After fine-tuning, it further reduced
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its errors across all time intervals, particularly strengthening its long-term prediction

capabilities. This solidified its status as the most reliable model for forecasting both short-

term and long-term poses. SoMoFormer, which had already been a strong contender,

showed even more impressive results after fine-tuning, significantly narrowing the gap

with the GCN-Transformer. Its performance in short to mid-term predictions improved

considerably. The JRTransformer also made notable strides, especially in short-term

predictions, but still significantly lagging behind the top-performing models. One of the

most striking changes after fine-tuning was observed in the LTD model. Initially, it

had lagged behind many of the other models, but after fine-tuning, it made a dramatic

leap in performance, positioning itself right behind SoMoFormer. Other models, such as

MPFSIR, MRT, SocialTGCN, DViTA, and SoMoFormer, also showed improvements after

fine-tuning, though they remained better suited for short to mid-term predictions. While

they still trailed behind the top performers, their errors were reduced, and their long-term

prediction capabilities saw some enhancements, albeit not as significant as those observed

in the leading models.
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3. CONCLUSION

In conclusion, this doctoral thesis has presented significant advancements in the field

of multi-person pose forecasting by developing new models, metrics, and loss functions

that improve the performance and generalizability of forecasting poses in complex dy-

namic environments. The research focused on addressing core challenges in the domain,

particularly regarding computational efficiency, model performance, and comprehensive

evaluation.

One of the key contributions of this thesis is the development of a lightweight neural

network architecture named MPFSIR, which also includes a social interaction prediction

component designed to model and predict interactions between individuals. This model is

particularly suited for real-time applications, as it achieves comparable results to state-of-

the-art methods while using up to 30 times fewer parameters. This efficiency is especially

valuable when computational resources are limited or fast and reliable processing is nec-

essary. It was demonstrated through rigorous evaluation that the model could maintain

high performance, optimizing the balance between the number of model parameters and

results.

Additionally, this thesis introduced the GCN-Transformer, a novel neural network

architecture that combines Graph Convolutional Networks (GCN) and Transformer com-

ponents. By effectively capturing both spatial and temporal dynamics, this hybrid model

proved highly adaptable, outperforming existing models on four challenging datasets.

Based on the MPJPE metric, the GCN-Transformer shows an average improvement of

4.15% over the closest state-of-the-art model across these datasets. More specifically,

GCN-Transformer shows a 4.7% improvement over the closest SOTA model on CMU-

Mocap, 4.3% improvement over the closest SOTA model on MuPoTS-3D, 5% improve-

ment over the closest SOTA model on the SoMoF Benchmark, and a 2.6% improvement

over the closest SOTA model on the ExPI dataset. Its ability to generalize across dif-

ferent data domains, unlike other models whose performance fluctuates across datasets,

underscores the robustness of this architecture. GCN-Transformer generalization capa-

bility is further supported by the minimal variation in its improvement over the Zero

Velocity baseline, with a standard deviation of only 1.69% in two-person scenes and just
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0.1% in three-person scenes. This consistent performance demonstrates that the GCN-

Transformer provides a foundation for application in diverse environments and domains,

solidifying its position as the current state-of-the-art in multi-person pose forecasting.

The thesis also introduced an innovative loss function composed of two specific terms:

Multi-person Joint Distance Loss (MPJD) and Velocity Loss (VL). VL captures movement

velocities to enhance the temporal coherence of pose sequences, while MPJD measures

joint distances between individuals to improve spatial interaction dependencies. This loss

function significantly enhanced model performance by improving the training process,

leading to better capturing human movement dynamics. An ablation study conducted as

part of the research demonstrated a clear improvement in forecasting performance when

the new loss terms were applied. The enhanced loss function resulted in a 4.8% improve-

ment in the MPJPE metric and a 3.5% improvement in the VIM metric compared to the

standard loss function, clearly validating its effectiveness. This improvement highlights

the value of incorporating these additional movement dynamics into the training process,

leading to more accurate and realistic pose forecasts.

Moreover, a new evaluation metric named FJPTE (Final Joint Position and Trajec-

tory Error) has been introduced to provide a more detailed framework for assessing pose

forecasting models. Unlike standard metrics, FJPTE evaluates both the full movement

trajectory and the final joint position, providing deep insights into the models’ effec-

tiveness in capturing human dynamics by assessing both local movements and global

positions. This nuanced approach to evaluation helps distinguish the subtle performance

differences among leading models, providing a clearer picture of each model’s strengths

and weaknesses in various forecasting aspects.

Overall, this thesis has made significant contributions to the field of multi-person pose

forecasting by tackling key challenges in model design, training strategies, and evaluation

methods. The research has advanced theoretical understanding and paved the way for

practical applications in scenarios that demand high performance and efficiency.

50



3.1. Validating hypotheses and scientific contributions

This doctoral thesis is grounded in a series of scientific contributions and hypothe-

ses outlined in section 1.3. This section will revisit these contributions and hypothe-

ses, explaining how each was implemented and experimentally validated. Through rig-

orous experimentation and analysis, these contributions and the underlying hypotheses

were proven effective in addressing the challenges posed by multi-person pose forecasting,

demonstrating their value within the broader field context.

Scientific hypotheses were:

• H1: A model utilizing spatial and temporal pose features can achieve equivalent

multi-person pose forecasting performance as more complex SOTA models while

using significantly fewer parameters.

Hypothesis H1, which asserts that a model utilizing spatial and temporal pose fea-

tures can achieve equivalent multi-person pose forecasting performance as more

complex state-of-the-art (SOTA) models while using significantly fewer parameters,

was validated through the development of the MPFSIR model as presented in the

paper [43]. The MPFSIR model effectively leveraged spatial and temporal features

of human poses to forecast multi-person movements with performance comparable

to more complex architectures. Despite its lightweight design, the model optimized

the Pareto front by balancing pose forecasting error and the number of model pa-

rameters, proving that reducing the number of model parameters without sacrific-

ing performance is possible. Specifically, MPFSIR achieved results comparable to

SOTA models while using up to 30 times fewer parameters, thereby confirming the

H1 hypothesis.

• H2: Combining the architectures of graph convolutional networks and Transformers

can create a model that has a lower error in multi-person pose forecasting compared

to existing SOTA model architectures.

Hypothesis H2 asserts that integrating graph convolutional networks (GCNs) with

Transformer architectures can yield a model that surpasses existing state-of-the-
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art (SOTA) models in terms of error rates in multi-person pose forecasting. This

hypothesis was validated by developing and implementing the GCN-Transformer

model, detailed in the paper [45]. The GCN-Transformer model leverages the

strengths of both GCNs and Transformers, capturing spatial relationships between

joints and temporal dynamics of human motion with exceptional efficacy. This

hybrid model provides a comprehensive understanding of pose sequences by incor-

porating the spatio-temporal processing capabilities of GCNs with Transformers’s

spatio-temporal and contextual proficiency. It demonstrated superior performance

compared to existing SOTA models across diverse datasets, establishing it as the

new benchmark in the field. On average, GCN-Transformer outperformed the closest

SOTA model by 4.15% based on the MPJPE metric across four evaluated datasets.

Moreover, its generalization capability was confirmed by low variability in perfor-

mance, showing a standard deviation of only 1.69% in two-person scenes and just

0.1% in three-person scenes when measuring improvement compared to the Zero

Velocity baseline. This model architecture validates the H2 hypothesis and sig-

nificantly advances developing predictive models for multi-person pose forecasting,

highlighting the potent synergies between GCNs and Transformers in this complex

domain.

• H3: A loss function that includes movement velocity error and joint distance error

between individuals contributes to the effective training of the model.

Hypothesis H3 asserts that a loss function incorporating both movement velocity

and joint distance errors between individuals enhances the effectiveness of model

training for multi-person pose forecasting. This hypothesis was substantiated in

the paper [45], which introduced a novel loss function that includes terms for move-

ment velocities and spatial joint distances between individuals. By integrating these

elements, the loss function ensures that the model predicts accurate positions and

captures the intricate dynamics of motion and the interactions among individuals in

a scene. The efficacy of this enhanced loss function was rigorously tested through an

ablation study, demonstrating significant improvements in model performance met-

rics. Specifically, including these additional loss components led to a 4.8% reduction

in the MPJPE and a 3.5% decrease in the VIM, confirming the H3 hypothesis.
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The realized scientific contributions were:

• A lightweight neural network architecture and model for multi-person

pose forecasting based on spatial and temporal features.

The paper [43] introduces a significant contribution to multi-person pose forecasting

with a lightweight neural network architecture called MPFSIR. This model leverages

spatial and temporal features to predict future poses efficiently. The contribution

was validated by demonstrating the models’ ability to optimize the Pareto front,

where it achieved a balance between forecasting error and the number of model

parameters. The MPFSIR model delivered comparable performance to state-of-the-

art models on evaluated datasets while utilizing up to 30 times fewer parameters.

This optimization showed that the model maintained high forecasting performance

and offered computational advantages, proving its value for practical applications

requiring efficient performance.

• A neural network architecture and model for multi-person pose forecast-

ing comprising a graph convolutional network and a Transformer.

The paper [45] presented a novel neural network architecture for multi-person pose

forecasting that integrates a Graph Convolutional Network (GCN) with a Trans-

former called GCN-Transformer. This hybrid approach effectively captures both

the spatial relationships between joints and the temporal dynamics of human mo-

tion, making it a powerful tool for pose forecasting. The contribution was validated

by demonstrating GCN-Transformer’s superior performance over other state-of-the-

art models on four distinct datasets. On average, GCN-Transformer improved the

MPJPE metric by 4.15% compared to the closest state-of-the-art model across these

datasets. The model’s ability to generalize across different dataset domains, where

competing models struggled to maintain consistent performance, proved its robust-

ness and versatility. This generalizability is further evidenced by the low variability

in its improvements over the Zero Velocity baseline, recording a standard deviation

of just 1.69% in two-person scenes and 0.1% in three-person scenes. This adapt-

ability across varied domains highlighted the strength of the GCN-Transformer ar-

chitecture, suggesting that other models might be more specialized to specific types
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of domains, whereas GCN-Transformer architecture showed broad applicability and

consistent ranking in both datasets.

• A loss function for effective training of pose forecasting models that in-

cludes movement velocities and joint distance between individuals.

The paper [45] introduced a novel loss function designed to enhance the training of

pose forecasting models. This loss function incorporates both movement velocities

and joint distances between individuals, implemented through two terms: Velocity

Loss (VL) and Multi-person Joint Distance Loss (MPJD). These terms ensure that

the model predicts the correct positions and accurately captures motion dynamics

and the interactions between multiple individuals. The effectiveness of this con-

tribution was validated through an ablation study, where the inclusion of VL and

MPJD resulted in a significant improvement in the model’s performance. Specif-

ically, the enhanced loss function resulted in a 4.8% improvement in the MPJPE

metric and a 3.5% improvement in the VIM metric, demonstrating its superiority

over the standard loss function. These results underscore the value of incorporating

movement and interaction dynamics into the loss, leading to more accurate and

realistic pose predictions.

• An evaluation metric for pose forecasting that considers the movement

trajectory and the final position.

The paper [45] proposed a novel evaluation metric for pose forecasting that considers

both the movement trajectory and the final position of the predicted poses. This

metric, referred to as Final Joint Position and Trajectory Error (FJPTE), provides

a more nuanced and comprehensive assessment of model performance than standard

metrics such as VIM and MPJPE. The value of this contribution was demonstrated

by evaluating various models using the new metric. The FJPTE metric offers a

breakdown of performance into two main components: FJPTElocal, which measures

errors related to local movement dynamics, and FJPTEglobal, which quantifies er-

rors in global positioning and trajectory. This separation enables a more detailed

comparison of models, providing specific and actionable insights into their strengths

and weaknesses. Utilizing this metric revealed important distinctions between mod-

els that would have been obscured by standard aggregate metrics, proving it to be
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a valuable tool for evaluating pose forecasting models in a more fine-grained and

meaningful manner.

3.2. Future research directions

As we look toward the future of multi-person pose forecasting, several avenues for

research emerge from the findings and limitations of this thesis. One critical area involves

modeling social interactions between individuals within a scene. Understanding and ac-

curately predicting how people move in response to others requires a deeper integration

of social dynamics into forecasting models. This could be achieved through advanced

graph-based techniques or by incorporating social interaction knowledge directly into the

neural network architectures.

Further advancements should enhance the models’ capabilities to learn human move-

ment dynamics. This could involve the development of more sophisticated loss functions

that better capture the intricacies of human motion, improvements in data preprocessing

techniques to enrich model inputs or the exploration of new model architectures that

more accurately reflect human biomechanics. Each of these areas offers the potential for

significant impacts on the realism and accuracy of pose forecasts.

Additionally, embedding knowledge about valid human poses directly into the models

is crucial to avoid generating physically impossible poses. This could be addressed by

integrating constraints into the learning process, possibly through generative models or

by applying post-processing constraints that adjust the outputs to fall within humanly

possible ranges. Such developments would improve the visual credibility of the models’

outputs and enhance their overall performance.

Exploration into hybrid architectures that combine the strengths of various model-

ing approaches, such as those blending graph convolutional networks with Transformers,

should continue. These architectures have shown promise in capturing both spatial and

temporal relationships. Still, they may be further enhanced by integrating additional com-

ponents like recurrent neural networks or capsule networks to better handle sequences and

hierarchical relationships.

Lastly, improving the generalization capabilities of pose forecasting models across
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different types of data domains remains a significant challenge. Future research should

focus on developing models that maintain high performance regardless of the dataset

characteristics. This might involve training strategies that encourage robustness, such

as domain adaptation techniques or multi-task learning frameworks that can handle a

variety of human activities and interaction scenarios.

By addressing these future research directions, multi-person pose forecasting can con-

tinue to advance toward more accurate, efficient, and universally applicable models. These

efforts will extend the applicability of pose forecasting technology to a broader range of

real-world scenarios, further bridging the gap between theoretical research and practical

applications.
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4. ABSTRACTS OF ARTICLES

4.1. MPFSIR: An Effective Multi-Person Pose Forecasting Model

With Social Interaction Recognition

In recent years, multi-person pose forecasting has gained significant attention due to its

potential applications in various fields such as computer vision, robotics, sports analysis,

and human-robot interaction. In this paper, we propose a novel deep learning model for

multi-person pose forecasting called MPFSIR (multi-person pose forecasting and social

interaction recognition) that achieves comparable results with state-of-the-art models, but

with up to 30 times fewer parameters. In addition, the model includes a social interaction

prediction component to model and predict interactions between individuals. We evaluate

our model on three benchmark datasets: 3DPW, CMU-Mocap, and MuPoTS-3D, compare

it with state-of-the-art methods, and provide an ablation study to analyze the impact of

the different model components. Experimental results show the effectiveness of MPFSIR

in accurately predicting future poses and capturing social interactions. Furthermore, we

introduce the metric MW-MPJPE to evaluate the performance of pose forecasting, which

focuses on motion dynamics. Overall, our results highlight the potential of MPFSIR for

predicting the poses of multiple people and understanding social dynamics in complex

scenes and in various practical applications, especially where computational resources are

limited. The code is available at https://github.com/RomeoSajina/MPFSIR.

Available at:

https://ieeexplore.ieee.org/document/10210381

Romeo Šajina, Marina Ivašić-Kos, 2023. MPFSIR: An Effective Multi-Person Pose Fore-

casting Model With Social Interaction Recognition. IEEE Access, Volume 11, ISSN 2169-

3536,

DOI: 10.1109/ACCESS.2023.3303018
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4.2. GCN-Transformer: Graph Convolutional Network and Trans-

former for Multi-Person Pose Forecasting Using Sensor-Based

Motion Data

Multi-person pose forecasting involves predicting the future body poses of multiple in-

dividuals over time, involving complex movement dynamics and interaction dependencies.

Its relevance spans various fields, including computer vision, robotics, human–computer

interaction, and surveillance. This task is particularly important in sensor-driven appli-

cations, where motion capture systems, including vision-based sensors and IMUs, provide

crucial data for analyzing human movement. This paper introduces GCN-Transformer,

a novel model for multi-person pose forecasting that leverages the integration of Graph

Convolutional Network and Transformer architectures. We integrated novel loss terms

during the training phase to enable the model to learn both interaction dependencies and

the trajectories of multiple joints simultaneously. Additionally, we propose a novel pose

forecasting evaluation metric called Final Joint Position and Trajectory Error (FJPTE),

which assesses both local movement dynamics and global movement errors by considering

the final position and the trajectory leading up to it, providing a more comprehensive

assessment of movement dynamics. Our model uniquely integrates scene-level graph-

based encoding and personalized attention-based decoding, introducing a novel architec-

ture for multi-person pose forecasting that achieves state-of-the-art results across four

datasets. The model is trained and evaluated on the CMU-Mocap, MuPoTS-3D, SoMoF

Benchmark, and ExPI datasets, which are collected using sensor-based motion capture

systems, ensuring its applicability in real-world scenarios. Comprehensive evaluations on

the CMU-Mocap, MuPoTS-3D, SoMoF Benchmark, and ExPI datasets demonstrate that

the proposed GCN-Transformer model consistently outperforms existing state-of-the-art

(SOTA) models according to the VIM and MPJPE metrics. Specifically, based on the

MPJPE metric, GCN-Transformer shows a 4.7% improvement over the closest SOTA

model on CMU-Mocap, 4.3% improvement over the closest SOTA model on MuPoTS-

3D, 5% improvement over the closest SOTA model on the SoMoF Benchmark, and a

2.6% improvement over the closest SOTA model on the ExPI dataset. Unlike other mod-

els with performances that fluctuate across datasets, GCN-Transformer performs consis-
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tently, proving its robustness in multi-person pose forecasting and providing an excellent

foundation for the application of GCN-Transformer in different domains.

Available at:

https://www.mdpi.com/1424-8220/25/10/3136

Romeo Šajina, Goran Oreški, Marina Ivašić-Kos, 2025. GCN-Transformer: Graph Con-

volutional Network and Transformer for Multi-Person Pose Forecasting Using Sensor-

Based Motion Data. Sensors, Volume 25, ISSN 1424-8220,

DOI: 10.3390/s25103136
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4.3. 3D Pose Estimation and Tracking in Handball Actions Us-

ing a Monocular Camera

Player pose estimation is particularly important for sports because it provides more

accurate monitoring of athlete movements and performance, recognition of player actions,

analysis of techniques, and evaluation of action execution accuracy. All of these tasks are

extremely demanding and challenging in sports that involve rapid movements of athletes

with inconsistent speed and position changes, at varying distances from the camera with

frequent occlusions, especially in team sports when there are more players on the field.

A prerequisite for recognizing the player’s actions on the video footage and comparing

their poses during the execution of an action is the detection of the player’s pose in each

element of an action or technique. First, a 2D pose of the player is determined in each

video frame, and converted into a 3D pose, then using the tracking method all the player

poses are grouped into a sequence to construct a series of elements of a particular action.

Considering that action recognition and comparison depend significantly on the accuracy

of the methods used to estimate and track player pose in real-world conditions, the paper

provides an overview and analysis of the methods that can be used for player pose estima-

tion and tracking using a monocular camera, along with evaluation metrics on the example

of handball scenarios. We have evaluated the applicability and robustness of 12 selected

2-stage deep learning methods for 3D pose estimation on a public and a custom dataset

of handball jump shots for which they have not been trained and where never-before-seen

poses may occur. Furthermore, this paper proposes methods for retargeting and smooth-

ing the 3D sequence of poses that have experimentally shown a performance improvement

for all tested models. Additionally, we evaluated the applicability and robustness of five

state-of-the-art tracking methods on a public and a custom dataset of a handball training

recorded with a monocular camera. The paper ends with a discussion apostrophizing

the shortcomings of the pose estimation and tracking methods, reflected in the problems

of locating key skeletal points and generating poses that do not follow possible human

structures, which consequently reduces the overall accuracy of action recognition.

Available at:
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https://www.mdpi.com/2313-433X/8/11/308

Romeo Šajina, Marina Ivašić-Kos, 2022. 3D Pose Estimation and Tracking in Handball

Actions Using a Monocular Camera. Journal of Imaging, Volume 8, ISSN 2313-433X,

DOI: 10.3390/jimaging8110308
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4.4. Other research papers that are the result of the doctorate

research

4.4.1. Analysis of Multi-Person Pose Forecasting Models on Handball Ac-

tions

Multi-person pose forecasting involves predicting the future poses of multiple individu-

als within a scene, which is crucial for various applications in sports analytics, surveillance,

human-computer interaction, etc. This paper investigates multi-person pose forecasting

models in the context of handball actions, presenting a comprehensive analysis through

two main experiments. Firstly, we evaluate pre-trained models on a custom dataset of

handball shots to assess their applicability in real-world scenarios. Secondly, we analyze

model performance on the same handball shot dataset after fine-tuning, emphasizing do-

main adaptation effects. Additionally, we introduce a novel dataset for multi-person pose

forecasting, featuring scenarios where two players execute handball shots. This dataset

fills a critical gap by providing a specialized and dynamic environment for evaluating

pose forecasting models. The experiments highlight the effectiveness of transfer learn-

ing and domain adaptation in enhancing model accuracy and robustness for real-world

applications involving complex human interactions and movements.

The code and dataset are available at https://github.com/RomeoSajina/MPF-HBS.

Available at:

https://ieeexplore.ieee.org/document/10638569/

Romeo Šajina, Marina Ivašić-Kos, 2024. Analysis of Multi-Person Pose Forecasting Mod-

els on Handball Actions. 2024 8th International Conference on Computer, Software and

Modeling (ICCSM), ISBN:979-8-3503-6714-0,

DOI: 10.1109/ICCSM63823.2024.00018
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4.4.2. Evaluacija i analiza modela dubokih neuronskih mreža za predvidanje

kretanja vǐse osoba na sceni

Predvidanje kretanja vǐse osoba na sceni predstavlja izazovan zadatak sa širokim

potencijalom primjene. Ovaj problematičan aspekt pronalazi svoju primjenu u kontek-

stu autonomnih vozila, gdje se koristi za predvidanje kretanja pješaka i na temelju tih

predvidanja se poduzimaju odgovarajuće akcije. Takoder, u sportskoj analizi, ovakvi

modeli se primjenjuju za predvidanje kretanja igrača, dok se u području robotske mobil-

nosti koriste za anticipiranje ponašanja okoline i prilagodavanje ponašanja robota prema

tim predvidanjima. Ovaj znanstveni rad temelji se na istraživanju modela za predvidanje

kretanja vǐse osoba na sceni, s posebnim fokusom na analizi njihovih performansi na

novom, do sada neistraženom skupu podataka. U radu će se analizirati najnoviji modeli

koji se većinski oslanjaju na arhitekturu Transformera, ali će se takoder obuhvatiti i pris-

tupi temeljeni na jednostavnijim arhitekturama. Kroz ovu analizu, rad pridonosi dubljem

razumijevanju raznolikosti modela za predvidanje kretanja vǐse osoba, pružajući uvid u to

kako najnovije arhitekture, poput Transformera, odgovaraju na ovaj problem u usporedbi

s prethodnim pristupima. Istraživanje donosi doprinos razvoju tehnika predvidanja kre-

tanja u realnom vremenu, s potencijalom za unapredenje autonomnih sustava u različitim

okolinama i scenarijima primjene.

Available at:

http://mipro-proceedings.com

Romeo Šajina, 2024. Evaluacija i analiza modela dubokih neuronskih mreža za predvidanje

kretanja vǐse osoba na sceni. 2024 47th MIPRO ICT and Electronics Convention (MIPRO),

The paper is not indexed because it was written in Croatian.
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fective Multi-Person Pose Forecasting Model With Social Interaction Recognition. IEEE

Access, Volume 11 ISSN 2169-3536, DOI: 10.1109/ACCESS.2023.3303018

For clarity, the article has been reformatted, otherwise the content is the same as the

published version of the work. © 2023 by the author. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (https://creativecommons.org/licenses/by/4.0/).

https://ieeexplore.ieee.org/document/10210381

76

https://creativecommons.org/licenses/by/4.0/
https://ieeexplore.ieee.org/document/10210381


1. Introduction

Pose forecasting is a subfield of computer vision that aims to predict future joint

positions of the human body based on a set of previous poses. It includes the prediction

of joint positions as well as the orientation and movement of the body.

Using different deep learning methods such as methods using RNN, graph convolu-

tional network, and attention, significant progress has been made in predicting human

poses, which are usually associated with predicting human movement. It is mainly a

task of predicting 3D human poses, which is defined in fixed time intervals that mimic a

fixed camera recording speed. Most often, from the initial observation of a person, the

3D behavior of that person is predicted up to ≈1 second in the future or the long-term

behavior of n (several) seconds in the future, which increases the complexity of the predic-

tion because the movement can include changes in the speed and direction of movement

as well as changes in the type of movement due to execution of some other action. Pose

forecasting can be performed for one person or multiple people in the scene. Single-person

pose forecasting aims to predict the future pose of one person, while multi-person pose

forecasting aims to predict the future poses of more than one person in a scene while con-

sidering the social interaction between those people. Understanding the social interaction

between people on the scene requires determining the relationship between individuals

that is not necessarily determined only by their physical location on the scene, although

this is often the case when people know each other and interact or talk to each other

or walk in parallel. Likewise, there are not rare examples when people stand next to

each other, for example, at a bus stop or walk next to each other on a promenade at

some point, and they do not know each other and have no interaction. The difference

between single-person and multi-person forecasting lies in the complexity of the problem

since multi-person forecasting requires modeling the interactions and dependencies be-

tween people, their movements, and poses that affect the range of what social interaction

is involved and whether there is social contact.

Figure 1 exemplifies the main objective of our research, showcasing the capabilities of

our proposed model, named MPFSIR, which effectively leverages the historical informa-

tion of previous poses to accurately forecast future poses, while also demonstrating its
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Figure 1: Illustration of the paper’s objective to forecast future poses and predict the
type of social interaction using historical pose information. The figure demonstrates the
model’s ability to leverage past poses to accurately predict future poses while considering
the social interactions among individuals in the scene.

ability to predict the type of social interaction between individuals in the scene, thereby

highlighting the comprehensive nature of our approach.

MPFSIR model leverages fully-connected layers with skip-connections to achieve state-

of-the-art accuracy of pose forecasting with a small number of model parameters. Our

model primarily focuses on utilizing the temporal information present in the data, allowing

it to effectively capture the dynamics and temporal dependencies of human poses over

time.

Predicting the poses of multiple individuals has applications in many fields, including

robotics, human-computer interaction, and sports analysis. Several approaches have been

proposed to solve this problem, including deep learning methods, graph-based models,

and physics-based models. Despite significant progress, predicting the poses of multi-

ple people remains a challenge with room for improvement, especially in scenarios with

crowded scenes and complex social interactions. The paper presents our model called

MPFSIR, which effectively uses historical information about past poses of people in a

scene and prediction of the social interaction type to predict future poses of two or more

people in a scene as accurately as possible, highlighting the comprehensive nature of our

approach. Figure 1 shows the main goal of our model, which goes beyond traditional

pose forecasting by considering the social aspect of human interactions and focuses on

using the temporal information available in the data to effectively model the dynamics

and temporal dependencies of human poses over time.

The MPFSIR model uses fully connected layers with skip-connections and achieves

prediction accuracy in the range of the most modern models but with a significantly

smaller number of parameters, Figure 2. Our model provides additional information

regarding the type of social interaction between people in the scene and thus, especially
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Figure 2: Comparison of model performance and parameter efficiency. The figure show-
cases the Pareto front, highlighting how our MPFSIR model achieves competitive results
with a significantly reduced number of model parameters.

in the case of two or multiple rooms on the scene, gives an additional possibility of a

deeper understanding of the context and dynamics of the observed human poses and

offers valuable insights into social relations and interactions between people. In short, our

contributions are:

• a new model for multi-person pose forecasting, with only 0.15 million model param-

eters

• a module for recognizing the type of social interaction between people in the scene

and improving the pose forecasting regarding the interaction

• a new evaluation metric for pose forecasting that considers the person’s overall

dynamics and movements.

This paper is organized into several sections starting with the Related work section

that describes previous research efforts related to pose forecasting and social interaction

modeling. Then the Pose Forecasting section provides the basic concepts of predicting

future poses from historical data and discusses the importance of temporal dependencies.

In the Proposed Model section, our new pose forecasting approach is presented, high-

lighting the special features and fundamental principles of the proposed MPFSIR model.

In the Experimental Results, the performance of the proposed model is compared with
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state-of-the-art methods on multiple datasets (SoMoF 3DPW, CMU-Mocap, MuPoTS-

3D) along with the ablation study to examine different model components and the key

factors contributing to model success. Additionally, a novel pose forecasting evaluation

metric MW-MPJPE is described in the dedicated section with advantages over existing

metrics in assessing the accuracy of pose forecasting. The paper ends with Conclusion

that addresses the limitations of the proposed model and highlights areas for future im-

provement and potential directions for further research.

2. Related work

2.1. Pose forecasting

In single-person pose forecasting, models predict future joint coordinates without

global translation. Recent models utilize RNN backbones, with some utilizing graph

attention networks or GANs to extend prediction to multiple entities or provide plausible

outputs. For example, Chiu et al. [4] use a hierarchical RNN to predict human motion,

and Mao, Liu, and Salzmann in [9] models human motion as a graph of encoded motions

for each joint coordinate with a GNN architecture to pass information between nodes.

Attention-based models, such as the one introduced in [11] by Mao et al., capture sim-

ilarities between current and historical motion sub-sequences to aggregate past motions

for long-term forecasting. Guo et al. in [5] simplified the task of pose forecasting and

proposed a simple MLP network with skip connections that models future poses using

temporal information to predict the residual displacement of joints. They showed that

using only 0.14 million parameters with this arrangement can perform better than the

state-of-the-art models, which contain 20x to 30x more parameters. Recent papers in

the field of pose forecasting have placed emphasis on separately modeling the spatial and

temporal information of poses. Medjaouri and Desai in [13] proposed a model called

HR-STAN (High-Resolution Spatio-Temporal Attention Network), that adopts a unique

architecture that directly maps a fixed-length pose history to a fixed-length pose fore-
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casting sequence, eliminating the need for a separate pose encoding and decoding step.

HR-STAN decomposes convolutions into spatial and temporal components, allowing for

more efficient modeling of spatio-temporal relationships within the pose history. Instead

of using strided convolutions, dilated convolutions are employed in subsequent branches

of the network to increase the receptive field without feature compression. Additionally,

split spatial and temporal attention mechanisms are introduced to encourage the net-

work to focus on the spatio-temporal relationships of specific motions. Zhong et al. in

[22] proposed Gating-Adjacency GCN (GAGCN), a model that consists of an encoder-

decoder structure, where GAGCN serves as the encoder and Temporal Convolutional

Networks (TCN) act as the decoder. The encoder focuses on learning the spatio-temporal

dependencies of the historical motion sequence. It utilizes a spatial and temporal gat-

ing network to derive blending coefficients that determine the importance of spatial and

temporal information. These coefficients are then used to blend the spatial and temporal

adjacency matrices, resulting in an adaptive adjacency matrix that captures the cross

spatio-temporal dependencies. The fused spatial and temporal dependencies are obtained

through the Kronecker product and are passed to the next layer. The decoder, utilizing

TCN, takes the latent motion representation obtained from the encoder and predicts the

future pose sequence.

For multi-person settings, such as those encountered in sports and social gathering

environments, global interactions between people must be considered. Recent works in

multi-person pose forecasting have therefore focused on predicting the future for an entire

scene, using attention-based methods similar to those employed in pose and trajectory

forecasting. However, current methods still have limitations in making predictions for

multiple individuals. For instance, Adeli et al. [2] use graph attentional networks to model

interactions between humans and objects but only use an RNN to predict future motion.

Mart’inez-Gonz’alez, Villamizar, and Odobez in [12] use a transformer to predict an entire

future sequence without recurrence but only consider one person at a time. Wang et al.

[21] uses a transformer-based architecture to model global interactions between multiple

individuals but can only make inferences for one person at a time. Vendrow et al. in

[18] proposed a model called SoMoFormer, that solves the problem of inferencing only

one person at a time by proposing a transformer architecture that models human motion

input as a joint sequence rather than a time sequence, allowing them to perform attention
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over joints while predicting an entire future motion sequence for each joint in parallel.

Guo et al. in [6] proposed a multi-person pose forecasting model that consists of two

parallel pipelines for the leader and the follower individuals. Each pipeline includes an

attention model for temporal attention and a Graph Convolutional Network (GCN)-based

predictor for spatial attention. These single-person motion forecasting mappings aim to

learn representations for motion forecasting based on past motions and joint relationships.

The model normalizes the raw poses by removing global displacement, and by normalizing

the poses and considering the relative positions of the two individuals, the model aims to

predict both distinct poses and their relative positions.

Peng et al. in [16] proposed a model called SoMoFormer, that aims to forecast the poses

of multiple individuals by effectively capturing both local and global pose dynamics. It

consists of three main components: the displacement sub-sequence encoder (DSE), the

social interaction encoder (SIE), and the Transformer predictor. The DSE utilizes multiple

Graph Convolutional Network (GCN) units to extract features from sub-sequences in

the displacement trajectory space. They divide sequences into subsequences because

humans tend to repeat their motion across a period of time, and dividing displacement

sequences into sub-sequences can boost performance. Finally, the Transformer predictor

employs multi-head attention to consider the relations between current and historical

context across individuals and generates future motion trajectories for each individual

through fully connected layers.

2.2. Social interaction

The SocialPool [1] layer models social interactions between people in the scene based

on the distance between them, not taking into account that sometimes people can be

spatially close without any social interaction. The SocialPool layer aggregates information

from neighboring individuals in a scene and passes it through a pooling operation. This

pooling operation can be average, max, or sum pooling, and the resulting pooled feature

maps are concatenated with the individual features before being passed to the next layer.

The SoMoFormer [18] models social connections between individuals by adopting a grid

positioning method. This involves dividing the overall scene into a grid of cells and
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assigning each cell a learnable positional embedding. To associate individuals with specific

cells, the neck joint position of each person at the last known frame is used to determine

their corresponding cell. By incorporating the grid embedding and leveraging the distance

between people in the scene, the model learns to capture and represent social relationships.

This approach enables SoMoFormer to effectively model social connections and encode

the dependencies between individuals. However, similarly to SocialPool [1], it does not

consider that sometimes people can be spatially close without any social interaction.

Guo et al. in [6] propose a module called Cross-Interaction Attention (XIA) to model

social interaction between dancers. XIA aims to share motion information between two

predictors, a follower, and a leader. They introduce a cross-interaction attention mod-

ule that takes one person’s pose information (key-value pairs) and uses multi-head self-

attention to refine the pose information for better motion forecasting. The module updates

the keys and values using the Multi-Head Self-Attention module, followed by fully con-

nected layers, and it is integrated at multiple stages of the computing flow. The refined

keys and values are used in the collaborative human motion forecasting task to exploit

information and jointly predict each person’s motion.

Peng et al. in [16] propose a social interaction encoder (SIE) based on the Trans-

former model. The SIE consists of three components: a time encoder that calculates

timestamp features, a spatial encoder that encodes multi-person displacement sequences,

and social-aware motion attention. It simultaneously models individual motion and social

interactions by capturing past displacements, preserving temporal information, represent-

ing spatial relations, and utilizing a social-aware attention mechanism. The SIE aims to

improve multi-person motion forecasting by effectively incorporating social dynamics into

the model.

On the other hand, our approach is to concatenate the pose sequences of two indi-

viduals, pass them through an auxiliary social interaction module SCINT and classify

the type of social interaction. This approach does not involve any pooling operation and

focuses solely on modeling the social interactions between two individuals. This provides

a more fine-grained analysis of the social interactions between individuals by specifically

classifying the type of social interaction. However, it may not capture the social interac-

tions between multiple individuals in the scene in a single step, which the SocialPool [1]

layer, and SIE [16] encoder are designed to handle.
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3. Proposed multi-person pose forecasting model with

social interaction recognition

The goal is to predict the future motion of N individuals in a given scene. Each

individual is represented by J joints, which are anatomical points on the body, such as

elbows, knees, and shoulders. The model needs to predict the motion of these joints

for T timesteps into the future. To do so, the model is given a sequence of historical

poses for each individual in the scene. The historical poses are represented by the three-

dimensional Cartesian coordinates of each joint in global coordinates. Each historical

pose for individual n is represented by a J-dimensional vector xn
k , where k is the time

step, with the sequence of historical poses for individual n given by Xn
1:t.

The input pose sequence length, denoted as t, is the number of historical poses that

the model receives as input. The range of values for n is from 1 to N , where N is the total

number of individuals in the scene. The model’s objective is to predict the future pose

sequence for each individual, denoted as Sn
t+1:T . Here, T is the total number of timesteps

into the future that the model is required to predict. The pose sequence Sn
t+1:T represents

the predicted poses of individual n for T − t timesteps into the future.

3.1. Proposed model architecture

Our model is built with two temporal modules, one temporal context module, one spa-

cial context module, and a social interaction auxiliary module as shown in Figure 3. Two

sequences s1 and s2 are separately run through a preprocessing step that involves padding

pose sequences with the last pose to the full sequence length (i.e. input size + output

size) and applying a Discrete Cosine Transform (DCT) to encode human motion into

the frequency domain, following the approach adopted by models such as SoMoFormer

[18] and LTD [11]. Then, the two sequences s1 and s2 are separately fed into temporal

module T1 to capture temporal information of the sequences s1 and s2. Output sequences

of T1 are fed into the temporal context module TCTX to capture temporal informa-

tion between the sequences T1(s1) and T1(s2). Output sequences of TCTX are then fed
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Figure 3: The figure illustrates the architectural components of the MPFSIR model. In
the preprocessing step, the input sequences S1 and S2 are padded with the last pose
to match the full length of the sequence. The padded sequences undergo a Discrete
Cosine Transform (DCT) to convert them into the frequency domain representation. The
transformed sequences are then fed into the model, which consists of various modules for
pose forecasting and social interaction prediction. After passing through the model, the
sequences are transformed back to Cartesian coordinates using the Inverse DCT (IDCT)
to obtain the predicted poses. The model also classifies the type of social interaction
between individuals in the scene.

into spacial context module SPCTX to capture spatial information between sequences

TCTX1,2(T1(s1), T1(s2)). Output sequences of SPCTX are parallelly fed into social in-

teraction auxiliary module SCINT to predict the type of social interaction between the

sequences SPCTX1,2(TCTX1,2(T1(s1), T1(s2))), and temporal module T2 to refine the

prediction of the sequences along the temporal dimension. Finally, an Inverse DCT is

applied to the output sequences to transform the frequency domain back to Cartesian

coordinates.

3.2. Modules of the MPFSIR model

In order to improve pose forecasting when there is social interaction between people,

we propose a network that uses the temporal information of two pose sequences and cal-

culates the temporal context together with the spatial context. We followed up on the

research by Guo et al. in [5] on exploring the temporal dimension of the pose sequence

and built a network consisting of the following modules: Temporal, Temporal context,

Spatial context, and Social interaction auxiliary module. Each module of the MPFSIR
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model architecture consists of a fully connected layer followed by layer normalization and

regularization dropout, including skip-connections connecting the outputs of different lay-

ers, allowing information to flow through the network and facilitating improved gradient

propagation during training. An example module is shown in Figure 4.

Figure 4: An example of the module architecture in the MPFSIR model. The module
incorporates fully-connected layers, layer normalization, dropout, and skip connections,
enabling effective information flow and facilitating enhanced training dynamics.

The temporal module (T) is designed as a sequence of three fully connected layers,

where each layer is complemented with a Parametric Rectified Linear Unit (PReLU)

activation function, layer normalization, and dropout (with a rate of 0.1). The first layer

takes the input with a sequence length SL and expands it to a higher dimensionality

of 512. Subsequently, the middle layer compresses the dimension back to the original

sequence length SL. The last layer maintains the input and output dimensions. Finally,

a skip connection is established, connecting the initial part of the module to the last layer

to ensure better information flow and preserve crucial details.

The temporal context module (TCTX) captures temporal social information from the

two pose sequences by concatenating the sequences along the temporal dimensions and

processing the resulting joined sequences throughout the module. The module consists of
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two fully connected layers, where each layer is complemented with a PReLU activation

function, layer normalization, and dropout (with a rate of 0.1). Specifically, the first

fully connected layer takes the input with a dimensionality of joined sequences length

2SL and expands it to a higher dimensionality of 2.5 × 2SL. Subsequently, the second

layer reduces the dimensionality to the dimension of 2SL while preserving important

information. Notably, a skip connection is established within the module, connecting the

initial part of the module to the last layer. This connection helps in better information

propagation and enables the model to effectively capture relevant temporal dependencies

between the two pose sequences.

The spacial context module (SCTX) is designed to capture spacial social information

from the two pose sequences by concatenating the sequences along the spacial dimensions

and processing the resulting joined sequences throughout the module. The module com-

prises two fully connected layers, each accompanied by a PReLU activation function, layer

normalization, and dropout (with a rate of 0.1). Furthermore, the first fully connected

layer takes the input with a dimensionality of joined sequences keypoints size 2KPS and

expands it to a higher dimensionality of 2.5× 2KPS. This expansion allows the module

to capture more intricate spacial dependencies between the two pose sequences. Subse-

quently, the second layer reduces the dimensionality to the dimension of 2KPS while

preserving relevant spacial information. Notably, a skip connection is established within

the module, connecting the initial part of the module to the last layer. This connection

facilitates better information propagation and enables the model to effectively capture

spacial interactions between individuals in the scene.

The social interaction auxiliary module (SCINT) serves to classify the relationships

between the two pose sequences. Initially, the sequences are joined along a new axis be-

fore being processed within the module. The first fully connected layer takes the joined

sequences as input, where the dimensionality is calculated as the product of sequence

length SL and sequence keypoints size KPS. The output dimensionality of this layer is

set to sequence length SL. A PReLU activation function is then applied, followed by a

Dropout (with a rate of 0.1). Subsequently, the sequences are flattened into a single vector

and fed into the final fully connected layer, which performs the classification task. The

classification outcome can assume one of three possibilities: socially dependent, socially

independent, or sequences referring to the same person. This auxiliary module signifi-
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cantly facilitates the model’s understanding of social interactions between individuals in

the scene, enabling it to make more informed and accurate predictions.

3.3. Data transformation

We use a Discrete Cosine Transform (DCT) to encode human motion into the fre-

quency domain as a collection of coefficients rather than directly predicting Cartesian

coordinates. Similar approaches were reported in [18, 10, 21] where DCT transformations

showed significant improvements in model performance and enabled simultaneous predic-

tion of the entire trajectory for all future poses. The output of the model is transformed

back to Cartesian coordinates using an inverse DCT (IDCT).

For a motion sequence of a single coordinate (x1, ..., xT ), the l-th DCT coefficient is

computed by:

Cl =

√
2

T

T∑
t=1

xt√
1 + δl1

cos
π

2T
(2t− 1)(l − 1) (1)

where δlj denotes the Kronecker delta function with:

δlj =

1 if i = j

0 if i ̸= j.

(2)

resulting in a coefficient sequence (C1, ..., CT ) with T coefficients, where l = 1, 2, ..., T .

These coefficients serve as input tokens for the model to predict the completed trajectory

(C̃1, ..., C̃T ). Using inverse DCT we can recover the coordinates:

x̃t =

√
2

T

T∑
l=1

C̃l√
1 + δl1

cos
π

2T
(2t− 1)(l − 1) (3)
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3.4. Data augmentation

Data augmentation is a crucial technique in the field of multi-person pose forecasting

aimed at enhancing the performance and generalization capabilities of the models. With

the limited availability of labeled training data, data augmentation methods provide a

means to artificially expand the dataset by introducing diverse variations. In the context

of multi-person pose forecasting, several effective methods for data augmentation have

been devised. One commonly used technique is sequence reversal, which involves reversing

the temporal order of the input sequences. This helps the model capture the temporal

dynamics from both forward and backward perspectives, enabling it to better understand

the progression of poses over time which can improve the accuracy and robustness of the

predictions. Another method is random orientation, where the poses are randomly rotated

to account for different camera viewpoints or human orientations. Random positioning

introduces spatial variability by randomly shifting the positions of individuals within the

scene, which can help the model learn to handle variations in the position of individuals in

the scene. Random scaling is also applied to introduce variations in the scale of the poses,

simulating different distances between the individuals and the camera. Additionally,

random person permutation is employed, shuffling the order of individuals in a scene

to account for different person arrangements. It can also help the model learn to handle

different social interactions or group dynamics among individuals. These augmentation

methods allow the model to learn from a more diverse range of scenarios, helping it

to generalize better to unseen data and handle various challenges such as occlusions,

varying body shapes, and complex interactions between individuals. By incorporating

these data augmentation techniques, multi-person pose forecasting models can improve

their performance and robustness in real-world settings.
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3.4.1. Augmentation algorithm

This section describes the augmentation algorithm used during the model’s training.

The algorithm first checks whether data augmentation will be performed based on a

random probability with a threshold of 0.5. If the probability is higher than 0.5, the

algorithm returns the input sequences without performing any augmentation. Otherwise,

the algorithm randomly performs the following augmentations:

• Backward movement: the function randomly chooses whether to flip the input se-

quences along the time dimension with a probability of 0.5.

• Reversing the order of people: the function randomly chooses whether to swap the

input sequences with a probability of 0.5.

• Random scaling: the function randomly scales the input sequences by a random

factor sampled from a uniform distribution between 0.1 and 5, with a probability of

0.5.

• Random rotation: the function randomly rotates the input sequences along the

y-axis, x-axis, and z-axis, with a probability of 0.25 for each axis.

• Random repositioning: the function randomly repositions the input sequences in

the space with a radius of 3 (radius is determined as the person’s torso size), with

a probability of 0.5.

The algorithm returns the augmented sequences, as shown in algorithm 1.
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Algorithm 1: An algorithm for Data Augmentation

Require: seq0, seq1
Ensure: Augmented sequences seq0, seq1

1 if rand() > 0.5 then
2 return seq0, seq1;

3 if rand() > 0.5 then
4 seq0 ← flipBackwards(seq0);
5 seq1 ← flipBackwards(seq1);

6 if rand() > 0.5 then
7 seq0, seq1 ← seq1, seq0;

8 if rand() > 0.5 then
9 seq0 ← RandomlyScale(seq0, r1 = 0.1, r2 = 5);

10 seq1 ← RandomlyScale(seq1, r1 = 0.1, r2 = 5);

11 if rand() > 0.75 then
12 seq0, seq1 ← RandRotSeqs(seq0, seq1, axis = x);

13 if rand() > 0.75 then
14 seq0, seq1 ← RandRotSeqs(seq0, seq1, axis = y);

15 if rand() > 0.75 then
16 seq0, seq1 ← RandRotSeqs(seq0, seq1, axis = z);

17 if rand() > 0.5 then
18 seq0, seq1 ← RandReposSeqs(seq0, seq1, rs = 3);

19 return seq0, seq1
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3.5. Data

We used different datasets for training and evaluation of our model to keep the same

conditions as SoMoFormer [18] and MRT [21] models had: 3DPW [19] and AMASS

[8] datasets for training the model, and SoMoF, CMU-Mocap [3], and MuPoTS-3D [14]

dataset for evaluation.

The 3D Poses in the Wild (3DPW) [19] dataset includes over 60 video sequences of

human motion in real-world settings. To evaluate our model using the SoMoF benchmark,

we utilized the SoMoF benchmark splits for 3DPW, in which the 3DPW train and test

set are flipped. Thus, we trained our model using the 3DPW test set and evaluated it on

the 3DPW train set.

The Archive of Motion Capture As Surface Shapes (AMASS) [8] dataset provides

a large dataset of human motion capture sequences, with over 40 hours of motion and

11,000 motions provided as SMPL mesh models. During training, we utilized the CMU,

BMLMovi, and BMLRub subsets of this dataset, which provided a large-scale and varied

set of motions. As many of these sequences are single-person, we synthesized additional

training data by mixing sampled sequences to create multi-person training data.

For Carnegie Mellon University Motion Capture Database (CMU-Mocap) [3], we used

the training and testing sets derived by Wang et al. in [21] to train and evaluate our

model. Finally, the Multi-person Pose estimation Test Set in 3D (MuPoTS-3D) [14]

dataset provides 8,000 annotated frames of poses from 20 real-world scenes. We used this

dataset to evaluate the performance of our model.

3.6. Training

We train our model by taking the loss between the output and the ground truth and

adding a social interaction loss multiplied by a γ factor to jointly learn future poses and

the type of social interaction rather than focusing too much on each task.

We use L2-norm loss to minimize the error between the ground truth and predicted

coordinates and cross-entropy loss to minimize social interaction classification error.
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L = Lrec + Lscir × γ (4)

Lrec =
1

N

N∑
i=1

(yi − ŷi)
2 (5)

Lscir = −
1

n

n∑
i=1

C∑
j=1

yi,j log(ŷi,j) (6)

We train our model for 500 epochs with a batch size of 256. We use the Adam optimizer

with an initial learning rate of 0.01, decayed by 0.1 at epochs 10, 200, and 400. Finally,

we set the γ parameter to value 0.01 while calculating the loss.

4. Experimental results

We evaluated the performance of our MPFSIR model on benchmark datasets, includ-

ing SoMoF, CMU-Mocap, and MuPoTS-3D. To assess the accuracy of our predictions, we

defined evaluation metrics that measure spatial and temporal alignment with the ground

truth. We gain insights into our model’s strengths, limitations, and generalization capa-

bilities by analyzing the experimental results. This evaluation validates the effectiveness

of our model for real-world applications in multi-person pose forecasting.

4.1. Metrics

MPJPE (Mean Per Joint Position Error) is a commonly used metric for evaluating the

accuracy of pose forecasting methods [10, 12, 21, 18]. It measures the average Euclidean

distance between the predicted joint positions and the corresponding ground truth posi-

tions across all joints. The lower the MPJPE value, the closer the predicted poses align

with the ground truth. This metric provides a joint-level assessment of pose estimation
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performance. The MPJPE metric is calculated as follows:

EMPJPE(y, φ) =
1

Nφ

Nφ∑
i=1

∥∥∥P (f)
y,φ(i)− P

(f)
gt,φ(i)

∥∥∥
2

(7)

where f denotes a time step and φ denotes the corresponding skeleton. P
(f)
y,φ(i) is the

estimated position of joint i and P
(f)
gt,φ(i) is the corresponding ground truth position. Nφ

represents the number of joints.

Another popular metric is VIM (Visibility-Ignored Metric), first introduced in [2],

which is calculated by taking the mean distance between the ground truth and predicted

joint positions. To compute this distance, the joint and coordinate dimensions are flat-

tened together, resulting in a single vector representation for both the ground truth and

predicted joint positions. The dimensionality of this vector would be 3J, where J repre-

sents the number of joints. Once the joint positions are flattened, the Euclidean distance

(L2 norm) is computed between each corresponding pair of ground-truth and predicted

joint positions. The distances are averaged across all joints to obtain the final VIM score.

The SoMoF Benchmark uses this metric for evaluation. The VIM metric is calculated as

follows:

EV IM(y, φ) =
1

3Jφ

3Jφ∑
i=1

∥∥∥P (i)
gt,φ − P (i)

y,φ

∥∥∥
2

(8)

where J represents the number of joints, P
(i)
gt,φ is the ground-truth position of the i-th

joint (flattened), P
(i)
y,φ is the predicted position of the i-th joint (flattened), ∥·∥2 denotes

the Euclidean distance (L2 norm), and 1
3Jφ

∑3Jφ
i=1 represents the mean across all joints.

4.2. Results on SoMoF Benchmark

The benchmark provided by SoMoF [1, 2] is aimed at evaluating the performance

of multi-person human pose forecasting methods. The benchmark involves predicting

the next 14 frames (930 ms) using 16 frames (1070 ms) of input data. The input data

includes joint positions for multiple people, and the results are reported as the mean VIM

at multiple future time steps. Just as [20] and [18], we use the 3DPW [19] and AMASS [8]
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datasets for training, as they provide both multi-person and single-person data. During

training, we only use the 13 joints evaluated in SoMoF.

Furthermore, we annotated the examples with two people in the scene with a label

si0 describing the existence of social interaction between the two people in the scene.

Additionally, we use the examples from the 3DPW dataset with a single person in the

scene and scenes from AMASS dataset for sampling two-person scenes with people without

the social interaction si1, and also to sample scenes where only one person is present si2.

We compare different methods on the SoMoF 3DPW test set in Table 1 and show

that our models consistently achieve comparative results with the competing methods

with significantly fewer model parameters.

Table 1: Comparative analysis of model performance on the SoMoF Benchmark test set
using the VIM metric. Our proposed model, MPFSIR, achieves comparable results to
the state-of-the-art methods. The table presents results from the official dataset page
somof.stanford.edu, where lower VIM values indicate higher accuracy in joint position
predictions.

Method
3DPW Prediction in Time Size

100ms 240ms 500ms 640ms 900ms Overall #Param (M)

Mo-Att [10] + ST-GAT [7] 62.1 97.7 155.2 185.0 251.0 150.2 NA

SC-MPF [1] 46.3 73.9 130.2 160.8 208.4 123.9 15.65

Zero Velocity 29.4 53.6 94.5 112.7 143.1 86.7 0

TRiPOD [2] 30.3 51.8 85.1 104.8 146.3 83.7 NA

DViTA [15] 19.5 36.9 68.3 85.5 118.2 65.7 0.13

FutureMotion [20] 9.5 22.9 50.9 66.2 97.4 49.4 2.56

SoMoFormer [18] 9.1 21.3 47.5 61.6 91.9 46.3 4.88

MPFSIR 11.5 25.5 54.7 70.6 101.5 52.76 0.15
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4.3. Results on CMU-Mocap and MuPoTS-3D

In our study, we also compare our proposed method with the recent multi-person pose

forecasting approach by Vendrow et al. [18], which has achieved state-of-the-art results on

several datasets. Additionally, we compare our method to other contemporary techniques

HRI [10], LTD [11], and MRT [21]. In line with their protocols, we train the models

using a synthesized dataset created by combining sampled motions from the CMU-Mocap

database to generate 3-person scenes. The evaluation of these models is performed on

both CMU-Mocap and MuPoTS-3D datasets.

For training the prediction of the social interaction type in the 3-people scenes, we

annotated the first person p1 to not have any social interaction si1 with the other two

persons p2, p3, while we labeled the two other persons p2, p3 to have social interaction si0.

This annotation is in line with the way [21] prepared the dataset, where an additional

person was added to the 2-person scenes in the mixing process.

For the input, we provide 15 frames (equivalent to 1000 ms) of historical data, and the

models are tasked with predicting the subsequent 45 frames (corresponding to 3000 ms).

We measure the performance by reporting the Mean Per Joint Position Error (MPJPE)

at 1, 2, and 3 seconds into the future. To ensure a fair comparison, we utilize the code

and data provided by [21] to train and evaluate each method.

Our findings, as presented in Table 2, show that our model consistently outperforms

competing methods on both CMU-Mocap and MuPoTS-3D datasets. A visual comparison

of the evaluated models is shown in Figure 5

When the dataset involves interactions among multiple individuals, as seen in the

CMU-Mocap and MuPoTS-3D datasets, our approach is better at capturing and modeling

these interactions, leading to better predictions of future poses.

Note: The architecture of our MPFSIR model requires a fixed number of people to

be predicted in one step. While SoMoFormer [18] uses attention mechanisms to predict

the poses of all people in the scene simultaneously, our model predicts the poses of two

people simultaneously, so for datasets like CMU-Mocap and MuPoTS-3D, which contain

three-person scenes, we perform two-person forecasting and combine the results afterward.
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Table 2: Performance comparison of different models on the CMU-Mocap test set and
MuPoTS-3D dataset using the MPJPE metric (expressed in meters), where lower MPJPE
values indicate higher accuracy in joint position predictions. Our MPFSIR model exhibits
superior accuracy, outperforming other models in accurately predicting human poses on
both datasets.

Method
CMU-Mocap Test Set MuPoTS-3D Test Set Size

1 sec 2 sec 3 sec Overall 1 sec 2 sec 3 sec Overall #Param (M)

LTD [11] 4.03 7.06 9.91 7.00 1.75 2.98 4.10 2.94 2.61

MRT [21] 4.46 7.94 10.94 7.78 1.87 3.40 5.04 3.44 6.62

SoMoFormer [18] 4.50 8.15 11.27 7.79 1.69 3.02 4.15 2.95 4.88

MPFSIR 3.94 7.04 9.87 6.95 1.67 2.87 3.93 2.82 0.24

Figure 5: An example from the CMU-Mocap test set with forecasted poses from the
evaluated models and ground truth (GT) poses.

4.4. Results of social interaction recognition

We conducted experiments to evaluate the prediction of the social interaction type

between people in a scene using the 3DPW test dataset, from which we uniformly sampled

data for each of the three classes: si0, si1, and si2.

Figure 6 shows types of interactions between individuals in the scene, where si0 denotes

there is a social interaction between individuals, si1 denotes there is no social interaction
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between individuals. In contrast, si2 denotes that the two sequences are referring to the

same individual. Each class contained 5039 samples with 2-person scenes. For evaluation,

we used the model trained on the 3DPW train and AMASS dataset as described in section

4.2.

Figure 6: Example scene depicting social interactions between two individuals (blue) and
an independent individual (purple). The figure visually illustrates the dynamic relation-
ships and engagements among the individuals, showcasing the scene’s complexity and
diversity of social interactions. si0 denotes a social interaction between individuals, si1
denotes there is no social interaction between individuals, and si2 denotes that the two
sequences refer to the same individual.

As presented in Table 3, our model was evaluated using the mean F1 score, Accuracy,

Precision, and Recall, a standard metric for multi-class classification. The results show

that our model accurately predicted the type of social interaction between people, with

an overall mean F1 score of 87.4. Specifically, our model performed best on the si2 class,

achieving an F1 score of 99.2. While evaluating class si1, our model achieved an F1

score of 80.1 while achieving an F1 score of 82.1 on si0 class which seems to suggest that

recognizing social interaction between people is challenging. These results suggest that

our model can effectively capture the type of social interaction between people in a scene.

Figure 7 provides a visual representation of the relationship between the probability of

correctly classifying social interactions and the distance between individuals in the scene,

which highlights the challenges of accurately predicting social interaction with individuals

in close spatial proximity.
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Table 3: Results on 3DPW train (which is used as a test dataset in SoMoF benchmark)
for social interaction prediction.

Class Precision ↑ Recall ↑ F1 score ↑ Accuracy ↑

si0 78.8 85.6 82.1 85.6

si1 84.6 77.6 80.1 77.6

si2 99.3 99.0 99.2 99.0

Average 87.6 87.4 87.4 87.4

Figure 7: This figure illustrates the relationship between the probability of correctly
classifying the interaction between individuals in the scene and the distance between them.
The green color represents the correct classification, and the red represents the incorrect
classification. The graph highlights how the probability of accurately identifying social
interactions varies with the distance between individuals, where the most challenging
interactions are with individuals in close proximity.
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5. Ablation study

An ablation study was conducted on MPFSIR to understand the impact of its individ-

ual components on performance. The study involved adding each component individually

to the model and evaluating the performance after each addition. The components evalu-

ated in the study included the temporal and spatial context between sequences, the DCT

transformation, data augmentation, and social interaction prediction. Results of the study

showed that each of these components had a significant impact on the final performance

of the model. Specifically, the addition of temporal and spatial context between sequences

and data augmentation led to the most significant improvements in performance, while

social interaction prediction had a relatively smaller impact. The study provided valuable

insights into the role of each component in the model and helped identify the key factors

responsible for the model’s success. Table 4 displays the results of evaluating each model

on VIM and MPJPE metrics after being trained on the SoMoF 3DPW training set and

tested on the SoMoF 3DPW validation set.

Table 4: The presented results for the ablation study are based on the SoMoF 3DPW
validation set and reported in VIM (top) and MPJPE (bottom). The baseline model is
created with the same number of parameters as other models, while sequences are passed
through the network independently (i.e. without joining them in TCTX and SCTX
modules).

Method 100ms 240ms 500ms 640ms 900ms Overall

Baseline 15.5 27.0 53.5 64.9 84.8 49.14

+ Temporal&Spacial CTX 11.7 23.0 47.1 57.7 77.4 43.38

+ DCT 9.6 22.2 48.1 59.8 82.7 44.48

+ Data augmentation 8.8 20.8 45.5 56.3 76.5 41.58

+ Social interaction 8.6 20.5 45.3 56.3 76.8 41.50

Baseline 3.6 6.3 12.8 15.8 21.1 11.92

+ Temporal&Spacial CTX 2.7 5.2 11.1 13.8 19.0 10.36

+ DCT 2.2 4.9 11.2 14.3 20.5 10.62

+ Data augmentation 2.0 4.6 10.4 13.1 18.4 9.70

+ Social interaction 1.9 4.5 10.3 13.2 18.5 9.68
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6. MW-MPJPE: a pose forecasting evaluation metric

In this paper, we propose a new evaluation metric called Movement-Weighted Mean

Per Joint Position Error (MW-MPJPE) to enhance the existing MPJPE metric for pose

forecasting evaluation. While effective in assessing pose accuracy in the task of pose esti-

mation as described by Šajina and Ivašić-Kos in [17], the commonly used Mean Per Joint

Position Error (MPJPE) metric has a limitation in capturing the quality of learned move-

ment patterns. Models optimized solely based on MPJPE often tend to reproduce the last

observed pose, resulting in inflated performance scores without properly understanding

and predicting the underlying skeletal movement, as shown in Figure 8.

Figure 8: The figure illustrates a comparison between the ground truth poses (depicted
in purple) and the predicted poses (depicted in blue) by various models. It demonstrates
a recurring pattern where the models tend to accurately position the poses in the correct
global location but exhibit limited skeletal movement. This discrepancy between the
ground truth and predicted poses is not captured well by the regular MPJPE metrics.

To address this issue, MW-MPJPE introduces a crucial weighting factor that incor-

porates the overall movement exhibited by the individual throughout the target pose

sequence. By scaling the MPJPE error with this movement information, MW-MPJPE

provides a more comprehensive and nuanced assessment of the forecasted poses. This

weighting scheme ensures that the metric accounts for the complexity and dynamics of

the pose sequences, encouraging models to learn and predict meaningful movement pat-

terns rather than solely optimizing for pose accuracy. By incorporating the concept of

movement into the evaluation process, MW-MPJPE incentivizes models to capture and

reproduce the natural dynamics of human motion, making it a more reliable and infor-
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mative metric for pose forecasting tasks.

MW-MPJPE is calculated as follows:

Pfixed = Pgt,φ − P
(0)
gt,φ(pelvis)

EMW -MPJPE(Y, φ) =

Fgt∑
f=1

|P (f−1)
fixed − P

(f)
fixed| ×

1

Fgt

Fgt∑
f=0

EMPJPE(Yf , φ)

(9)

where Pfixed denotes the gt sequence withouth spacial movement and is calculated

by substracing Pgt,φ sequence from pelvis P
(0)
gt,φ at frame 0. Fgt denotes total number of

frames in the sequence gt and φ denotes the corresponding skeleton. P
(f−1)
fixed and P

(f)
fixed

are skeleton with all joints from pelvis-fixed sequence Pfixed at frames f − 1 and f . Y

denotes a predicted sequence, while Yf corresponds to the predicted skeleton at frame f .

Table 5 displays the results of evaluating each model on MW-MPJPE metrics on both

CMU-Mocap and MuPoTS-3D datasets. The results highlight the effectiveness of the

different methods in accurately predicting future poses and skeleton dynamics and provide

insight into the difficulty of the dataset. The evaluation results on the CMU-Mocap

and MuPoTS-3D datasets, expressed in the MW-MPJPE metric, clearly demonstrate

that CMU-Mocap is a more challenging dataset. This is evident from the significantly

larger errors obtained on CMU-Mocap, which correspond to the visually observed dynamic

skeleton movements within the dataset. In contrast, MuPoTS-3D exhibits smaller skeleton

movements, resulting in comparatively lower error rates.

Table 5: The table presents the evaluation results of various methods on the CMU-Mocap
test set and MuPoTS-3D dataset, measured using the MW-MPJPE metric. The MW-
MPJPE metric accurately assesses pose forecasting performance by considering both joint
position errors and the magnitude of skeleton motion.

Method
CMU-Mocap Test Set MuPoTS-3D Test Set Size

1 sec 2 sec 3 sec Overall 1 sec 2 sec 3 sec Overall #Param (M)

LTD [11] 65.49 223.78 456.49 248.59 12.68 41.29 83.31 45.76 2.61

MRT [21] 72.32 249.70 492.35 271.46 13.48 47.34 102.40 54.41 6.62

SoMoFormer [18] 72.95 254.18 506.86 278.00 12.38 42.17 85.05 46.53 4.88

MPFSIR 62.64 219.30 446.06 242.67 12.20 39.93 79.99 44.04 0.24
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7. Conclusion

In conclusion, this paper proposed the MPFSIR model, a novel approach for multi-

person pose forecasting that leverages fully-connected layers with skip connections to

capture temporal dependencies in the input pose sequences. The model demonstrates

promising results in accurately predicting future poses and modeling social interactions

between individuals in the scene. Through extensive experiments on the SoMoF Bench-

mark, CMU-Mocap, and MuPoTS-3D datasets, we have shown that our model outper-

forms existing methods in terms of accuracy and parameter efficiency. However, it is

important to note the limitations of the MPFSIR model, such as its struggle to create

valid long-term movements. Future research should focus on addressing these limitations

and further enhancing the modeling of social interactions and long-term dependencies in

pose forecasting. Overall, our work contributes to the advancement of pose forecasting

techniques and opens up new avenues for applications in human motion analysis, virtual

reality, and robotics.

This paper proposes the MPFSIR model, a new approach for multi-person pose fore-

casting that uses fully connected layers with skip-connections to model temporal depen-

dencies in input pose sequences. The model has a small number of parameters and shows

promising results in predicting future poses by relying on temporal information and mod-

eling social interactions between individuals in a scene. Through extensive experiments

on the SoMoF Benchmark, CMU-Mocap, and MuPoTS-3D datasets, we have shown that

our model outperforms existing methods in terms of parameter accuracy and efficiency.

However, it is important to note the limitations of the MPFSIR model, such as its prob-

lem generalizing to new or unusual poses, since the performance of the MPFSIR model

is highly dependent on the quality and variety of the training data. Furthermore, the

proposed model has a problem in predicting valid long-term movements as well as com-

plex movement patterns. Other models that we evaluated and compared in this research

have similar limitations. Namely, long-term movements often include different depen-

dencies and intricate coordination among several individuals and different activities of

different duration, which is difficult to predict if the semantic component, understanding

the context, and recognizing the activities that are carried out are not included in the
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model. Future research should certainly focus on addressing these limitations and further

improving the modeling of social interactions and long-term dependencies in position pre-

diction. However, regardless of this, our work contributes to the advancement of position

prediction techniques and opens new application possibilities in human motion analysis,

virtual reality, and robotics.

Funding: This research was supported by Croatian Science Foundation under the project

IP-2016-06-8345, ”Automatic recognition of actions and activities in multimedia content

from the sports domain” (RAASS), and by the University of Rijeka (project number
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1. Introduction

Pose forecasting is a machine learning task that predicts future poses based on a his-

torical sequence of poses. This task is inherently challenging, as it requires models to

anticipate movements several seconds into the future, thereby necessitating the capture

of intricate temporal dynamics. The goal of pose forecasting is to provide accurate predic-

tions of future poses, which can have practical applications in a wide range of fields. For

example, in robotics, pose forecasting models enable robots to infer human intentions and

predict future movements, facilitating safer, more intuitive collaboration in environments

such as manufacturing floors, healthcare, and assistive robotics [8, 15, 25, 27, 12, 18]. In

sports analytics, forecasting player trajectories and body orientations several moments

ahead supports tactical decision-making, performance evaluation, and even automated

highlight generation. In autonomous driving, the accurate prediction of pedestrian motion

improves vehicle navigation and enhances safety in complex urban settings. Intelligent

surveillance systems use pose forecasting to proactively detect abnormal group behaviors,

such as crowd surges or physical altercations, by identifying deviations from expected

motion patterns. In virtual and augmented reality, forecasting full-body motion enables

latency compensation and smoother avatar rendering during real-time collaborative ex-

periences or immersive gameplay. These applications often rely on sensor-based motion

capture systems, including vision-based sensors, inertial measurement units (IMUs), and

depth cameras, to collect high-precision human movement data for training and inference

[14, 30, 29].

One way to conceptualize pose forecasting is to divide it into two main categories:

single-person [10, 4, 31, 25, 42, 16] and multi-person [43, 40, 36, 45, 32, 34] pose forecast-

ing. In single-person pose forecasting, the task focuses on predicting the future poses of an

individual based solely on their previous poses. This scenario is typically less complex, as

it involves modeling the movement patterns of a single entity. On the other hand, multi-

person pose forecasting extends the task by simultaneously predicting the future poses

of multiple individuals. In this scenario, the forecasting model needs to consider each

person’s previous poses and extract social dependencies and interactions among them.

These interactions could include factors such as proximity, response to a movement, and
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body language, which significantly influence the future movements of individuals within

a scene.

Various deep learning methods have been employed to tackle the task of pose forecast-

ing. Fully connected networks directly map input pose sequences to future predictions,

which is suitable for straightforward temporal dependencies [4, 10, 36]. Recurrent neural

networks (RNNs) capture long-range dependencies by maintaining hidden states across

time steps [31]. Graph Convolutional Networks (GCNs) excel in modeling spatial depen-

dencies and interactions in multi-person scenarios [25, 42, 34, 35]. Attention mechanisms

and Transformer architectures focus on the relevant parts of input sequences, handling

long-range dependencies effectively for precise predictions [43, 40, 45, 32].

The paper presents a novel model, GCN-Transformer, designed to address the chal-

lenges of multi-person pose forecasting. Our model integrates key features from various

deep learning architectures to capture complex spatiotemporal dependencies and social in-

teractions among multiple individuals in a scene. GCN-Transformer consists of two main

modules: the Scene Module and the Spatiotemporal Attention Forecasting Module. The

Scene Module leverages Graph Convolutional Networks (GCNs) to extract social features

and dependencies from the scene context, while the Spatiotemporal Attention Forecasting

Module utilizes a combination of Temporal Graph Convolutional Networks (T-GCNs) and

Transformer decoder modules to predict future poses. By combining these components,

GCN-Transformer achieves state-of-the-art performance in multi-person pose forecasting

tasks, demonstrating its effectiveness in capturing intricate motion dynamics and social

interactions. GCN-Transformer is trained and evaluated on sensor-based datasets CMU-

Mocap, MuPoTS-3D, SoMoF Benchmark, and ExPI, which include motion capture data

collected through real-world sensing systems. To enhance the learning process and im-

prove the movement dynamics of predicted sequences while also capturing interaction

dependencies, we introduce new loss terms during the training phase, specifically the

multi-person joint distance loss and velocity loss. These loss terms are designed to en-

courage the model to learn both interaction dependencies and joint movement dynamics.

The inter-individual joint distance loss focuses on maintaining realistic spatial relation-

ships between joints, while velocity loss promotes the accurate modeling of movement

dynamics.

Additionally, in this paper, we introduce a novel evaluation metric, Final Joint Po-
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sition and Trajectory Error (FJPTE), designed to comprehensively assess pose forecast-

ing performance. While several attempts have been made to develop evaluation metrics

specifically for pose forecasting [36, 32, 1], these have predominantly been variations of

well-known metrics such as MPJPE and VIM, both of which originate from the pose

estimation domain. However, pose forecasting requires a more holistic approach that

considers not only the final position of each joint but also the trajectory leading to that

position. FJPTE addresses this need by evaluating both the final position and the move-

ment dynamics throughout the trajectory, providing a more thorough assessment of how

well a model captures the complexities of human motion over time.

Our contributions are as follows:

• We propose a new architecture and model that combines Graph Convolutional Net-

works (GCNs) and Transformer modules for multi-person pose forecasting; it is

designed to handle complex interactions in dynamic scenes and consistently outper-

forms state-of-the-art models on standard evaluation metrics.

• Multi-person joint distance loss (MPJD) and Velocity Loss (VL) were designed to

encourage the model to generate spatially interaction-dependent and temporally

coherent pose sequences for dynamic and interaction-rich scenes.

• A new evaluation metric for pose forecasting, called FJPTE, that evaluates move-

ment trajectories and the final position error, is proposed to better assess the realism

and coherency of predicted pose sequences in dynamic and interaction-rich scenes.

In this work, we aim to address the challenge of forecasting future 3D poses in dynamic

multi-person scenarios by designing a model that combines scene-level social context en-

coding with individual-specific forecasting using query token fusion. The architecture

jointly models spatial dependencies within each individual and temporal motion patterns

using both Transformer and GCN-based components. We evaluate the model across four

datasets, CMU Mocap, MuPoTS 3D, SoMoF, and ExPI, which feature varying numbers

of individuals and different levels of interaction complexity. This setup allows us to assess

the robustness and generalization ability of the model across diverse motion conditions.

The organization of this paper is structured to comprehensively address the advance-

ments and methodologies in multi-person pose forecasting. We begin with a review of the

110



related work by discussing existing models and their limitations. Next, we define the prob-

lem formulation for multi-person forecasting, detailing the task’s objectives and the neces-

sary input and output representations. Following this, we introduce our proposed model,

GCN-Transformer, which is elaborated through several subsections: the Spatiotempo-

ral Fully Connected module for projecting sequences into a higher-dimensional embed-

ding space; the Scene Module for capturing social interactions; and the Spatiotemporal

Attention Forecasting Module for predicting future poses, data preprocessing, and aug-

mentation techniques to enhance model performance, along with the training procedures

employed. The Experimental Results Section follows, where we describe the metrics used

for evaluation, the datasets involved, and the model’s performance on the CMU-Mocap,

MuPoTS-3D, SoMoF Benchmark, and ExPI datasets. We then present an ablation study

to analyze the impact of different model components. Additionally, we introduce a novel

evaluation metric, FJPTE, which assesses both local movement dynamics and global

movement errors. Finally, we conclude the paper by summarizing the key findings and

discussing future research directions.

2. Related Work

In the domain of pose forecasting, establishing a baseline is crucial, with the Zero-

Velocity model serving as a simple yet effective benchmark. This model predicts future

poses by duplicating the last observed pose. Remarkably, this baseline has emerged

as a strong contender, outperforming numerous proposed models and thus providing a

fundamental comparison point. Consequently, this paper exclusively discusses models

that surpass this baseline performance.
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2.1. Single-Person Pose Forecasting

Early explorations [42, 31, 25, 4, 10, 23, 48] focused predominantly on single-person

pose forecasting. However, when applied to multi-person scenarios, these models inde-

pendently conduct pose forecasting for each individual.

The LTD model introduced by Mao et al. in [25] uses a Graph Convolutional Network

(GCN) with 12 blocks and residual connections, along with two additional graph convolu-

tional layers placed at the beginning and end of the model to encode temporal information

and decode features for pose prediction. The Future Motion model was proposed in [42]

for single-person pose forecasting on a similar backbone architecture of 12 GCN blocks

and also includes data augmentation, curriculum learning, and the use of Online Hard

Keypoints Mining (OHKM) loss.

Parsaeifard et al. in [31] proposed a DViTA model that uses a Long Short-Term Mem-

ory (LSTM) encoder–decoder network for trajectory forecasting and a Variational LSTM

AutoEncoder (VAE) for local pose dynamic forecasting in order to extract two distinct

components of human movement: global trajectory and local pose dynamics.

MotionMixer, introduced by Bouazizi et al. in [4], proposes multi-layer perceptrons

(MLPs) for pose forecasting and captures spatiotemporal dependencies through spatial

mixing across body joints and temporal mixing across time steps by incorporating squeeze-

and-excitation (SE) blocks to adjust the significance of different time steps. Guo et

al. in [10] proposed siMLPe, a lightweight MLP-based model for pose forecasting that,

in addition to having fully connected layers and carrying out layer normalization and

transpose operations, contains a Discrete Cosine Transform (DCT) to encode temporal

information and carry out residual displacement to predict motion.

Incorporating additional constraints into the problem’s formulation, such as modeling

human–scene interactions using per-joint contact maps to capture the distance between

human joints and scene points, can enhance pose forecasting performance, as demon-

strated by Mao, Hartley, Salzmann, et al. in [23]. This approach resolves issues such as

“ghost motion”, conditioning future human poses on predicted contact points.

Zhong et al. in [48] introduced a model called GAGCN that addresses the complex

spatiotemporal dependencies in human motion data. The authors use a gating network to
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dynamically blend multiple adaptive adjacency matrices that capture joint dependencies

(spatial) and temporal correlations.

2.2. Multi-Person Pose Forecasting

Recent advancements in multi-person pose forecasting have emphasized the integra-

tion of social interactions and dependencies among individuals within a scene, aiming to

enhance model performance [43, 40, 36, 45, 32, 34, 17, 38, 46].

Wang et al. in [43] proposed a transformer-based architecture called the Multi-Range

Transformer (MRT) that captures both local individual motion and global social inter-

actions among multiple individuals. The MRT decoder predicts future poses for each

person by attending to both local- and global-range encoder features. Additionally, a

motion discriminator is incorporated into the training process to ensure the generated

motions maintain natural characteristics.

The Transformer Encoder was used in the SoMoFormer model, introduced by Vendrow

et al. in [40], which treats each input as a Discrete Cosine Transform (DCT)-encoded,

padded trajectory of one joint. The SoMoFormer model simultaneously predicts pose

trajectories for multiple individuals and uses attention mechanisms to model human body

dynamics and the grid position of individuals for its spatial understanding.

In [36], Šajina and Ivasic-Kos proposed the MPFSIR model, which focuses on spatial

and temporal pose information using fully connected layers with skip connections. De-

spite its relatively low model parameters, MPFSIR achieves state-of-the-art performances.

Moreover, the model includes an auxiliary output to recognize social interactions between

individuals, contributing to its overall performance improvement.

Xu et al. uses temporal differentiation of joints and explicit joint relations as inputs to

a joint-relation transformer model called JRTransformer, introduced in [45], which models

future relations between joints along with future joint positions.

TBIFormer, proposed by Peng, Mao, and Wu in [32], breaks down human poses into

five body parts and models their interactions separately. It employs a Temporal Body

Partition Module to transform sequences into a Multi-Person Body-Part sequence, re-

taining spatial and temporal information. The subsequent module, Social Body Inter-
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action Self-Attention, aims to learn body part dynamics for both inter-individual and

intra-individual interactions. Finally, a Transformer Decoder forecasts future movements

based on the extracted features and Global Body Query Tokens.

In [34], Peng et al. proposed SocialTGCN, a convolution-based model comprising a

Pose Refine Module (PSM) consisting of Graph Convolutional Network (GCN) layers,

a Social Temporal GCN (SocialTGCN) encoder with GCN and Temporal Convolutional

Network (TCN) layers, and a TCN decoder. Additionally, the SocialTGCN Module is

fed a Spatial Adjacency Matrix constructed based on the Euclidean distance between the

body root trajectories of individuals.

In recent years, several innovative approaches have emerged for creating multi-person

forecasting models that diverge significantly from traditional approaches, offering new

ways to handle the complexities of social interactions and motion dynamics. In the fol-

lowing, we discuss a few notable examples of these alternative approaches.

Jeong, Park, and Yoon in [17] have integrated pose forecasting with trajectory fore-

casting in their Trajectory2Pose model. This interaction-aware, trajectory-conditioned

model first predicts multi-modal global trajectories and then refines local pose predictions

based on these trajectories. It utilizes a graph-based person-wise interaction module to

model inter-person dynamics and reciprocal forecasting of both global trajectories and

local poses for improved prediction performance in multi-person scenarios.

In [38], Tanke et al. proposed a framework for predicting the poses of multiple indi-

viduals with mutual interactions that bases the prediction of future movements on past

behaviors, and they also proposed a function that aggregates movement features across

individuals, either by averaging or using multi-head attention to provide contextually

plausible interactions for groups of different sizes. By leveraging causal temporal convolu-

tional networks, the model processes the relationships between participants and generates

realistic, socially consistent motions over extended time horizons.

Xu, Wang, and Gui in [46] proposed a framework (DuMMF) for stochastic multi-

person pose forecasting that incorporates generative modeling and latent codes to model

individual movements at the local level and social interactions at the global level. The

model generates multiple different predictions for individual poses and social interactions,

covering a range of possible outcomes. The approach is generalizable to various generative

models, including GANs and diffusion models.
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A prevalent technique in data preprocessing for pose forecasting involves the appli-

cation of the Discrete Cosine Transform (DCT), which encodes human motion into the

frequency domain represented by a set of coefficients. This transformation aids in noise re-

duction, thus improving the robustness of the data. Conversely, the Inverse DCT (IDCT)

decodes predictions back to Cartesian coordinates, facilitating interpretation and appli-

cation [10, 25, 23, 42, 43, 40, 32, 34, 17].

To further enhance the performance of pose forecasting models, a strategy often em-

ployed is dividing the task into short-term and long-term prediction models, also known

as short-term and long-term optimization. In this approach, the final prediction is de-

rived from a combination of outputs from both short-term and long-term models [42,

40, 45]. Additionally, another effective technique to improve transformer-based models

is deep supervision. Here, the output of each block within the model is passed through

the decoder model, thereby mitigating issues related to overfitting and enhancing model

generalization [40, 45].

Despite the advancements in pose forecasting, including substantial advancements

driven by GCN and Transformer architectures, several limitations persist that challenge

the field. Current models often produce structurally invalid poses, where predicted poses

do not reflect anatomically feasible configurations, rendering them unrealistic or impossi-

ble in real-world settings. Additionally, many models struggle to capture natural move-

ment dynamics, leading to “ghosting” effects where poses appear frozen or drift unreal-

istically and lacking the fluidity and continuity expected in human motion. A further

important issue is generalizability, where certain models achieve strong performance on

specific datasets but frequently underperform when tested on different datasets, indicating

an over-reliance on dataset-specific characteristics. To address these challenges, our pro-

posed model is designed to improve the structural validity of predicted poses, enhance the

realism of movement dynamics, and achieve more consistent performance across diverse

datasets.
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2.3. Pose Forecasting Evaluation Metrics

The evaluation of pose forecasting models involves adopting various metrics borrowed

from related tasks, such as pose estimation [37, 21]. Initially, the Mean Per Joint Position

Error (MPJPE) metric, borrowed from pose estimation, was widely used. However, it

calculates the Euclidean distance (L2 norm) across all joints in the predicted sequence,

providing an overall assessment of the model’s performance without specifically focusing

on human movement dynamics. To address this limitation, Adeli et al. in [1] introduced

the Visibility-Ignored Metric (VIM). Unlike MPJPE, VIM evaluates the pose error solely

at the last predicted frame, overlooking the trajectory of joints in preceding frames and

focusing solely on the final pose error. MPJPE, along with VIM, has since become a

standard evaluation metric for pose forecasting due to its simplicity, interpretability, and

broad adoption in recent works.

Building upon the MPJPEmetric, Šajina and Ivasic-Kos in [36] proposed the Movement-

Weighted Mean Per Joint Position Error (MW-MPJPE). This metric enhances MPJPE by

incorporating a weighting factor based on the overall movement exhibited by the individ-

ual throughout the target pose sequence. This weighting factor provides a more nuanced

evaluation by considering the varying degrees of movement across different poses.

Peng, Mao, and Wu in [32] employed various evaluation metrics to assess multi-person

pose forecasting models. These included the Joint Position Error (JPE), which resembles

MPJPE but reports errors for all individuals in the scene; the Aligned Mean Per Joint

Position Error (APE), which is akin to Root-MPJPE, focusing on pose position errors

by removing global movement; and the Final Displacement Error (FDE), measuring the

trajectory prediction error by considering only the final global position (e.g., pelvis) of

each person.

Despite the introduction of several evaluation metrics, most existing metrics either

focus solely on joint-wise positional errors or isolate specific aspects of motion, such as

the final displacement. As a result, they often fail to provide a comprehensive view of

both local movement dynamics and global motion trajectories over time. This highlights

the need for a more complete pose forecasting metric that can jointly assess the error

of predicted joint movements, as well as the overall realism and coherence of predicted
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human motion.

2.4. GCN and Transformer Hybrid Architectures in Related

Fields

While significant progress has been made with Graph Convolutional Networks (GCNs)

and Transformers individually, to the best of our knowledge, no prior work has success-

fully integrated these two architectures into a unified model specifically for the task of

multi-person pose forecasting. This gap represents an opportunity for advancement, as

combining the strengths of GCNs in capturing spatial dependencies and Transformers in

modeling long-range temporal dynamics could lead to more robust and accurate predic-

tions in complex, interaction-heavy scenarios. In this paper, we aim to bridge this gap by

proposing GCN-Transformer, a novel model that leverages both GCN and Transformer

architectures for multi-person pose forecasting, potentially setting a new standard in the

field.

Although no previous work has applied a GCN-Transformer hybrid directly to multi-

person pose forecasting, this combination has demonstrated considerable success across

several related fields. These studies provide valuable insights into the benefits of integrat-

ing structured relational modeling with dynamic sequence modeling. In the following,

we briefly review selected examples where GCN-Transformer hybrids have been effec-

tively applied to tasks such as trajectory prediction [20, 3], time series forecasting [13,

44], and pose estimation [47, 7]. For example, Li, Pagnucco, and Song in [20] proposed

a Graph-Based Spatial Transformer for predicting multiple plausible future pedestrian

trajectories, which models both human-to-human and human-to-scene interactions by in-

tegrating attention mechanisms within a graph structure. Additionally, they present a

Memory Replay algorithm to improve the temporal consistency of predicted trajectories

by smoothing the temporal dynamics. Similarly, Aydemir, Akan, and Güney in [3] pro-

posed a novel approach for predicting trajectories in complex traffic scenes. By utilizing a

dynamic-weight learning mechanism, the model adapts to each person’s state while main-

taining a scene-centric representation to ensure efficient and accurate trajectory prediction

for all individuals. The model leverages GCNs to capture spatial interactions between in-
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dividuals and employs Transformer-based attention to model temporal dependencies.

GCN and Transformer architectures have also been successfully applied to time se-

ries forecasting, a task of predicting future time intervals based on historical data. For

instance, Hu et al. in [13] introduced a GCN-Transformer model designed to handle com-

plex spatiotemporal dependencies in EV-battery-swapping-station load forecasting. The

model integrates Graph Convolutional Networks (GCNs) to capture spatial relationships

between stations and a Transformer to model temporal dynamics, allowing it to manage

both spatial and temporal information simultaneously. Similarly, Xiong et al. in [44] in-

troduced a model for chaotic multivariate time series forecasting. The model utilizes a

Dynamic Adaptive Graph Convolutional Network (DAGCN) to model spatial correlations

across variables and applies multi-head attention from the Transformer to capture tem-

poral relationships. This hybrid approach demonstrates the effective application of GCNs

and Transformers in tasks that require managing complex nonlinear data, such as chaotic

systems, showing strong interpretability and performance across benchmark datasets.

GCN and Transformer architectures have also been successfully applied to pose esti-

mation, a task of detecting human joint positions from an image. For example, Zhai et al.

in [47] proposed the Hop-wise GraphFormer (HGF) module, which groups joints by k-hop

neighbors and applies a transformer-like attention mechanism to model joint synergies.

Additionally, the Intragroup Joint Refinement (IJR) module refines joint features, partic-

ularly for peripheral joints, using prior limb information. Furthermore, Cheng et al. in [7]

presents GTPose, a novel model combining Graph Convolutional Networks (GCNs) and

Transformers to enhance 2D human pose estimation. The model uses multi-scale convo-

lutional layers for initial feature extraction, followed by Transformers to model the spatial

relationships between keypoints and image regions. To further refine predictions, a Graph

Convolutional Network models the topological structure between keypoints, capturing the

relationships between joints.

While prior works have combined GCNs and Transformers in tasks such as trajec-

tory forecasting, time series prediction, and pose estimation, these models typically apply

GCNs for spatial encoding followed by Transformers for temporal modeling in a sequen-

tial or stacked manner. In contrast, our architecture is structured as a modular pipeline

that first models social contexts using a Spatial-GCN applied across all individuals in the

scene. This shared context is then injected into per-person forecasting branches using
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query token fusion, allowing each branch to access global scene information alongside in-

dividual motion patterns. Additionally, our forecasting module jointly incorporates both

Transformer-based attention mechanisms and Temporal GCNs, enabling the complemen-

tary modeling of long-range temporal dependencies and local graph-based dynamics. To

our knowledge, no prior GCN-Transformer hybrid applies this architecture to multi-person

pose forecasting with such explicit scene-person disentanglement and fusion.

3. Background of Graph Convolutional Networks and

Transformers

In recent years, two of the most prominent architectures for tasks like pose forecasting

have been Graph Convolutional Networks (GCNs) and Transformer architectures. To bet-

ter understand their foundations and effectiveness, we will provide a formalized overview

of these architectures. It is important to note that the following descriptions remain

generalized relative to GCN and Transformer architectures and do not delve into their

specific application to multi-person pose forecasting, as this has already been addressed

in the Related Work Section.

3.1. Graph Convolutional Networks

Conventional Convolutional Neural Networks (CNNs) operate on grid-like data struc-

tures like images, while GCNs are designed to work with non-Euclidean data, such as

graphs, which consist of nodes (vertices) and edges representing relationships between

the nodes. A graph is formally defined as G = (V,E), where V is the set of nodes and

E is the set of edges. The key challenge in GCNs is to propagate information between

nodes to capture the spatial structure of the graph.

GCNs can be broadly categorized into spatial and spectral graph convolutions [5].

Spatial-GCNs aggregate information from neighboring nodes based on their local struc-
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ture. This aggregation can be extended to k-hop neighbors, where the neighborhood

expands to include nodes within k steps of the target node, as in [2]. Spectral GCNs, on

the other hand, transform graph data into the spectral domain, using the graph’s Lapla-

cian to perform convolutions, but these often encounter computational challenges due to

the size of the graph kernel. A simplified version of spectral convolutions, proposed by

Kipf and Welling in [19], utilizes a first-order approximation, which is widely adopted due

to its computational efficiency.

The general form of a GCN layer can be represented as follows:

H(l+1) = σ(Ã H l W l) (1)

where H l represents the feature matrix at layer l, Ã is the normalized adjacency matrix,

W l is the learnable weight matrix at layer l, and σ is an activation function like ReLU.

Figure 1: The figure depicts a multi-layer Graph Convolutional Network (GCN) archi-

tecture. The graph’s structure, defined by the normalized adjacency matrix Ã, is shared
across all layers (edges shown as black lines). The input data (with C channels) are

iteratively transformed at each layer l using Ã and a learnable weight matrix W l. The
final layer outputs feature maps, F , capturing node relationships and properties through
stacked graph convolutions.

Figure 1 illustrates the multi-layer GCN architecture, highlighting how the input fea-

tures are progressively transformed through successive layers using the shared graph struc-

ture defined by the normalized adjacency matrix Ã. Traditionally, the adjacency matrix
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is predefined based on the structure of the graph (e.g., a human skeleton with fixed joint

connections). However, in more advanced applications, especially in tasks like pose fore-

casting, the adjacency matrix Ã can be treated as a learnable parameter [9, 48], allowing

the model to dynamically adapt the relationships between nodes (e.g., joints) based on the

data. By making the adjacency matrix learnable, the network can adjust the strength or

presence of connections between nodes, capturing more complex and data-driven relation-

ships that may not be explicitly defined in the original graph. This is particularly useful

for tasks involving non-static or flexible relationships, such as multi-person interactions

or joint dynamics that change over time.

3.2. Transformer Architecture

The Transformer model, introduced by Vaswani in [39], has revolutionized the field

of sequence modeling due to its effectiveness in capturing long-range dependencies and

its parallel computation capabilities. Initially developed for natural language processing

(NLP), where understanding contextual relationships between words across long sequences

is essential, the Transformer architecture quickly surpassed traditional recurrent models

such as LSTMs and GRUs. This success sparked widespread adoption across numerous

domains, including computer vision, time-series forecasting, reinforcement learning, and

human motion modeling.

Transformers rely on the attention mechanism that allows each element of the input

sequence to interact with every other element. During processing, the attention mecha-

nism assigns higher importance, or attention weights, to parts of the sequence that are

most relevant for a given prediction or representation. This dynamic weighting enables

the model to selectively focus on crucial inputs while diminishing the influence of less

relevant ones, enhancing the ability to capture complex, long-range relationships without

relying on sequential processing steps.

Because Transformers do not inherently model sequential order, they incorporate po-

sitional encodings into the input embeddings to preserve information about the position

of each element within a sequence. These positional encodings can be predefined, typ-

ically using sine and cosine functions at varying frequencies [26, 43, 33, 32], or learned
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as trainable parameters during model optimization [40, 45]. By embedding positional

information alongside content information, Transformers maintain the ability to reason

about both the identity and the temporal order of elements, allowing them to capture

complex sequential dependencies in various tasks.

Moreover, Transformers are inherently well suited for scenarios involving complex

relational dynamics, a defining characteristic of sensor-based human motion data. Their

global attention mechanism enables the model to dynamically prioritize the most relevant

joints or individuals at each time step, allowing it to capture nuanced dependencies across

space and time. This capability is particularly valuable in crowded or interaction-rich

environments, where individual movements are not independent but influenced by the

collective behavior of others in the scene.

At the core of the Transformer is the scaled dot-product attention, which computes

the attention score as follows:

Attention(Q,K, V ) = Softmax

(
QK⊤
√
dk

)
V (2)

where Q, K, and V are the query, key, and value matrices derived from the input sequence,

and dk is the dimensionality of the key vectors. The softmax function ensures that the

attention weights sum up to one, enabling the model to focus on relevant parts of the

sequence. The scaling factor
√
dk prevents the dot-product values from growing too large,

which could cause vanishing gradients during backpropagation [39].

To enhance the model’s expressiveness, the Transformer uses multi-head attention,

where multiple attention mechanisms run in parallel, and their outputs are concatenated:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh) W
O (3)

where headi = Attention(QWQ
i , KWK

i , V W V
i ), and WQ

i , WK
i , and W V

i are learnable

weight matrices for the queries, keys, and values, respectively. The outputs are then trans-

formed by a final weight matrix WO [39]. Figure 2 illustrates the calculations involved in

the attention mechanisms of Transformers, including Scaled Dot-Product Attention and

Multi-Head Attention, which aggregate multiple attention layers in parallel.
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Figure 2: The figure illustrates the attention mechanism used in Transformer architec-
ture. The left side depicts Scaled Dot-Product Attention, where the attention scores are
computed using queries (Q), keys (K), and values (V ), followed by scaling and a softmax
operation. The right side shows Multi-Head Attention, consisting of multiple parallel
Scaled Dot-Product Attention layers. The outputs of these parallel layers are concate-
nated and linearly transformed to produce the final attention output.

4. Problem Formulation for Multi-Person Forecast-

ing

In the multi-person pose forecasting task, the aim is to forecast the forthcoming move-

ments of multiple individuals within a given scene. Each individual in the scene is char-

acterized by anatomical joints, typically including key areas such as elbows, knees, and

shoulders. The task involves predicting the trajectories of these joints over a specified

duration into the future, usually denoted by T time steps. To accomplish this predictive

task, the model is provided with a sequence of historical poses for each individual. These

historical poses encapsulate the positional information of each joint in three-dimensional

Cartesian coordinates framed within a global coordinate system. This representation is

standard in the field, as it reflects the native output of motion capture systems and 3D
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pose estimation models, and it allows for the straightforward computation of spatial re-

lationships such as distances and velocities. For any given individual n = 1. . .N , each

historical pose is represented by a vector of J dimensions, where J signifies the number of

tracked joints. Consequently, the entire historical sequence for individual n is represented

as Xn
1:t, capturing the temporal evolution of poses up to the present moment. The length

of the input pose sequence, denoted as t, dictates the number of historical poses the model

uses for prediction. The index n ranges from 1 to N , where N corresponds to the total

number of individuals observed within the scene. At its core, the model’s primary objec-

tive is to generate future pose sequences for each individual, denoted as Xn
t+1:T . Here, T

reflects the future number of time steps that the model is tasked with forecasting. The

problem’s formulation is graphically shown in Figure 3.

Figure 3: The figure illustrates the problem formulation for predicting the future move-
ments of multiple individuals in a scene. Each individual is represented by joints (e.g.,
elbows, knees, shoulders), and the task is to forecast their trajectories over T time steps.
The model receives historical pose sequences Xn

1:t for each individual n, containing the
positional data of joints in three-dimensional Cartesian coordinates. The objective is to
predict future pose sequences Xn

t+1:T , extending T time steps into the future.

5. Proposed Architecture and Model

This paper proposes GCN-Transformer, a novel model for multi-person pose forecast-

ing that emphasizes capturing complex interactions and dependencies between individ-

uals within a scene. GCN-Transformer takes sequences of poses from all individuals in

the scene as inputs, which are firstly preprocessed to enhance the data’s richness. These

sequences are then processed through the Scene Module, which is designed to capture

the interactions and dependencies between individuals within the scene. Following this,
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the Spatiotemporal Attention Forecasting Module combines this contextual information

with each individual’s sequence to predict future poses. The following sections provide a

detailed description of each component in the model’s architecture.

The architecture of GCN-Transformer is guided by complementary theoretical prin-

ciples from graph-based and attention-based modeling. Graph Convolutional Networks

(GCNs) are well suited for capturing structured spatial relationships, such as the physical

dependencies among joints and the social connections between individuals in a shared

scene. These structures act as relational inductive biases that help the model reason over

pose and proximity with minimal supervision. In contrast, Transformers are powerful

tools for modeling long-range temporal dependencies and contextual interactions. Their

self-attention mechanism allows for the dynamic weighting of information across time

and between individuals, without requiring sequential computation. By combining GCNs

and Transformers, GCN-Transformer is able to model both local and global dynamics,

capturing individuals’ joint relationships and interactions with temporal dependencies in

multi-person scenes.

GCN-Transformer comprises two main modules: the Scene Module and Spatiotempo-

ral Attention Forecasting Module. Initially, the input sequences, Xn...N , are padded with

the last known pose’s T times and augmented by incorporating their temporal differen-

tiation, resulting in enriched sequences denoted as Zn...N . Temporal differentiation refers

to the process of computing the difference between joint positions across consecutive time

steps to obtain motion velocity or first-order dynamics. Formally, for each person n, we

compute ∆Xn
t = Xn

t+1−Xn
t , and we concatenate this velocity signal with the original se-

quence along the joint feature’s dimension. A zero-initialized frame is prepended to main-

tain temporal alignment. This results in a richer representation capturing both position

and motion. These enriched sequences are concatenated and fed into the Scene Module.

Within the Scene Module, a Spatiotemporal Fully Connected module encodes the poses

into an embedding space. Subsequently, the output undergoes processing through the

Spatial-GCN network designed to extract social features and dependencies. The resulting

output S from the Scene Module is then forwarded into the Spatiotemporal Attention

Forecasting Module for each n-th sequence Zn, along with a query token Qn generated

through one-hot encoding based on the position of the n-th sequence within the scene.

In the Spatiotemporal Attention Forecasting Module, the sequence Zn is encoded
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into the embedding space using a Spatiotemporal Fully Connected module (STFC). The

resulting output is then concatenated with the extracted features S from the Scene Module

and the query token Qn to create W n. This fusion combines individual motion, scene-level

context, and identity-specific signal. W n = [STFC(Zn);S;Qn], where STFC(Zn) ∈ RT×d,

S ∈ RT×d, and Qn ∈ R1×d (broadcasted across T ). Subsequently, W n is simultaneously

passed into the Spatiotemporal Transformer Decoder and Temporal-GCN modules. The

outputs from both modules are concatenated and processed through a Spatiotemporal

Fully Connected module to generate the final prediction ŷn.

The architecture of GCN-Transformer is shown in Figure 4, and the full forward pass

of GCN-Transformer is outlined in Algorithm 1.

Figure 4: The figure depicts the architecture of the GCN-Transformer model. In the
preprocessing step, input sequences X1 and X2 are padded with the last pose to match
the full length of the sequence, and they are enriched with their temporal differentiation∆,
resulting in sequences Z1 and Z2. These sequences are then jointly processed by the Scene
Module to extract social features and dependencies, producing the output S. Finally, to
produce the final predictions, the output S is subsequently fed into the Spatiotemporal
Attention Forecasting Module for each n-th sequence Zn, along with a query token Qn

generated via one-hot encoding based on the position of the n-th sequence within the
scene.
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Algorithm 1: Pseudocode outlining the end-to-end forward pass of GCN-
Transformer. The model first applies temporal differentiation to augment pose
sequences for all individuals in the scene. These enriched sequences are embedded
and passed through a Spatial GCN to extract scene-level context. Each individ-
ual’s sequence is then fused with the scene context and an identity-specific query
token before being processed in parallel by a Spatiotemporal Transformer De-
coder and a Temporal GCN. The outputs are concatenated and passed through
a final Spatiotemporal Fully Connected module to produce future pose predic-
tions.
Input: Pose sequences X1...N

1:t for N individuals, each with J joints in 3D space
Output: Predicted future pose sequences Ŷ 1...N

1:t+T

1 Preprocessing:
2 foreach individual n = 1 to N do
3 Pad Xn with last pose to length t+ T
4 Compute temporal difference: ∆Xn

t = Xn
t+1 −Xn

t

5 Prepend zero velocity at t = 1 to align length
6 Concatenate position and velocity: Zn = [Xn ∥ ∆Xn]

7 Stack enriched sequences: Z = {Z1, . . ., ZN} // Shape: T × 3NJ

8 Scene Encoding: // Run once per scene

9 Embed scene input: Escene = Spatiotemporal Fully Connected module(Z)
10 Compute context: S = Spatial-GCN(Escene) // S ∈ RT×d

11 Forecasting for each person:
12 foreach individual n = 1 to N do
13 Embed Zn using Spatiotemporal Fully Connected module:
14 En = Spatiotemporal Fully Connected module(Zn) // En ∈ RT×d

15 Generate identity token Qn (1-hot, broadcast to T × d)
16 Fuse inputs: W n = [En;S;Qn]
17 Parallel decoding:
18 On

st-transformer = Spatio-Temporal Transformer Decoder(W n)
19 On

temporal-gcn = Temporal-GCN(W n)

20 Concatenate: On = [On
st-transformer;O

n
temporal-gcn]

21 Final prediction: Ŷ n = Spatiotemporal Fully Connected module(On)

22 return {Ŷ 1, Ŷ 2, . . ., Ŷ N}
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5.1. Spatiotemporal Fully Connected Module

The Spatiotemporal Fully Connected module is a lightweight component that projects

pose sequences into a higher-dimensional embedding space, making them suitable for pro-

cessing by downstream modules. It consists of two fully connected layers that indepen-

dently process the spatial and temporal dimensions of the input. Given an input sequence

X ∈ RT×3NJ , where T is the number of time steps, N is the number of individuals, J is

the number of joints, and each joint is represented in 3D Cartesian space. The first fully

connected layer operates along the spatial dimension, and it maps each frame-level pose

vector of dimension 3NJ to a higher-dimensional representation, resulting in an interme-

diate output of shape RT×d. Subsequently, a second fully connected layer is applied across

the temporal dimension, allowing the model to capture short-term temporal patterns and

refine the sequence-level encoding. The final output remains in RT×d and serves as the

input to both the Scene Module and Spatiotemporal Attention Forecasting Module, where

it is further processed by GCN and Transformer components.

5.2. Scene Module

The Scene Module is designed to enhance input data representation by leveraging

temporal and spatial information. It comprises two key elements: a Spatiotemporal Fully

Connected module and the Spatial-GCN. The Spatiotemporal Fully Connected module

serves as an initial processing unit, transforming the enriched input sequence Zn...N into

a higher-dimensional embedding space, refining the input data and preparing them for

subsequent modules through spatial and temporal transformations. In conjunction with

the Spatiotemporal Fully Connected module, the Spatial-GCN module serves to uncover

intricate patterns embedded within the data, specifically focusing on extracting interac-

tion dependencies and dynamics among individuals within the scene. Comprising eight

GCN blocks with learnable adjacency matrices, this module employs various techniques,

including batch normalization, dropout, and Tanh activation functions, to enhance feature

extraction and maintain the integrity of the structural information present in the input
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data. To further enhance the model’s ability to capture social dependencies and maintain

realistic spatial relationships between joints of the people in the scene, we compute the

inter-individual joint distance loss on the output S.

5.3. Spatiotemporal Attention Forecasting Module

The Spatiotemporal Attention Forecasting Module predicts future poses by synthesiz-

ing information from various sources, including the input sequence Zn, scene context S,

and positional query token Qn associated with sequence Zn. Initially, the input sequence

Zn undergoes encoding via the Spatiotemporal Fully Connected module, transforming

into an embedded space. Subsequently, this encoded sequence is concatenated with the

scene context S and the positional query token Qn to form W n. This composite represen-

tationW n undergoes parallel processing through two key components: the Spatiotemporal

Transformer Decoder and the Temporal-GCN modules.

The Spatiotemporal Transformer Decoder comprises two attention blocks positioned

after the learnable positional encoding of W n. The first attention block is followed by

fully connected layers that operate on the spatial dimension, facilitating the extraction of

spatial features. Conversely, the second attention block is followed by Temporal Convolu-

tional Network (TCN) layers, which specialize in capturing long-term temporal dependen-

cies and temporal patterns within the data. Concurrently, the Temporal-GCN module,

composed of eight GCN blocks with learnable adjacency matrices, operates on W n to

extract and refine temporal dependencies, thereby enhancing the temporal representation

separate from the Spatiotemporal Transformer Decoder.

Finally, the Spatiotemporal Attention Forecasting Module integrates the extracted

features using Spatiotemporal Fully Connected module, resulting in the generation of the

final pose sequence prediction ŷn. This fusion process ensures that the module leverages

the diverse information captured across spatial, temporal, and contextual dimensions to

produce accurate and reliable predictions for future poses.
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5.4. Data Preprocessing

We opted against employing any data preprocessing techniques for our model; instead,

we utilized raw data from the datasets. This approach was chosen to compel the model

to learn the intricate structure of the human skeleton and the dynamic nature of move-

ment. Conventional preprocessing methods, such as employing Discrete Cosine Transform

(DCT) to encode Cartesian coordinates into frequencies, often yield poses that appear

ghost-like and lack the nuanced dynamics of human movement, like in [42, 43, 40, 36].

Moreover, techniques like predicting temporal differentiation that is subsequently added

to the last known pose to generate the final result can produce invalid poses over the long

term due to the model’s lack of awareness regarding human structural information, like

in [31, 43, 34, 32, 45].

5.5. Data Augmentation

Data augmentation is used for enhancing the robustness and generalization capability

of pose forecasting models. Building upon methods utilized in [36], we extended the

augmentation strategy with new methods to introduce further variations in the training

data. Inspired by [36], we adopted several effective methods: sequence reversal, which

reverses the temporal order of input sequences to expose the model to diverse temporal

patterns; random person permutation, which shuffles the order of individuals within a

scene to accommodate different person arrangements and interactions; random scaling,

which introduces variations in pose scale to simulate varying heights of the people; random

orientation, where poses are randomly rotated to simulate different camera viewpoints or

human orientations; and random positioning, which shifts the positions of individuals

within the scene to introduce spatial variability.

Expanding upon these methods, we introduced new techniques to enrich the dataset

further. One method involved randomizing the joint order of individuals in a scene,

encouraging the model to learn complex skeleton representations and adapt to different

joint configurations. Additionally, we used a method to randomize the XYZ axes of
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individuals, enhancing pose variation by altering the orientation and positioning of poses

in 3D space. Lastly, we varied the dataset’s sampling frequency, using frequencies 1–4 to

capture slower and faster sequences, though this type of sampling is performed during the

preprocessing step.

All augmentations, except for sampling frequencies, are applied dynamically to each

sampled batch of scene sequences during training. Each augmentation method is ap-

plied with a specific probability, introducing controlled variability into the training data.

For instance, sequence reversal, random person permutation, random scaling, and ran-

dom positioning each have a 50% probability of being applied, while random orientation,

random joint order, and random XYZ-axis order are applied with a 25% probability. Fur-

thermore, there is a 25% probability that no augmentation will be applied to a given

sequence, ensuring that the model is exposed to both augmented and unaugmented data.

These augmented datasets enable the model to learn robust features and adapt effec-

tively to diverse scenarios, improving its performance and generalization capability in

pose forecasting tasks.

We progressively introduced each method during development and empirically ob-

served consistent reductions in training loss, indicating improved learning dynamics. All

augmentation strategies were designed to preserve structural validity, and none produced

implausible or invalid pose sequences. Importantly, all augmentations in our pipeline are

applied consistently across the entire scene, meaning that the same transformation is ap-

plied to all individuals’ pose sequences within a given scene to ensure that augmented

motions remain coherent and socially consistent. Furthermore, since each augmentation

process is applied with controlled probability and independently of others, we found no

clear evidence of conflicting interactions or degradation in data quality. In practice, the

combined use of all proposed augmentations led to the most effective training results

across all datasets, as we also show in the ablation study (Section 7).

5.6. Training

Our model optimizes its parameters by minimizing the error between the predicted

and ground truth poses, using a loss commonly referred to as reconstruction loss (REC).
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This is a standard approach in pose forecasting and is widely adopted in prior work due

to its simplicity and direct correlation with spatial prediction accuracy. REC is typically

computed as the L2 distance between corresponding joints in the predicted and ground

truth sequences, ensuring that the forecasted poses remain close to the true positions

frame by frame.

However, while REC provides a useful baseline for learning pose positions, it has

several limitations, particularly in the context of multi-person and dynamic motion fore-

casting. REC measures pose similarity on a per-joint, per-frame basis, and as such, it

does not account for the temporal continuity of movements or the relational dynamics

between individuals. This can lead to predicted sequences that are spatially accurate in

isolated frames but lack smoothness over time or consistency in movement dynamics. For

instance, a model trained with REC alone may generate plausible individual poses that

result in jittery motion or unrealistic group behavior, such as individuals moving without

regard for nearby participants.

To address these shortcomings, we introduce two additional loss terms that target

complementary aspects of human motion. First, the multi-person joint distance (MPJD)

loss enhances the model’s ability to capture social and spatial interactions by penaliz-

ing discrepancies in joint distances between individuals across time. This encourages the

Scene Module to improve model interaction dependencies and produce socially coherent

pose sequences. Second, we incorporate a Velocity loss (VL), which prioritizes the learn-

ing of consistent temporal dynamics. By penalizing deviations in joint velocities between

predicted and ground truth sequences, the VL term helps the model generate smoother

and more realistic motion trajectories, reducing jitter and improving the fluidity of move-

ment. The effectiveness of both additional losses is demonstrated in the ablation study

(Section 7).

The final loss function is determined by combining the standard reconstruction loss

with an additional multi-person joint distance loss (MPJD), scaled by a factor denoted

as γ, used to adjust the effect of the MPJD loss on the overall loss. Both the output and

scene predictions are subjected to Velocity Loss (VL), with Velocity Loss for the output

from the Scene Module also scaled by the γ factor. To measure the error between the

predicted and ground truth coordinates, we employ L2-norm loss, aiming to minimize this

error during training.

132



The final loss is calculated as follows:

LREC =
1

N

N∑
n=1

∥ŷn − yn∥2 (4)

LMPJD =
1

N(N−1)

N∑
n=1

N∑
p=1

∥(ŷn− ŷp)−(yn−yp)∥2 (5)

LREC VL =
1

N

N∑
n=1

∥∆ŷn −∆yn∥2 (6)

LMPJD VL =
1

N(N−1)

N∑
n=1

N∑
p=1

∥∥∥∆d̂n,p−∆dn,p

∥∥∥
2

(7)

L = LREC + LREC VL + LMPJD × γ + LMPJD VL × γ (8)

where N represents the number of people in the scene; ŷn and ŷp represent the predicted

pose sequence of the n-th and p-th person in the scene, while yn and yp represent the

corresponding ground truth pose sequence of n-th and p-th person in the scene. ∥·∥2
denotes the Euclidean distance (L2 norm), and 1

N

∑N
n=1 represents the mean distance

across all people in the scene. The ∆ represents temporal differentiation, where ∆yn =

ytn− yt+1
n for t = 0, 1, . . ., T − 1 and ∆ŷn = ŷtn− ŷt+1

n for t = 0, 1, . . ., T − 1. The predicted

velocities of joint distances between individuals are represented with ∆d̂n,p, while ∆dn,p

represents the ground truth velocities of joint distances between individuals.

Including MPJD and VL losses in the training process significantly enhances the prac-

tical applicability of multi-person pose forecasting models in real-world scenarios. The

MPJD loss encourages the model to learn interaction dynamics between individuals in

a scene, helping it capture how one individual’s movements influence others. This is

particularly useful in scenarios such as crowd monitoring, group behavioral analysis, and

human–robot collaboration, where understanding interpersonal interactions is essential.

On the other hand, the VL loss emphasizes temporal velocities between subsequent poses,

promoting the generation of fluid and natural motion sequences. This is crucial in ap-

plications like animation, virtual reality, and autonomous systems, where smooth and

realistic motion transitions are essential. Together, these losses address the challenges

of producing rigid or disconnected poses, ensuring that the model generates dynamic,

context-aware predictions.
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We trained our model for 512 epochs with a batch size of 256, which was the largest

manageable size given our hardware constraints. The extended training duration was cho-

sen to accommodate the strong and dynamic augmentation strategy, which introduced

extensive variability to the data, necessitating longer training for the model to effectively

learn from these variations. Observing that the performance improvements plateaued at

around 512 epochs, we determined that this duration was sufficient for optimal conver-

gence. The Adam optimizer, a standard choice in pose forecasting, was chosen due to

its adaptability and efficiency in handling complex, dynamic loss landscapes, especially

with the strong augmentations applied. After testing multiple learning rates, we set an

initial learning rate of 0.001, finding that it balanced effective learning with stability. A

higher learning rate caused the loss to oscillate heavily, likely due to abrupt shifts in the

solution space introduced by the strong augmentation, and in some cases, gradients would

explode. To guide the model closer to the optimal solution, we reduced the learning rate

to 0.0001 after 256 epochs, ensuring smoother convergence in the later stages of training.

We also carefully tuned the γ parameter, which scales the MPJD loss, by analyzing values

from 0 to 1. A value of 0.1 was selected, as it provided the best balance in guiding the

model to capture both spatial dependencies and movement dynamics effectively.

6. Experimental Results

In our experimental evaluation of the GCN-Transformer, we employed four distinct

datasets: CMU-Mocap, MuPoTS-3D, SoMoF, and ExPI. To assess the model’s perfor-

mance, we define evaluation metrics that quantify the error between predicted poses and

ground truth. Through comprehensive analysis, we evaluated our model’s performance on

all datasets and conducted a comparative study against state-of-the-art models in the do-

main of multi-person pose forecasting. All models used for the experimental results were

retrained from scratch using their official implementations, with the exception of Future

Motion, which we re-implemented based on the details provided in the original paper.

We followed the reported training protocols and hyperparameters wherever available and

performed validation-based tuning only for Future Motion due to missing implementation
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details. All models were trained and evaluated under a consistent experimental setup to

ensure a fair and meaningful comparison with our proposed method.

6.1. Metrics

The MPJPE (Mean Per Joint Position Error) is a commonly used metric for evaluating

the performance of pose forecasting methods [24, 43, 40, 36, 45]. It measures the average

Euclidean distance between the predicted joint positions and the corresponding ground

truth positions across all joints. The lower the MPJPE value, the closer the predicted

poses align with the ground truth. This metric provides a joint-level assessment of pose

forecasting performance. The MPJPE metric is calculated as follows:

EMPJPE(ŷ, y, φ) =
1

Jφ

Jφ∑
j=1

∥∥∥P (f)
ŷ,φ(j)− P (f)

y,φ(j)
∥∥∥
2

(9)

where f denotes a time step, and φ denotes the corresponding skeleton. P
(f)
ŷ,φ(j) is the

estimated position of joint j, and P
(f)
y,φ(j) is the corresponding ground truth position. Jφ

represents the number of joints. ∥·∥2 denotes the Euclidean distance (L2 norm), and

1
Jφ

∑Jφ
j=1 represents the mean distance across all joints.

Another commonly employed metric in pose forecasting evaluation is the Visibility-

Ignored Metric (VIM), initially proposed by Adeli et al. in [1]. The VIM is computed by

assessing the mean distance between the predicted and ground truth joint positions at

the last pose T . This calculation involves flattening the joint positions and coordinates

dimensions into a unified vector representation, resulting in a vector dimensionality of 3J ,

where J denotes the number of joints. Subsequently, the Euclidean distance (L2 norm)

is computed between the corresponding ground truth and predicted joint positions. The

average distance across all joints yields the final VIM score. The SoMoF Benchmark

adopts this metric for its evaluation framework. The VIM metric computation can be

expressed as follows:

EVIM(ŷ, y, φ) =
1

3Jφ

3Jφ∑
j=1

∥∥∥P (j)
ŷ,φ − P (j)

y,φ

∥∥∥
2

(10)

where J represents the number of joints, P
(i)
y,φ is the ground truth position of the i-th
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joint (flattened), P
(i)
ŷ,φ is the predicted position of the i-th joint (flattened), ∥·∥2 denotes

the Euclidean distance (L2 norm), and 1
3Jφ

∑3Jφ
j=1 represents the mean distance across all

joints.

6.2. Datasets

We employed distinct datasets for both training and evaluation, aligning with the

methodology of previous models such as SoMoFormer [40], MRT [43], MPFSIR [36],

and JRTransformer [45]. For training, we utilized the 3D Poses in the Wild (3DPW)

[41] and Archive of Motion Capture As Surface Shapes (AMASS) [22] datasets. The

3DPW dataset contains over 60 video sequences containing scenes with two individuals,

capturing human motion in real-world scenarios, including accurate reference 3D poses

in natural scenes, such as people shopping in the city, having coffee, or playing sports,

recorded with a moving hand-held camera. The dataset was collected using a combination

of vision-based sensors and inertial measurement units (IMUs), which provided high-

fidelity motion tracking in unconstrained environments. To adhere to the evaluation

protocol of the SoMoF benchmark [1], we employed a specific split of the 3DPW dataset,

where the train and test sets are inverted. Thus, we trained all models on the 3DPW

test set and subsequently evaluated them on the 3DPW train set. This inversion was

originally introduced by the authors of the SoMoF benchmark [1] due to the preprocessing

of the 3DPW dataset, which created a larger number of sequences in the test set than

in the training set, thus inverting the datasets allowed for a more robust training set.

By following this protocol, we ensure that our results are directly comparable with other

multi-person pose forecasting models evaluated under the same conditions. Specifically,

for the SoMoF test set, data from the original 3DPW training set were sampled without

overlap, producing distinct pose sequences. In contrast, the SoMoF training set was

generated by sampling the original 3DPW testing set with overlap, employing a sliding

window of 1 to capture a broader range of pose variations. The validation set remained

consistent with the original 3DPW dataset, which was sampled without overlap.

On the other hand, the AMASS dataset provides an extensive collection of human mo-

tion capture sequences, totaling over 40 h of motion data and 11,000 motions represented
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as SMPL mesh models. AMASS unifies multiple optical marker-based motion capture

datasets within a common framework, where motion data were originally collected using

high-precision marker-based tracking systems. During the training process, we utilized the

CMU, BMLMovi, and BMLRub subsets of the AMASS dataset, which provided a diverse

and large-scale dataset. Given that many sequences within this dataset are single-person,

we employed a technique to synthesize additional training data by combining sampled

sequences to generate multi-person training data.

In contrast to recent works [43, 40, 36, 45, 32] that utilize the SoMoF Benchmark

[1] alongside the Carnegie Mellon University Motion Capture Database (CMU-Mocap)

[6] and the Multi-person Pose Estimation Test Set in 3D (MuPoTS-3D) [28] for model

evaluation, our study additionally presents results on the Extreme Pose Interaction (ExPI)

[11] dataset.

The CMU-Mocap and MuPoTS-3D datasets contain scenes with three individuals,

with approximately 8000 annotated frames of poses across 20 real-world scenes. However,

the movements captured are primarily simplistic, with limited interactions, often resulting

in sequences where individuals maintain largely static poses or perform minimal motions.

While we include evaluations on CMU-Mocap and MuPoTS-3D to ensure completeness

and facilitate comparison with prior works, we emphasize that models trained or evaluated

on these datasets may struggle to demonstrate their full capabilities in forecasting socially

coherent, dynamic multi-person motion.

Therefore, after presenting initial results on CMU-Mocap and MuPoTS-3D, we focus

our full analysis on the SoMoF Benchmark and the Extreme Pose Interaction (ExPI)

dataset, both of which feature two-person scenes but offer significantly more challeng-

ing and realistic multi-person motion scenarios. In particular, ExPI contains dynamic

sequences involving two couples engaged in physically demanding and interaction-heavy

activities. The dataset was collected using a multi-sensor motion capture system compris-

ing 68 synchronized and calibrated RGB cameras, along with a high-resolution infrared-

based motion capture setup featuring 20 infrared mocap cameras. This comprehensive

setup makes ExPI particularly well suited for evaluating complex, coordinated multi-

person interactions in controlled yet naturalistic settings.
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6.3. Results on CMU-Mocap and MuPoTS-3D

We first evaluate the GCN-Transformer against several state-of-the-art (SOTA) multi-

person pose forecasting models, including MRT [43], Future Motion [42], SoMoFormer

[40], JRTransformer [45], LTD [25], and MPFSIR [36]. Following established protocols,

we trained all models using a synthesized dataset created by combining sampled motions

from the CMU-Mocap database to simulate three-person interaction scenes. Evaluations

were conducted on both test sets from the CMU-Mocap and MuPoTS-3D datasets.

For the Carnegie Mellon University Motion Capture Database (CMU-Mocap) [6], we

adopt the training and testing splits provided by Wang et al. in [43]. Specifically, the

dataset’s construction involves combining two-person motion sequences with an addi-

tional randomly sampled third individual, introducing a degree of randomness into the

generated scenes. To ensure fairness, the same generated datasets are used across all

evaluated models.

Each input sequence consists of 15 historical frames (corresponding to 1000 ms), and

the models are tasked with forecasting the subsequent 45 frames (3000 ms into the future).

Each individual’s pose is annotated with 15 joints, provided both as inputs and as ground

truth for evaluation. We assessed performance using the Mean Per Joint Position Error

(MPJPE) metric, which is reported at 1, 2, and 3 s into the future to align with evaluation

from [43]. All models are retrained and evaluated under identical conditions using the

official code and data released by [43].

As summarized in Table 1, the GCN-Transformer consistently outperforms all com-

peting methods on both CMU-Mocap and MuPoTS-3D datasets, achieving new state-of-

the-art performance in these settings.

The results demonstrate that the proposed GCN-Transformer consistently outperforms

all competing models across both the CMU-Mocap and MuPoTS-3D test sets. These

improvements are observed consistently across short-term and long-term forecasting hori-

zons, indicating the model’s strong ability to maintain prediction performance even as

the forecast extends further into the future. Among the baselines, MPFSIR, JRTrans-

former, and LTD perform relatively competitively but still lag behind GCN-Transformer

at all evaluation points. Interestingly, the model LTD, designed for single-person forecast-

138



Table 1: Performance comparison on the test sets of the CMU-Mocap and MuPoTS-3D
datasets, featuring three-person scenes. Results are reported using the MPJPE metric
(in meters), where lower values indicate better joint position prediction accuracy. Our
proposed GCN-Transformer consistently achieves state-of-the-art results, outperforming
all competing models on both datasets.

MPJPE Metric

Method CMU-Mocap Test Set MuPoTS-3D Test Set Average
Overall1 s 2 s 3 s Overall 1 s 2 s 3 s Overall

Zero Velocity 5.55 9.23 12.30 9.03 2.05 3.43 4.57 3.35 6.29
MRT [43] 4.46 7.94 10.94 7.78 1.87 3.40 5.04 3.44 5.61

SoMoFormer [40] 4.50 8.15 11.27 7.79 1.69 3.02 4.15 2.95 5.37
Future Motion [42] 4.08 7.24 10.21 7.18 1.98 3.40 4.57 3.31 5.25
JRTransformer [45] 4.08 7.47 10.47 7.34 1.61 2.90 4.06 2.86 5.16

LTD [25] 4.03 7.06 9.91 7.00 1.75 2.98 4.10 2.94 4.97
MPFSIR [36] 3.94 7.04 9.87 6.95 1.67 2.87 3.93 2.82 4.89

GCN-Transformer (our) 3.53 6.58 9.25 6.46 1.39 2.41 3.39 2.40 4.43

Best results in each column are highlighted in bold.

ing, performs relatively well given its lack of explicit multi-person modeling capabilities.

In contrast, models such as MRT, SoMoFormer, and Future Motion show substantially

higher errors, particularly as the forecast horizon increases, suggesting weaker mecha-

nisms for modeling long-term temporal dependencies in multi-person settings. It is also

noteworthy that the ordering of model performance shifts between the CMU-Mocap and

MuPoTS-3D datasets. This variability indicates that many models are sensitive to the

specific characteristics of the dataset and highlights a lack of consistent generalization

ability across different multi-person forecasting environments.

The strong results achieved by the GCN-Transformer highlight its ability to fore-

cast complex multi-person motion accurately over both short and long time horizons.

Its consistent improvements across different datasets demonstrate robustness and gen-

eralization. These findings validate the importance of combining spatial and temporal

reasoning for multi-person forecasting tasks. In the following sections, we further evalu-

ate GCN-Transformer on more socially complex datasets (SoMoF and ExPI) to assess its

performance in even more dynamic and challenging scenarios.
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6.4. Results on SoMoF Benchmark

The SoMoF Benchmark, introduced by Adeli et al. in [1], serves as a standardized as-

sessment platform for evaluating the performance of multi-person pose forecasting models.

The SoMoF Benchmark is derived from the 3DPW dataset, where every other frame is

sampled to lower the original frames per second (FPS) from 30 to 15. This benchmark

task involves predicting the subsequent 14 frames (equivalent to 930 milliseconds) based

on 16 frames (1070 milliseconds) of preceding input data, encompassing joint positions for

multiple individuals. The evaluation uses the Visibility-Ignored Metric (VIM), measuring

performances across various future time steps. Similarly to [42, 40, 45, 36], all evaluated

models in this paper were trained to utilize data from the 3DPW [41] and AMASS [22]

datasets. During training, emphasis was placed solely on the 13 joints evaluated within

the SoMoF framework. To ensure fairness in the comparisons, a practice observed in var-

ious studies such as [45, 32, 34] was adopted, whereby the final results are reported based

on the epoch with the lowest average VIM score on the test dataset. Furthermore, prob-

lem formulation remained consistent for all evaluated models, focusing on predicting the

next 14 frames using 16 input data frames. This differs from methodologies advocated by

[42, 40, 45] to divide formulations into two separate problem formulations for short-term

and long-term optimization, which inherently enhances the model’s performance.

We conducted a comparative analysis of evaluated methods on the SoMoF Benchmark

test set, as presented in Table 2, demonstrating that our model consistently achieves state-

of-the-art results compared to competing models.

The results demonstrate the superior performance of the proposed GCN-Transformer

across both VIM and MPJPE metrics, establishing it as a state-of-the-art solution in

multi-person pose forecasting. While SoMoFormer emerges as a formidable competitor,

particularly in long-term forecasting, GCN-Transformer consistently outperforms all mod-

els, especially when considering the overall metric, which aggregates performance across

all evaluated time intervals. Interestingly, despite the reported similar performance to

SoMoFormer, the JRTransformer fails to achieve competitive results in this evaluation.

Conversely, the Future Motion model, introduced in 2021, demonstrates commendable

performance, rivaling even the most recent state-of-the-art models. The MPFSIR model
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Table 2: Performance comparison on the SoMoF Benchmark test set featuring two-
person scenes, using the VIM and MPJPE metrics, where lower values indicate bet-
ter performances. Our proposed model, GCN-Transformer, achieves state-of-the-art re-
sults. The model marked with an asterisk (*) incorporated the validation dataset dur-
ing training and currently leads the official SoMoF Benchmark leaderboard at https:

//somof.stanford.edu.

Metrics

Method VIM MPJPE

100 ms 240 ms 500 ms 640 ms 900 ms Overall 100 ms 240 ms 500 ms 640 ms 900 ms Overall

Zero Velocity 29.35 53.56 94.52 112.68 143.10 86.65 55.28 87.98 146.10 173.30 223.16 137.16
DViTA [31] 17.40 35.62 72.06 90.87 127.27 68.65 32.09 54.48 100.03 124.07 173.01 96.74
LTD [25] 18.07 34.88 68.16 85.07 116.83 64.60 33.57 55.21 97.57 119.58 163.69 93.92

TBIFormer [32] 17.62 34.67 67.50 84.01 116.38 64.03 32.26 53.65 95.61 117.22 160.99 91.94
MRT [43] 15.31 31.23 63.16 79.61 111.86 60.24 27.97 47.64 87.87 108.93 151.96 84.88

SocialTGCN [34] 12.84 27.41 58.12 74.59 107.19 56.03 23.10 40.24 76.91 96.89 139.01 75.23
JRTransformer [45] 11.17 25.73 56.50 73.19 106.87 54.69 18.44 35.38 72.26 92.42 135.12 70.73

MPFSIR [36] 11.57 25.37 54.04 69.65 101.13 52.35 20.31 35.69 69.58 88.36 128.37 68.46
Future Motion [42] 10.76 24.52 54.14 69.58 100.81 51.96 18.66 34.38 69.76 88.91 129.18 68.18
SoMoFormer [40] 10.45 23.10 49.76 64.30 93.34 48.19 17.63 32.42 63.86 81.20 117.97 62.62

GCN-Transformer (our) 10.14 22.54 48.81 63.67 94.94 48.02 17.11 31.48 62.62 80.14 118.14 61.90

GCN-Transformer * (our) 9.82 21.80 46.61 60.88 91.95 46.21 16.41 30.36 60.31 76.94 113.36 59.48

Best results in each column are highlighted in bold.

is not far off either, achieving this performance with only a fraction of parameters com-

pared to others. Finally, the GCN-Transformer* showcases significantly superior results

owing to its training with an integrated validation dataset. This variant currently leads

the official SoMoF Benchmark leaderboard at https://somof.stanford.edu.

Figure 5 shows the predicted poses for two sequences from the SoMoF Benchmark

test set, comparing the performance of the best-performing models, JRTransformer, So-

MoFormer, and GCN-Transformer, with the ground truth (GT) also displayed for compar-

ison. The figures reveal that both JRTransformer and SoMoFormer encounter difficulties

in generating valid poses, often producing unrealistic joint configurations and movements.

In contrast, the GCN-Transformer model demonstrates a clear advantage, consistently

generating valid poses and realistic movements.
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(a) (b)

Figure 5: The figure displays predicted poses on two example sequences from the SoMoF
Benchmark test set for the best-performing models: JRTransformer, SoMoFormer, and
GCN-Transformer, with GT representing the ground truth. Sequence (a) shows two
people rotating around each other, while sequence (b) shows two people meeting and
then walking together in the same direction. The visual comparison reveals that while
JRTransformer and SoMoFormer struggle to create valid poses, the GCN-Transformer
generates both valid poses and realistic movement.

6.5. Results on ExPI Dataset

The Extreme Pose Interaction (ExPI) dataset, described in [11], features two pairs of

dancers engaging in 16 distinct extreme actions. These actions include aerial maneuvers,

with the first seven being performed by both dancer couples. Subsequently, six additional

aerials are executed by Couple 1, while the remaining three are carried out by Couple 2.

Each action is repeated five times to capture variability, resulting in a collection of 115 se-

quences recorded at 25 frames per second (FPS) and 60,000 annotated 3D body poses.

Taking inspiration from the data partitioning outlined in [11], we designate all actions

executed by Couple 2 as the training set and those performed by Couple 1 as the test set.

This approach deviates slightly from the dataset’s division presented by Guo et al. in [11],

as we incorporate common actions performed by both couples and actions performed

exclusively by one couple into the training set. This dataset split emulates both the

Common action split and Unseen action split described in [11], consolidating them into a

single split.

We employ a sliding-window technique with overlapping sequences to sample the train-
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ing data, whereas the testing data are sampled sequentially without overlaps. Addition-

ally, we downsample each sequence by selecting every other frame, reducing the original

frames per second (FPS) from 25 to 12.5 FPS. Following the precedent set by the SoMoF

Benchmark, we utilize 16 frames (equivalent to 1280 milliseconds) to predict the subse-

quent 14 frames (equivalent to 1080 milliseconds). Moreover, we apply a scaling factor of

0.39 to maintain consistency in person scale with the SoMoF Benchmark, the dataset on

which the models are developed.

We conducted a comparative analysis of evaluated methods on the ExPI test set,

as presented in Table 3, demonstrating that our model consistently achieves state-of-

the-art results compared to competing models. The results on the ExPI dataset differ

significantly from those on the SoMoF Benchmark dataset, revealing notable performance

degradation in some of the previously strong models. SoMoFormer, a close competitor on

the SoMoF Benchmark, performs substantially worse on the ExPI dataset, surpassed by

JRTransformer and MPFSIR. This drop in performance highlights the model’s sensitivity

to different dataset characteristics. Similarly, the Future Motion model, which had proven

to be a strong contender on the SoMoF Benchmark, is now outperformed by almost all

other models. This indicates that the Future Motion model’s performance is heavily

influenced by the dataset’s characteristics, showcasing its lack of robustness across diverse

data scenarios. Interestingly, JRTransformer, which was not as competitive on the SoMoF

Benchmark, emerges as a close competitor to GCN-Transformer on the ExPI dataset.

Despite this, the proposed GCN-Transformer remains the clear winner across all time

intervals, reaffirming its superior performance and generalizability.

Table 3: Performance comparison on the ExPI test set featuring two-person scenes using
the VIM and MPJPE metrics, where lower values indicate better performance. Our
proposed model, GCN-Transformer, achieves state-of-the-art results on both metrics.

Metrics

Method VIM MPJPE

120 ms 280 ms 600 ms 760 ms 1080 ms Overall 120 ms 280 ms 600 ms 760 ms 1080 ms Overall

Zero Velocity 25.61 48.66 84.39 97.41 118.10 74.84 46.16 74.66 124.32 145.22 181.33 114.34
DViTA [31] 15.44 35.27 74.43 91.44 119.51 67.22 28.31 51.63 100.85 124.49 167.98 94.65
LTD [25] 16.22 32.94 62.73 74.60 92.84 55.87 28.83 48.73 87.37 104.82 135.61 81.07

TBIFormer [32] 16.96 35.09 67.95 81.22 103.02 60.85 30.59 52.55 95.63 115.19 150.33 88.86
MRT [43] 15.32 32.07 61.84 74.04 94.59 55.57 27.79 47.91 87.01 104.80 137.22 80.95

SocialTGCN [34] 16.79 32.71 62.61 75.24 99.15 57.30 31.14 50.58 89.18 106.95 140.68 83.71
JRTransformer [45] 8.40 21.14 46.20 57.63 76.94 42.06 13.57 28.01 58.47 73.27 101.04 54.87

MPFSIR [36] 9.15 23.05 52.31 65.49 92.46 48.49 15.56 30.55 64.84 81.81 114.94 61.54
Future Motion [42] 16.94 34.83 68.45 83.33 108.03 62.32 30.51 52.37 96.06 116.88 156.04 90.37
SoMoFormer [40] 9.43 23.88 54.78 68.71 92.38 49.84 15.22 31.08 67.33 85.37 119.37 63.67

GCN-Transformer (our) 8.32 20.84 44.56 54.81 74.66 40.64 13.37 27.63 57.27 71.25 97.71 53.45

Best results in each column are highlighted in bold.
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Figure 6 shows the predicted poses for two sequences from the ExPI test set, show-

casing the performance of the best-performing models, JRTransformer, SoMoFormer, and

GCN-Transformer, with the ground truth (GT) also displayed for comparison. The re-

sults highlight a significant distinction in model performance. JRTransformer and So-

MoFormer struggle to generate valid movements, often defaulting to repeating the last

known pose rather than predicting dynamic and realistic trajectories. In contrast, the

GCN-Transformer model maintains the integrity of the poses and successfully predicts

realistic and coherent movement patterns.

(a) (b)

Figure 6: The figure displays predicted poses on two example sequences from the ExPI test
set for the top-performing models, JRTransformer, SoMoFormer, and GCN-Transformer,
with GT indicating the ground truth. Sequence (a) shows one person jumping off the
shoulders of another, while sequence (b) shows one person performing a cartwheel assisted
by another. The comparison illustrates that JRTransformer and SoMoFormer struggle
with generating valid movements, often repeating the last known pose. In contrast, the
GCN-Transformer demonstrates its capability to create realistic and dynamic movements.

6.6. Discussion of Comparative Advantages

While quantitative results establish the superior performance of our proposed GCN-

Transformer model across all datasets, a deeper examination helps explain why it consis-

tently outperforms prior approaches, particularly in interaction-heavy or socially complex

scenarios. Methods such as MPFSIR and SoMoFormer primarily rely on dense fully

connected layers or sequence-level attention, often treating individuals independently or
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relying on predefined assumptions about social structure. As a result, these models may

struggle to encode fine-grained interaction dependencies or adapt to dynamically chang-

ing social configurations. In contrast, GCN-Transformer introduces a modular pipeline

that combines learnable spatial reasoning (via the Spatial-GCN) with long-range tempo-

ral and spatial attention (via the Spatiotemporal Transformer Decoder), allowing it to

reason jointly over the entire scene.

This design proves to be especially effective in datasets like ExPI, where highly co-

ordinated motions (e.g., one person lifting or reacting to another) require the model to

interpret subtle cues in one person’s movement that inform another’s. In these cases, base-

line models often fail to capture the anticipatory or dependent nature of motion between

individuals, producing disjointed or static predictions. We observe that GCN-Transformer

maintains synchronization across subjects in such sequences and adapts more effectively

to rapid transitions or uncommon poses, suggesting that its architectural integration of

scene context and temporal dynamics enables stronger generalization.

Furthermore, the attention mechanisms in GCN-Transformer contribute to robustness

in the presence of joint noise, as is sometimes the case in CMU-Mocap or MuPoTS-3D.

Instead of relying uniformly on all joints or time steps, the model learns to attend selec-

tively to informative joints and keyframes. This results in more stable predictions, even

when input signals are imperfect, a scenario frequently encountered in real-world settings.

Taken together, these architectural choices explain GCN-Transformer’s consistently strong

performance across diverse motion types, social contexts, and temporal horizons.

To assess the generalization ability and performance consistency of the evaluated mod-

els, we compute the percentage improvement over the Zero-Velocity baseline across all four

datasets, as summarized in Table 4. This analysis uses the “Overall” MPJPE values re-

ported in the earlier result tables, which reflect the average prediction error across the

entire forecasting horizon. The percentage improvement is calculated using the following

formula: Improvement = (Zero Velocity−Method) /Zero Velocity × 100%. We use the

Zero-Velocity model as a consistent reference point because it represents the most basic

forecasting strategy, where the model simply repeats the last observed pose. Comparing

raw MPJPE values across datasets is often not meaningful, as these values are strongly in-

fluenced by dataset-specific characteristics such as the amount of movement in the scenes,

the difficulty of the motion patterns, and the prediction horizon. By instead reporting the
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improvement relative to the Zero-Velocity baseline, we obtain a normalized measure of

model performance that enables more interpretable comparisons across different datasets.

For this analysis, we group the datasets into two categories based on the number

of individuals in the scene and other shared characteristics. The CMU-Mocap and

MuPoTS-3D datasets form a group of three-person scenes. These datasets both fea-

ture a three-second prediction horizon and relatively simple, low-motion sequences. The

SoMoF Benchmark and ExPI datasets form a group of two-person scenes. These datasets

have a shorter prediction horizon of approximately one second and include more active

and socially complex motions, which generally result in higher forecasting errors.

Table 4: Percentage improvement over the Zero-Velocity baseline across all evaluated
datasets, grouped by 3-person and 2-person scenes. Each value indicates the rela-
tive reduction in MPJPE, where higher values represent better performance. The
table includes average improvements (Avg) and the standard deviation (Std) to re-
flect generalization consistency across datasets within each group. The best values in
each group are shown in bold. The percentage improvement is computed as follows:
Improvement = (Zero Velocity−Method) /Zero Velocity× 100%.

Percentage Improvements over Zero-Velocity Baseline (Based on Overall MPJPE Across All Datasets)

Method 2-Person Scenes 3-Person Scenes

SoMoF ↑ ExPI ↑ Avg (%) ↑ Std (%) ↓ CMU-Mocap ↑ MuPoTS-3D ↑ Avg (%) ↑ Std (%) ↓
Zero Velocity 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DViTA [31] 29.47 17.22 23.34 6.12

TBIFormer [32] 32.97 22.29 27.63 5.34
LTD [25] 31.52 29.10 30.31 1.21 22.48 12.24 17.36 5.12
MRT [43] 38.12 29.21 33.66 4.45 13.84 -2.69 5.58 8.26

Future Motion [42] 50.30 20.96 35.63 14.67 20.49 1.19 10.84 9.65
SocialTGCN [34] 45.15 26.79 35.97 9.18
MPFSIR [36] 50.09 46.18 48.14 1.96 23.03 15.82 19.42 3.61

SoMoFormer [40] 54.35 44.31 49.33 5.02 13.73 11.94 12.84 0.90
JRTransformer [45] 48.44 52.01 50.22 1.78 18.72 14.63 16.68 2.04

GCN-Transformer (our) 56.64 53.26 54.95 1.69 28.46 28.66 28.56 0.1

Best results in each column are highlighted in bold. Arrows next to the column names indicate the

direction of better performance: ↑ means higher is better, ↓ means lower is better.

Table 4 reports the percentage improvement for each model on each dataset, along

with the average improvement and standard deviation within each group. A higher aver-

age value indicates better overall performance, while a lower standard deviation reflects

more consistent behavior across datasets within the same group. Our proposed model

achieves the highest average improvement in both categories: 54.95% for the two-person

scenes and 28.56% for the three-person scenes. Furthermore, the standard deviation of

its improvements is low in both groups at 1.69% and 0.1%, respectively, suggesting that

the model maintains consistent performance across diverse motion scenarios.

Other models show less consistent behavior. For example, Future Motion achieves
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relatively strong results on the SoMoF Benchmark but performs much worse on the ExPI

dataset, resulting in a high standard deviation of 14.67 percent in the two-person group.

This indicates that its performance is heavily dependent on the dataset’s characteristics,

limiting its generalizability. A similar pattern is observed with models such as SoMo-

Former, SocialTGCN, DViTA, and TBIFormer, which exhibit noticeable variance in their

performance across datasets. Even when these models do not rank the best in terms of

absolute performance, their higher standard deviation values suggest limited robustness

when applied to scenes with different motion dynamics or interaction complexities.

In contrast, two models that demonstrate better consistency in their generalization

behavior are JRTransformer and MPFSIR. Both achieve relatively low standard deviation

values across datasets in each group, indicating that their performance is more stable

and less influenced by the specific characteristics of the test data. However, while they

generalize more consistently, they still lag behind our proposed GCN-Transformer in terms

of overall performance. Our proposed GCN-Transformer model achieves a percentage

improvement over the Zero-Velocity model that is 4.7% higher than JRTransformer in the

two-person group and 11.9% higher in the three-person group.

Overall, the normalized evaluation using improvements over the Zero-Velocity baseline

offers a clearer and more meaningful interpretation of model performance across datasets

with different characteristics. By comparing both average improvements and standard

deviations, we can better understand each model’s ability to generalize beyond a single

dataset, revealing that GCN-Transformer achieves the best balance of performance and

consistency among all evaluated models.
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7. Ablation Study

We conducted an ablation study on GCN-Transformer to systematically assess the

impact of different components and methods on the model’s performance. This compre-

hensive analysis involved iteratively integrating various components and methods into the

baseline model and evaluating performance at each stage. Initially, we established a base-

line model comprising a Scene Module and Spatiotemporal Transformer Decoder. Sub-

sequently, we extend the Spatiotemporal Attention Forecasting Module with Temporal-

GCN, slightly enhancing model performance. Next, we introduced multi-person joint

distance (MPJD) loss, further improving both short-term and long-term forecasting accu-

racy. Incorporating the Velocity Loss yielded a marginal improvement in overall perfor-

mance, enhancing intra-sequence accuracy while slightly compromising short-term accu-

racy. Lastly, adding data augmentation significantly improved the model’s performance

across all evaluated time intervals, representing the most substantial improvement among

all modifications. Table 5 presents the evaluation results of each model on VIM and

MPJPE metrics, trained exclusively on the 3DPW training set and tested on the SoMoF

Benchmark validation set.

Table 5: The ablation study results are derived from the SoMoF Benchmark validation set
and presented in VIM (top) and MPJPE (bottom) metrics. The baseline model comprises
Scene Module and the Spatiotemporal Transformer Decoder, with subsequent additions
incrementally incorporated into the model. All models are trained solely on the SoMoF
Benchmark training dataset, excluding AMASS.

Metric Method 100 ms 240 ms 500 ms 640 ms 900 ms Overall

Baseline 15.39 28.53 55.90 68.72 93.92 52.49
+ Temporal-GCN 12.69 28.96 58.96 69.74 89.56 51.98

VIM + MPJD loss 11.08 28.80 57.52 67.55 87.95 50.58
+ Velocity loss 12.21 28.30 56.12 66.42 87.67 50.14
+ Augmentation 7.56 19.66 44.72 56.08 75.12 40.63

Baseline 31.81 45.19 77.03 93.68 127.60 75.06
+ Temporal-GCN 23.99 41.47 79.33 96.38 127.61 73.76

MPJPE + MPJD loss 18.09 37.54 76.08 92.69 123.51 69.58
+ Velocity loss 22.79 39.90 75.28 91.15 121.77 70.18
+ Augmentation 11.68 24.35 53.50 68.34 96.97 50.97

Best results in each column are highlighted in bold.
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8. FJPTE: Final Joint Position and Trajectory Error

The multitude of metrics available for pose forecasting complicates the evaluation pro-

cess, as different metrics assess distinct aspects of the model’s performance. Consequently,

model rankings can vary significantly depending on the chosen evaluation metric, mak-

ing it challenging to identify the optimal model for the task. To address this issue, we

introduce a novel metric, Final Joint Position and Trajectory Error (FJPTE), designed

to consolidate the diverse objectives of pose forecasting into a single comprehensive mea-

sure. Our metric aims to capture key goals of pose forecasting, including predicting the

final (N-th frame) global position (e.g., pelvis) and the trajectory of global movement

leading up to that position, as well as forecasting the final pose position without global

movement and its accompanying trajectory. FJPTE tackles this challenge by indepen-

dently evaluating four distinct components and aggregating their results: the error in the

final global position (measured by Euclidean distance), the error of the global movement

trajectory (measured using the Euclidean distance of the temporal differentiation of the

root joint), the error in the final pose position excluding global movement (assessed using

Euclidean distance), and the trajectory error of the pose position without global move-

ment (measured using the Euclidean distance of the temporal differentiation for all pose

joints). Through this comprehensive approach, FJPTE provides a holistic assessment

of a model’s performance, capturing its proficiency in capturing natural human motion

dynamics and the validity of its predicted poses. An illustrative comparison of joint

movement evaluation using our metric is presented in Figure 7.

Additionally, Figure 8 illustrates an example where FJPTE provides a more com-

prehensive evaluation than MPJPE or VIM. The example shows a predicted sequence

where the global position is accurate, but the pose remains frozen or ghost-like, floating

unnaturally through global space, an issue that is commonly seen in pose forecasting. Un-

like MPJPE, which evaluates joint distances independently across time intervals, or VIM,

which focuses solely on the final interval (T = 30), FJPTE comprises two key components:

movement dynamics (FJPTElocal) and global position and trajectory (FJPTEglobal). By
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Figure 7: The figure illustrates an example of predicted (purple) and ground truth (blue)
joint trajectories, where T represents the time interval, and the values between the trajec-
tories indicate their distances at time T . When the trajectories are identical but have a
slight offset, FJPTE yields the same results as MPJPE and VIM. However, when the tra-
jectories diverge, the metrics produce significantly different results. MPJPE and FJPTE
evaluate full joint trajectories, while VIM only evaluates the last time interval T = 20.

Figure 8: The figure illustrates an example of predicted (purple) and ground truth (blue)
sequences of poses, with T representing the time interval. The predicted sequence demon-
strates a scenario where the global position aligns well with the ground truth, but the
pose remains frozen or ghost-like, floating through space, a common issue in pose fore-
casting. Metrics like MPJPE and VIM evaluate joint distances independently across time
intervals, while the proposed FJPTE goes further by assessing joint trajectories and dis-
tinguishing between local (FJPTElocal) and global (FJPTEglobal) movement. MPJPE and
FJPTE evaluate the entire sequence, whereas VIM focuses only on the final time interval
at T = 30.

breaking down errors into these components, FJPTE identifies whether a model strug-

gles more with local movement dynamics or global trajectory alignment. Furthermore,

by combining these errors, FJPTE enables a holistic evaluation and effective ranking of

models based on their overall performance.
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FJPTE is calculated as follows:

Eposition(ŷ, y) =
1

J

J∑
j=1

∥ŷ(j)− y(j)∥2

Etrajectory(Ŷ , Y ) =
1

T − 1

T−1∑
t=1

Eposition(Ŷ
t − Ŷ t+1, Y t − Y t+1)

Eglobal(Ŷ , Y ) = (Etrajectory(Ŷφpelvis
, Yφpelvis

) + Eposition(Ŷ
T
φpelvis

, Y T
φpelvis

))× 1000

Elocal(Ŷ , Y ) = (Etrajectory(Ŷ − Ŷφpelvis
, Y − Yφpelvis

) + Eposition(Ŷ
T − Ŷ T

φpelvis
, Y T − Y T

φpelvis
))× 1000

EFJPTE(Ŷ , Y ) = Eglobal(Ŷ , Y ) + Elocal(Ŷ , Y )

(11)

where ŷ denotes the predicted sequence, while y denotes the ground truth sequence.

The number of joints is denoted with J , while the number of time intervals is denoted

with T . ∥·∥2 denotes the Euclidean distance (L2 norm), and 1
T−1

∑T−1
t=1 represents the

mean errors across all time intervals. Eglobal(Ŷ , Y ) represents the global position and

trajectory error between predicted and ground truth sequences measured at the pelvis

joint. Elocal(Ŷ , Y ) represents the local movement dynamic errors between the predicted

and ground truth sequences, excluding the pelvis joint and global movement. EFJPTE(Ŷ , Y )

unifies local and global errors into a single metric.

We compared the models using the proposed FJPTElocal and FJPTEglobal metrics on

the SoMoF Benchmark test set and the reported results are shown in Table 6. The re-

sults demonstrate that GCN-Transformer significantly outperforms all other models on

the FJPTElocal metric. This underscores GCN-Transformer’s superior ability to model

human movement dynamics and interaction dynamics compared to the other models.

While the overall performance hierarchy of the models remains consistent with evalua-

tions using VIM and MPJPE metrics, LTD and JRTransformer exhibit slightly better

performance in modeling movement dynamics than their immediate competitors TBI-

Former and MPFSIR. When assessing the FJPTEglobal metric, GCN-Transformer shows a

slight performance gap behind SoMoFormer in long-term forecasting, indicating that So-

MoFormer has a marginal edge in predicting long-term global movements. Additionally,

MPFSIR emerges as a notable performer, significantly outperforming its closest competi-

tor, Future Motion, in forecasting global positions and trajectories.

Similarly, Table 7 presents the performance of evaluated models on the ExPI test set

using the proposed FJPTElocal and FJPTEglobal metrics. The results indicate that GCN-
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Table 6: Comparison of performance on the SoMoF Benchmark test set using the pro-
posed FJPTE metric, with lower values indicating superior performance. The table distin-
guishes between FJPTElocal and FJPTEglobal errors, with FJPTElocal representing move-
ment dynamics errors and FJPTEglobal measuring global position and trajectory errors.
The asterisk (*) denotes the model that integrated the validation dataset during training.

Components of Proposed FJPTE Metric

Method Proposed FJPTElocal Proposed FJPTEglobal

100 ms 240 ms 500 ms 640 ms 900 ms Overall 100 ms 240 ms 500 ms 640 ms 900 ms Overall

Zero Velocity 65.36 97.18 142.35 158.79 178.72 128.48 91.12 146.51 241.69 284.08 363.52 225.38
DViTA [31] 55.15 91.84 147.91 168.07 194.29 131.45 47.60 81.35 162.46 212.71 319.11 164.65
LTD [25] 48.96 78.96 127.59 145.98 170.41 114.38 52.86 88.66 159.64 201.40 290.96 158.70

TBIFormer [32] 55.24 88.28 138.76 156.81 178.97 123.61 51.19 84.53 150.47 190.78 283.36 152.07
MRT [43] 56.38 90.59 143.17 162.19 186.11 127.69 46.74 77.70 147.95 189.65 279.84 148.37

SocialTGCN [34] 51.50 83.54 137.45 157.54 183.19 122.64 39.76 65.92 132.28 175.90 271.09 136.99
JRTransformer [45] 41.20 72.47 124.75 145.87 174.81 111.82 26.87 54.81 122.92 166.64 264.94 127.24

MPFSIR [36] 43.53 75.36 127.59 148.60 180.67 115.15 27.37 51.27 109.84 151.17 248.05 117.54
Future Motion [42] 42.74 72.22 122.18 140.77 165.83 108.75 31.04 54.72 117.86 158.93 249.45 122.40
SoMoFormer [40] 37.69 65.48 111.48 128.79 154.44 99.58 26.13 48.37 104.01 139.66 217.92 107.22

GCN-Transformer (our) 37.22 63.78 109.06 126.12 152.72 97.78 24.35 47.42 107.12 146.38 234.51 111.96

GCN-Transformer * (our) 36.76 62.29 104.96 121.68 147.97 94.73 23.63 45.89 102.05 138.45 228.94 107.79

Best results in each column are highlighted in bold.

Table 7: Comparison of performances on the ExPI test set using the proposed FJPTE met-
ric, with lower values indicating superior performance. The table distinguishes between
FJPTElocal and FJPTEglobal errors, with FJPTElocal representing movement dynamics
errors and FJPTEglobal measuring global position and trajectory errors.

Components of Proposed FJPTE Metric

Method Proposed FJPTElocal Proposed FJPTEglobal

120 ms 280 ms 600 ms 760 ms 1080 ms Overall 120 ms 280 ms 600 ms 760 ms 1080 ms Overall

Zero Velocity 76.63 119.52 182.09 205.19 240.31 164.75 79.80 127.56 201.88 230.77 280.05 184.01
DViTA [31] 56.91 101.25 176.21 206.20 252.27 158.57 45.58 83.58 164.19 202.36 271.01 153.34
LTD [25] 60.27 97.73 159.16 182.82 217.66 143.53 47.42 80.89 141.84 169.41 215.70 131.05

TBIFormer [32] 67.38 109.04 174.85 200.29 239.29 158.17 50.23 86.97 155.57 184.96 238.15 143.18
MRT [43] 65.77 107.77 173.87 199.12 236.71 156.65 43.80 75.45 133.75 162.58 214.24 125.96

SocialTGCN [34] 72.62 110.05 174.62 201.84 247.24 161.27 52.04 83.27 149.11 178.12 237.98 140.10
JRTransformer [45] 37.98 71.62 130.94 155.35 197.44 118.67 26.21 52.63 102.44 126.11 168.75 95.23

MPFSIR [36] 41.12 77.88 145.78 174.01 225.03 132.76 27.21 54.68 112.28 140.63 207.33 108.43
Future Motion [42] 64.87 105.26 175.12 206.69 247.48 159.88 48.70 86.51 160.21 197.70 270.41 152.71
SoMoFormer [40] 41.91 80.52 150.92 179.58 224.17 135.42 28.82 57.92 118.39 148.45 204.18 111.55

GCN-Transformer (our) 38.39 71.60 125.41 146.24 181.17 112.56 26.67 52.74 100.23 122.83 172.73 95.04

Best results in each column are highlighted in bold.

Transformer consistently outperforms all other models on the FJPTElocal metric, except at

the 120ms time interval, where JRTransformer marginally surpasses GCN-Transformer.

Notably, SoMoFormer confirms that it is struggling with this dataset, while JRTrans-

former confirms it to be a strong contender. Another key observation is that LTD outper-

formed MRT on this metric compared to evaluations using the VIM and MPJPE metrics.

When examining the FJPTEglobal metric, GCN-Transformer narrowly outperforms JR-

Transformer, demonstrating a slight edge in overall performance despite JRTransformer’s

better short-term forecasting capabilities. SoMoFormer again shows a notable decline in

performance, finishing behind both JRTransformer and MPFSIR. The overall performance

hierarchy of the models on the ExPI dataset remains consistent with their evaluations us-
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ing the VIM and MPJPE metrics.

These results indicate that models can perform well on VIM and MPJPE metrics by

focusing on global movement or movement dynamics, as models typically excel in one

of these areas but not both. In contrast, FJPTElocal and FJPTEglobal provide a clear

distinction, making it easier to identify the best-performing models for each specific area.

Table 8 presents a comprehensive evaluation of forecasting errors using the proposed

FJPTE metric, which combines FJPTElocal and FJPTEglobal. On the SoMoF Benchmark

test set, SoMoFormer emerges as the leading model, with only GCN-Transformer*, which

included the validation set during training, surpassing its performance. Most models

maintain a similar performance hierarchy, as seen with VIM and MPJPE evaluations,

although LTD notably outperforms both TBIFormer and MRT.

Table 8: Comparison of performance on the SoMoF Benchmark test set (left) and the
ExPI test set (right) using the proposed FJPTE metric, where lower values indicate better
performance. The table presents FJPTE metric, combining FJPTElocal and FJPTEglobal

errors for a comprehensive performance evaluation. Our model achieves state-of-the-art
results on the FJPTE metric. The asterisk (*) indicates models that integrated the
validation dataset during training.

Proposed FJPTE Metric

Method SoMoF Benchmark ExPI

100 ms 240 ms 500 ms 640 ms 900 ms Overall 120 ms 280 ms 600 ms 760 ms 1080 ms Overall

Zero Velocity 156.48 243.69 384.04 442.87 542.24 353.86 156.43 247.07 383.97 435.95 520.36 348.76
DViTA [31] 102.75 173.20 310.36 380.78 513.40 296.10 102.48 184.82 340.40 408.56 523.29 311.91
LTD [25] 101.82 167.62 287.23 347.38 461.37 273.08 107.69 178.62 301.01 352.23 433.36 274.58

TBIFormer [32] 106.43 172.81 289.23 347.59 462.33 275.68 117.61 196.01 330.42 385.25 477.45 301.35
MRT [43] 103.11 168.29 291.12 351.84 465.95 276.06 109.58 183.22 307.63 361.70 450.95 282.62

SocialTGCN [34] 91.26 149.46 269.73 333.44 454.28 259.63 124.66 193.32 323.73 379.95 485.22 301.38
JRTransformer [45] 68.07 127.29 247.68 312.51 439.75 239.06 64.19 124.25 233.39 281.46 366.19 213.90

MPFSIR [36] 70.91 126.63 237.44 299.78 428.72 232.69 68.33 132.56 258.06 314.65 432.35 241.19
Future Motion [42] 73.78 126.94 240.04 299.70 415.28 231.15 113.57 191.77 335.33 404.39 517.89 312.59
SoMoFormer [40] 63.82 113.85 215.50 268.45 372.35 206.79 70.73 138.44 269.31 328.03 428.35 246.97

GCN-Transformer (our) 61.57 111.21 216.17 272.50 387.22 209.73 65.07 124.34 225.64 269.07 353.90 207.60

GCN-Transformer * (our) 60.39 108.19 207.01 260.13 376.91 202.53 - - - - - -

Best results in each column are highlighted in bold.

In contrast, the ExPI test set results highlight GCN-Transformer as the top performer

overall. While JRTransformer slightly outperforms GCN-Transformer in short-term fore-

casting, GCN-Transformer consistently delivers superior results across broader time inter-

vals. The performance ranking of other models remains largely consistent with the VIM

and MPJPE evaluations. However, LTD surpasses MRT, and DViTA outperforms Future

Motion, making Future Motion the lowest-performing model on the ExPI dataset using

FJPTE.

To summarize, the proposed FJPTE metric significantly enhances the evaluation of
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pose forecasting models by providing a more detailed analysis of movement dynamics

alongside global position and trajectory errors. FJPTE delivers valuable insights into

how accurately predictions capture realistic motion, as demonstrated in Figures 7 and 8.

These examples highlight the metric’s ability to pinpoint errors in movement dynamics

versus global position and trajectory deviations, offering greater clarity during evaluation.

This precision is particularly impactful in applications such as surveillance, animation,

and autonomous systems, where natural movement dynamics are essential for effective

human–robot interaction, motion tracking, and scene understanding. By quantifying

both global alignment and detailed movement nuances, FJPTE that ensures models are

rewarded for producing smooth, realistic motion. Furthermore, its focus on dynamics

helps mitigate common issues such as ghost-like poses or unrealistic trajectories, boosting

the robustness of models in real-world, dynamic scenarios.

9. Limitations

While the proposed GCN-Transformer demonstrates state-of-the-art performances in

multi-person pose forecasting, it is not without limitations. A key drawback of the model

lies in its size; GCN-Transformer has a large number of parameters (˜5.9 M), which makes

it computationally expensive and memory-intensive compared to lighter models like MPF-

SIR (˜0.15 M). While MPFSIR performs nearly as well as state-of-the-art models with

significantly fewer parameters, GCN-Transformer’s parameter count is more comparable

to its closest competitors, SoMoFormer (˜4.9 M) and JRTransformer (˜3.6 M), which

mitigates this limitation to some extent.

Beyond the parameter count, the model’s computational complexity is primarily driven

by the Spatiotemporal Transformer Decoder. This component scales with O(N · T 2 · d),

where N is the number of individuals, T is the temporal sequence length, and d the

embedding dimension. The quadratic time complexity with respect to sequence lengths

is typical relative to the self-attention mechanism. The Spatial-GCN and Temporal-GCN

modules are less intensive, with complexities of O(N · J2) and O(T · J2), respectively,

where J is the number of joints.

154



A more significant limitation, which is shared by GCN-Transformer and other models

in the field, is the inability to forecast movements that are not represented in the training

dataset. When encountering novel movements, models tend to repeat the last observed

poses, resulting in frozen or static sequences. Figure 9 illustrates examples from the

SoMoF and ExPI datasets, where unseen movements lead to poor forecasts. In such

cases, the model fails to generalize effectively, underscoring the importance of diverse and

representative training datasets to address this issue.

(a) (b)

Figure 9: Examples from the SoMoF (a) and ExPI (b) dataset illustrating the limitations
of GCN-Transformer and other models in forecasting movements not observed during
training. In the SoMoF sequence (a), one individual approaches another, initiating a
complex movement where the two prepare to spin around each other in a dance-like
motion. In the ExPI sequence (b), two individuals perform a complex action where
one lifts the other overhead to execute a backflip. Due to the absence of such intricate
interactions in the training data, the models struggle to predict the dynamic sequences
and instead produce a static forecast, merely repeating the last observed poses of the
individuals and failing to capture the expected motion.

Another limitation of GCN-Transformer is the complexity of training due to its reliance

on strong augmentations. While these augmentations improve generalization, they also

necessitate longer training cycles and careful hyperparameter tuning to stabilize learning.

Furthermore, despite its ability to capture interactions and dependencies between individ-

uals, the model may struggle in scenes with highly intricate or unusual social dynamics,

where interactions are more ambiguous or rare.

Lastly, the evaluation of model performance still heavily relies on benchmark datasets,

which may not fully capture the diversity and variability of real-world scenarios. Conse-
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quently, there remains room for improvement in assessing and optimizing model robust-

ness for broader applications.

These limitations provide multiple promising directions for future research. One direc-

tion is the development of more efficient, lightweight architectures that retain the ability

to model complex interaction dynamics, making them suitable for deployment in real-

time or resource-constrained environments. Another avenue is improving generalization

relative to unseen or rare motions, which could be addressed through techniques such as

data-driven motion priors, transfer learning, or motion synthesis via generative models.

To support this, the field would greatly benefit from the creation of new multi-person

pose forecasting datasets that include more diverse, socially rich, and dynamic interac-

tions. Current datasets are limited in scope and variety, and expanding this benchmark

space would allow models to better reflect real-world challenges and enhance their robust-

ness in varied applications. Furthermore, improving training efficiency through adaptive

enhancement strategies or self-supervised pre-training could reduce computational costs

while maintaining performance.

A further limitation is that, like most multi-person forecasting models, the GCN-

Transformer is trained for a fixed number of individuals per scene (e.g., two-person sce-

narios). When applied to datasets with a different number of individuals, minor modifi-

cations to the preprocessing pipeline are required: for example, artificially creating new

sub-scenes by selecting two individuals out of a three-person scene. This design constraint

is shared by all other models except SoMoFormer, which supports direct prediction for an

arbitrary number of individuals without additional adjustments. Addressing this flexibil-

ity limitation without sacrificing performance in future model designs could broaden its

applicability to real-world settings, where the number of individuals in a scene may vary.

10. Conclusions

In conclusion, this paper introduces GCN-Transformer, a novel model for multi-person

pose forecasting that leverages the synergies of Graph Convolutional Network and Trans-

former architectures. We conducted a thorough evaluation of GCN-Transformer alongside
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other state-of-the-art models, presenting results on the CMU-Mocap, MuPoTS-3D, So-

MoF Benchmark, and ExPI datasets using the VIM and MPJPE metrics. The results

on the CMU-Mocap and MuPoTS-3D datasets, which feature three-person interaction

scenes with generally simpler and lower interaction motions compared to ExPI, show

that our model consistently achieves state-of-the-art performance across both datasets,

demonstrating its robustness across varying levels of interaction complexities and different

numbers of people in the scene. The results on the SoMoF Benchmark should be cau-

tiously interpreted due to the dataset’s inherent randomness, attributed to the sequences

recorded with a moving camera. This introduces complexities as models must predict

human and camera movements, often perceived as erratic. To mitigate this, we addition-

ally evaluated all models on the ExPI dataset, featuring challenging actions performed

by two couples without camera movement. Conclusively, GCN-Transformer consistently

outperforms existing state-of-the-art models on all datasets.

Furthermore, we propose a novel evaluation metric, FJPTE, which comprehensively as-

sesses pose forecasting errors by accounting for both local movement dynamics (FJPTElocal)

and global movement (FJPTEglobal). These components are computed based on errors at

the final position and along the trajectory leading up to that point. Our evaluation of

all models using FJPTE reveals that GCN-Transformer excels in capturing both intri-

cate movement dynamics and accurate global position trajectory, where it consistently

achieves state-of-the-art results.

The superior performance of GCN-Transformer can be attributed to its hybrid archi-

tecture that allows the model to capture fine-grained spatial dependencies within individ-

uals while also modeling long-range temporal and social interactions across people in the

scene. The attention mechanism further enhances robustness by enabling the model to

focus dynamically on relevant joints and individuals, which is particularly effective in han-

dling socially complex behaviors, such as those found in the ExPI dataset. As a result,

GCN-Transformer demonstrates strong generalization across varying motion types and

interaction intensities, outperforming prior approaches that lack either spatial specificity

or long-term temporal modeling capacity.

Overall, the success of the proposed GCN-Transformer underscores its potential to

drive the field of multi-person pose forecasting, with promising applications in human–

computer interaction, sports analysis, and augmented reality. Beyond its empirical perfor-
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mance, this work introduces a modular modeling and evaluation perspective for interaction-

rich forecasting, where generating socially coherent pose sequences and evaluating them

using trajectory and position-aware metrics are addressed together. These design choices

contribute toward advancing more expressive, generalizable, and testable architectures for

multi-person pose forecasting. As future work, we aim to explore further enhancements

for GCN-Transformer’s architecture, including the integration of activity recognition to

aid in pose forecasting, and we will investigate its applicability to real-world scenarios.
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1. Introduction

Human Pose Estimation (HPE) is a subfield of computer vision that aims to recognise

the joints and skeleton of the human body in an image or video so that, based on these

keypoints, a person’s position and orientation can be analysed, movements can be moni-

tored and compared, motion and positions can be tracked, and various insights into the

person’s activities can be drawn. It is a rapidly growing research area that has applications

in various industries, including sports, dance, computer gaming, and healthcare. Some

common use cases include action recognition and tracking, augmented reality experiences,

animation, gaming, etc.

Today, almost all sports, both professional and recreational, rely heavily on data an-

alytics and monitoring of athletes’ performance using various sensors and cameras in cell

phone applications, smartwatches, and other human performance monitoring devices. As

a result of an athletic activity, large amounts of recorded material are generated, which

must be analysed to be useful. Analysing the material, especially the performance and

movement of each athlete, is a tedious task that requires the expertise of kinesiologists,

physical therapists, and sports experts, as well as many resources, and is therefore avail-

able only to clubs and high-level athletes.

The use of pose estimation methods can facilitate and speed up the process of analysing

the athletes’ performance, especially in monitoring their movements, comparing tech-

niques, and evaluating the proper execution of activities, and it can be made available to

young athletes, small clubs, and recreational players. However, for automatic pose detec-

tion to be useful and usable in maintaining and improving physical activity and achieving

the desired fitness, it must achieve high accuracy under real-world conditions and operate

in real time. Useful and promising results in body posture detection and estimation were

achieved in the era of Deep Learning, when deep convolutional neural networks were used

to estimate the positions of keypoints on the body. One of the first deep neural networks

that achieved promising results in human pose detection was DeepPose [88], which showed

that deep neural networks could model invisible joints and perform much better under

non-ideal conditions with occlusions. These results reversed the trend and paved the

way for further research relying primarily on deep neural networks for pose estimation.
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Currently, the best results with deep learning models are obtained for individual sports

and stationary exercises such as yoga or Pilates. However, the goal is to learn models

for more complex scenarios, including more complex actions, non-standard poses, players,

and team sports.

However, to analyse the execution of an action, in most cases one image or one frame

is not sufficient, but it is necessary to track the person and his activity over a certain

time sequence and a series of frames. The case where multiple objects appear on a scene

that is observed over a period of time, taking into account the change in position of each

object in the video sequence, is called multiple object tracking (MOT). Tracking provides

the best results when the objects move uniformly, in the same direction, and without

occlusion. However, this is usually not a realistic scenario, especially in complex scenes

such as sporting events where a large number of players are being tracked, moving rapidly,

changing their direction and speed, as well as their position and distance from the camera

and the activity they are performing. In such dynamic scenes, tracking multiple objects

remains a major challenge. However, thanks to improved object and skeleton detectors

and computer power, pose tracking with object detection has become the leading paradigm

for MOT.

In this paper, we present the current state of research on HPE based on Deep Learn-

ing, which can be useful for position estimation, tracking, action recognition, and action

comparison of players in a dynamic team sport such as handball. First, we analyzed and

compared related research that deals with tracking methods for observing and analyzing

the motion of individuals based on the skeleton as a representation of a person. We also

provide a list of publicly available datasets that can be used to learn person pose models.

In addition, we test and evaluate 12 popular 2-stage models for 3D HPE with a monocular

camera trained on public and custom datasets in unseen environments and scenes such as

handball jump shots to assess the robustness and applicability of the methods in a new

and unfamiliar sports domain and environment.

Finally, to improve the performance of pose estimation methods for action recognition

and comparison tasks where a sequence of aligned pose detection is a prerequisite, we have

defined a method-independent pipeline that includes smoothing (to remove noise from

the prediction) and retargeting (to standardize the distance between keypoints before

pose estimation), and experimentally tested the effects on performance improvement on
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different models. The procedure for obtaining a sequence of poses is shown in Figure 1.

Human pose estimation is used to create keypoints of the human skeleton, and object

tracking is used to group poses collected through the sequence of frames into a series of

poses corresponding to an activity.

Figure 1: Creating a sequence of poses using human pose estimation to produce human
skeleton keypoints and object tracking for grouping collected poses across frames (t) into
a single sequence of poses.

The contributions of this work can be summarized as follows:

• Overview of the methods, models, and algorithms used in pose estimation and

tracking with a monocular camera;

• Evaluation of 12 selected 2-stage pose estimation models based on deep learning

in a 3D pose estimation task with a monocular camera trained on public and cus-

tom datasets to test the robustness of the model in the new sports domain and

environment;

• Proposed method-independent pipeline for smoothing and retargeting 3D pose es-

timation sequences for action recognition and comparison tasks where an aligned

pose sequence is a prerequisite;
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• Evaluation of the prediction performance of 12 selected 2-stage deep learning models

on a 3D pose estimation task when the proposed method-independent pipeline is

used to smooth the estimated 3D sequences;

• Evaluation of selected 5 state-of-the-art tracking methods to assess the robustness

of the models in an unseen sports environment.

The rest of the paper is organized as follows: Section 2 describes the methods for

pose estimation using a monocular camera, as well as various approaches for improving

the accuracy of pose estimation, methods for standardizing poses, and data sets for pose

estimation. Section 3 describes tracking algorithms that allow detected poses to be linked

in sequences in a multi-person environment along with tracking datasets, while Sections

4 and 5 describe the evaluation of 3D pose estimation pipelines and tracking methods on

public and custom datasets. The paper ends with a conclusion and discussion.

2. Pose Estimation

Estimation of human posture is essentially a matter of identifying and classifying the

joints of the human body so that a skeleton can represent the human body in such a

way that each joint (arm, head, torso, etc.) important in representing a person’s posture

is given as a set of coordinates and is connected to the adjacent keypoints. Typically,

posture estimation is based on the determination of 18 standard keypoints representing

important body parts and joints, as shown in Figure 2.

The goal of HPE is to design the representation of the human body in such a way

that geometric information and information about the movement of the human body

can be understood, further processed, and applied to specific tasks. At various stages

of development, three different representations of the human body were considered: the

skeleton-based model, the contour-based model, and the volume-based model. Today,

however, the skeleton-based representation is predominant.

The evaluation of the human position can be done in the plane or in space, and 2D or

3D methods are therefore used to predict and represent the position of the human body.

168



Figure 2: Standard 18-person keypoints in pose estimation.

Traditional approaches use 2D models to estimate the 2D position or spatial location

of human body points from images and video frames and rely on hand-crafted low-level

features such as Gaussian-oriented histograms (HOG), contours, colour histograms, and

machine learning methods such as Random Forest to determine joints in the human body.

However, all traditional methods have one problem: they only work when all body parts

are visible and clearly represented. These problems are largely overcome by the use of

deep neural networks, which can learn complex features and achieve higher accuracy when

enough data is available. As a result, they are now predominantly used for all computer

vision tasks, including human pose estimation.

Toshev and Szegedy [88] were the first to use a Deep Convolutional Neural Network

(CNN) for the human pose estimation problem. They developed the DeepPose model,

which yielded promising results and showed that the network can model poses with hidden

and occluded joints. They also focused on further research on approaches based on Deep

Learning.

Several Deep Learning based approaches have been introduced to achieve better pose

estimation results, which according to Ref. [19] can be generally divided into two cate-

gories: Single Person Approaches and Multiple Person Approaches, as shown in Figure

3.

In the single-person approach, the pose of a person in an image is recognised based

on the position of the person and an implicit number of keypoints, so it is essentially

a regression problem. The multi-person approach, on the other hand, aims to solve an

unconstrained problem, since the number and positions of the persons in the image are
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Figure 3: Taxonomy of pose estimation approaches based on Ref. [19].

unknown.

2.1. The Single-Person Approach

The single-person approach is divided into two frameworks based on the keypoint pre-

diction method: direct regression of keypoints from features (i.e., direct regression-based

framework) or generating heatmaps and inferring keypoints via heatmap (i.e., heatmap-

based framework).

2.1.1. Direct Regression-Based Framework

Toshev and Szegedy presented DeepPose in Ref. [88], where they proposed a cascaded

Deep Neural Network (DNN) regressor for predicting keypoints directly from feature

maps. The model follows a simple architecture with convolutional layers followed by

dense layers that generate (x, y) values for keypoints. Carreira et al. [12] proposed a

method to iteratively refine the model output by feeding back error predictions, resulting

in a significant increase in accuracy. Luvizon et al. [52] proposed a soft Argmax function

to directly convert feature maps into common coordinates using a keypoint error distance-

based loss function and a context-based structure to achieve competitive results compared

to a heatmap-based framework. Sun et al. [85] proposed a structure-aware regression ap-

proach using a reparametrized pose representation with bones instead of joints. Bones are
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easier to recognize because they are more primitive and stable, cover a larger area, and are

more robust to occlusion, making them easier to learn than joints. The presented results

show an improvement in performance over previous direct regression-based systems, but

are also very competitive with heatmap based systems.

2.1.2. Heatmap-Based Framework

Instead of predicting keypoints directly, an alternative approach can be used to create

heat maps of all keypoints within the image. Then, additional methods are used to

construct the final stick figure, as shown in Figure 4.

Figure 4: Heatmap poses estimation. It starts by creating heatmaps of all keypoints within
the image, and then additional methods are used to construct the final stick figure.

Chen and Yuille [14] proposed a graphical model with pairwise relations for adaptive

use of local image measurements. Local image measurements can be used both to de-

tect joints and to predict the relationships between joints. Newell et al. [58] designed

a ”stacked hourglass” network closely related to the encoder-decoder architecture, based

on the sequential steps of pooling and upsampling before generating the final prediction
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set. They showed that repeated bottom-up and top-down processing with intermediary

supervision is critical for improving performance in human pose detection. Later research

commonly used a stacked hourglass network. Adversarial PoseNet [16] uses a discrimina-

tor to distinguish between real and fake poses, which are usually the result of a complex

scene or occlusions. The discriminator learns the structure of the stick figure, and can

thus decide whether a pose is real (reasonable as a body shape) or fake. The discriminator

results are then used to further train the model for pose estimation. Chu et al. [18] use

a multi-context attention mechanism that focuses on the global consistency of the entire

human body and the description of different body parts. In addition, they introduce a

novel Hourglass Residual Unit to increase the receptive field of the network. Martinez

et al. [53] introduce a basis for 3D estimation of human poses that uses an hourglass

network to predict 2D keypoints, which are then fed into a simple feed-forward network

that provides a prediction of 3D keypoints.

2.2. The Multi-Person Approach

The multi-person approach is more complex because the number and positions of

people in the image are not given. Therefore, the system must recognise keypoints and

assemble an unknown number of people. Two pipelines have been proposed to deal with

this task: a top-down pipeline and a bottom-up pipeline.

2.2.1. Top-Down Pipeline

The top-down pipeline starts by detecting all persons within an image and creates

bounding boxes around them. The next step is to use each of the detected bounding

boxes and perform a single-person approach for each of them. The single-person approach

creates keypoints for each detected person, after which the pipeline may include additional

post-processing steps and enhancement of the final results, as described in Figure 5.

The top-down method was first proposed in the study by Toshev and Szegedy [88],

where a face detector-based model was used to determine the bounding box of the human

body. In the next step, a multilevel DNN-based cascade regressor was used to estimate
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Figure 5: The top-down pipeline in multi-person approach for pose estimation. It starts
by detecting all persons within an image and producing bounding boxes, on which a
single-person approach is applied. The results are keypoints for each detected person,
after which the pipeline may involve additional post-processing steps and improving the
final results.

the joint coordinates.

He et al. [27] developed a segmentation model as an extension of the Faster Region-

Based Convolutional Neural Network (R-CNN) [73] model by adding a branch to predict

object masks. The robustness and better results of the proposed model were improved

by using a human pose estimation model. The Mask R-CNN simultaneously predicts

the human bounding box and the human keypoints, which speeds up the recognition by

sharing the features between the models.

Radosavovic et al. [70] used omni-supervised learning with the Mask R-CNN detector

for challenging real-world data. Self-learning techniques were applied so that the predic-

tions of the Mask R-CNN detector on unlabelled data were used as additional training

data.

Fant et al. [23] used the sensitivity of a single-person pose estimation to bounding box

detection. The authors developed a method to handle inaccurate bounding boxes and

redundant detections by using a Symmetric Spatial Transformer Network (SSTN) and a

Pose-Guided Proposals Generator (PGPG). Moreover, PGPG is used to greatly augment

the training data by learning the conditional distribution of bounding box proposals for

a given human pose. This adapts the single-pose estimator to handle human localization
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errors due to SSTN and parallel use of the single-pose estimator.

2.2.2. Bottom-Up Pipeline

The bottom-up pipeline works like a reverse top-down pipeline and starts by detecting

all keypoints in the image, which are then associated with human instances, as shown in

Figure 6. Compared to the top-down pipeline, the bottom-up pipeline is likely to be faster

because it does not detect human bounding boxes and does not perform pose estimation

separately for each person detection.

Figure 6: The bottom-up pipeline in multi-person approach for pose estimation. It starts
by detecting all the keypoints in the image, which are then associated with human in-
stances.

The bottom-up multi-person pipeline for pose estimation was first proposed by Pishchulin

et al. [66]. They formulated it as a joint problem of partitioning and labeling subsets. The

model jointly determines the number of persons, their poses, spatial proximity, and occlu-

sions at the part level. Their formulation implicitly performs non-maximum suppression

on the set of keypoint candidates and groups them to form body part configurations that

account for geometric and visual constraints. Insafutdinov et al. [33] improved the perfor-

mance of the previously described method [23] in complex scenes by using a deeper neural

network for better recognition of body parts and introducing new image-conditioned pair-

wise terms to achieve faster pose estimation.

Insafutdinov et al. made another improvement [32] by simplifying and reducing the

body part relation graph, using current methods for faster inference, and shifting much
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of the inference about body part association to a feed-forward convolutional architecture.

Next, Cao et al. [11] proposed a non-parametric representation called Part Affinity

Fields (PAFs) to learn the association of body parts to people in the image. Their model

generates a set of confidence maps for body part positions and a set of vector fields of

part affinities, which are finally parsed by greedy inference to output keypoints.

Newell et al. proposed associative embeddings [57], which is a method that simul-

taneously outputs detection and group assignment and outperforms bottom-up methods

such as in Refs. [66, 32, 11], as well as a top-down method proposed in Ref. [23]. The

embeddings serve as tags that encode a grouping: detection with similar tags should be

grouped, i.e., body joints with similar tags should be grouped into one person.

Huang et al. [30] took a different direction in their search for performance benefits

in a pose estimation task. They focused on the data processing problems arising from

complex biased coordinate system transformations and keypoint format transformation

methods. Therefore, they proposed Unbiased Data Processing (UDP), which consists of

two techniques: an unbiased coordinate system transformation (achieved with elementary

operations such as cropping, resizing, rotating, and flipping) and an unbiased keypoint

format transformation (achieved by an improved keypoint format transformation between

heat maps and keypoint coordinates).

A summary of the key differences between described methods is shown in Table 1.
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Table 1: Comparison of the key differences between methods for 2D pose estimation.
A checkmark in column Structure-aware represents the methods’ ability to ensure the
validity of the human skeleton structure. A checkmark in the column Use of temporal data
represents whether the method uses previous predictions or other temporal information.

Method Approach Human
Prediction

Structure-
Aware

Use of
Temporal
Data

Prediction Type

Toshev and Szegedy [88] Top-down Single Joint Regression
Carreira et al. [12] Top-down Single ✓ Joint Regression
Luvizon et al. [52] Top-down Single Joint Regression
Sun et al. [85] Top-down Single ✓ Bone Regression
Chen and Yuille [14] Top-down Single ✓ Joint Heatmap
Newell et al. [58] Top-down Single Joint Heatmap
Chen et al. [16] Top-down Single ✓ Joint Heatmap
Chu et al. [18] Top-down Single ✓ Joint Heatmap
He et al. [27] Top-down Single Joint Heatmap
Radosavovic et al. [70] Top-down Single Joint Heatmap
Fant et al. [23] Top-down Single Joint Heatmap
Pishchulin et al. [66] Bottom-up Multi Joint Regression
Insafutdinov et al. [33, 32] Bottom-up Multi ✓ ✓ Joint Heatmap
Cao et al. [11] Bottom-up Multi ✓ Joint Heatmap
Newell et al. [57] Bottom-up Multi ✓ Joint Heatmap
Huang et al. [30] Bottom-up Multi ✓ Joint Heatmap
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2.3. 3D Pose Estimation

The 3D pose estimation aims to provide a complete and accurate 3D reconstruction

of a person’s motion from a monocular camera or, more commonly, from 2D position

keypoints.

Early studies focused on predicting 3D poses directly from images. Li and Chan

first introduced the concept of predicting 3D poses using Deep Learning in Ref. [46] by

constructing a convolutional neural network trained to regress 3D keypoints directly from

the image. Their simple approach outperformed previous approaches that do not impose

constraints on the definition of correlation between body parts. Tekin et al. [86] build on a

similar idea to Ref. [46], but take advantage of using auto-encoders in latent space for 3D

pose representation. First, they trained the auto-encoder to reconstruct a 3D pose given as

input to the network and generated a pose representation in latent space (middle layer in

the network). A CNN network was then trained to generate pose representations directly

from images, rather than regressing keypoints directly, as was done in previous work.

The resulting pose representation from the CNN network is then fed into the decoder

network to generate a 3D pose. In addition, this approach enforces an auto-encoder

that implicitly learns constraints about the human body, improving pose consistency and

correlation between body parts without being explicitly trained. Pavlakos et al. [64]

formulate 3D pose estimation as a 3D keypoint localization problem in a voxel space

using a convolutional network to create keypoints heatmaps. The input to the network

is a single image, and the output is a dense 3D volume with separate probabilities per

voxel for each joint. To handle the high dimensionality and enable iterative processing,

they incorporated a coarse-to-fine supervision scheme instead of using a single component

with a single output.

Splitting the task of 3D pose estimation into two steps proved to be a better approach

than directly predicting 3D poses from images and is more commonly used in recent

studies.

Martinez et al. [53] presented a simple deep feed-forward network that ”lifts” 2D

joint positions into 3D space, outperforming all previous methods. They analysed errors

in previous approaches that predicted 3D keypoints directly from images and concluded
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that one of the main causes of errors stems from 2D pose estimation, which propagates

errors further into later steps. By separating the two tasks, overall accuracy is improved

because each step can be evaluated and improved separately.

Recent studies have focused primarily on improving estimation performance by eval-

uating temporal pose information across multiple images or frames. Hossain and Little

[72] used the temporal information about a sequence of 2D joint position to estimate a

sequence of 3D poses by using a sequence-to-sequence network of layer-normalized LSTM

units. The proposed seq2seq network uses only the previous frames to understand the

temporal context and produces predictions with errors uniformly distributed over the

sequence. In Ref. [65], Pavllo et al. proposed a simple and effective approach for 3D

human pose estimation based on dilated temporal convolution of 2D keypoint trajectories

and a semi-supervised approach that exploits unlabelled video to improve performance

when there is limited data. Their convolutional network achieves similar results to more

complex LSTM sequence-to-sequence models and solves the problem of pose drift over

long sequences of seq2seq models. In Ref. [17], Chen et al. solved the problem of missing

information due to occlusions, out-of-frame targets, and inaccurate person detection by

proposing a framework that integrates graph convolutional networks (GCNs) and tempo-

ral networks (TCNs). They proposed a human-bone GCN that models bone connections

and a human-joint GCN based on a directed graph. By using the two GCNs, they can

robustly estimate the spatial frame-wise 3D poses enough to work with occluded or miss-

ing information about human parts. In addition, a joint TCN was used to estimate the

person-centred 3D poses across multiple frames and a velocity TCN was used to estimate

the velocity of the 3D joints to ensure the consistency of the 3D pose estimation in suc-

cessive frames. By using the two TCNs, 3D pose estimation can be performed without

requiring camera parameters. Li et al. proposed a novel augmentation method [45] that

is scalable to synthesize a large amount of training data for training 2D-to-3D networks,

which can effectively reduce the bias of datasets. The proposed data evolution strategy

extends an existing dataset through mutations and crosses of selected poses to synthesize

novel human skeletons to expand the dataset in the order of 107. In addition, they pro-

posed a novel 2D-to-3D network that contains a cascaded 3D coordinate regression model

and where each cascade is a feed-forward neural network.

A summary of the key differences between described methods is shown in Table 2.

178



Table 2: Comparison of the key differences between methods for 3D pose estimation.
A checkmark in column Structure-aware represents the methods’ ability to ensure the
validity of the human skeleton structure. A checkmark in the column Use of temporal data
represents whether the method uses previous predictions or other temporal information.
Image in column Input means that the model predicts directly from the image, while 2D
keypoints means that the model ”lifts” the 2D keypoint to the 3D space.

Method Input Human
Prediction

Structure-
Aware

Use of
Temporal
Data

Prediction Type

Li and Chan [46] Image Single ✓ Joint Regression
Tekin et al. [86] Image Single ✓ Joint Regression
Pavlakos et al. [64] Image Single Joint Heatmap
Martinez et al. [53] 2D keypoints Single Joint Regression
Hossain and Little [72] 2D keypoints Single ✓ Joint Regression
Pavllo et al. [65] 2D keypoints Single ✓ Joint Regression
Chen et al. [17] 2D keypoints Single ✓ Joint Regression
Li et al. [45] 2D keypoints Single Joint Regression

2.4. Occlusion

Occlusion is the predominant problem in estimating human posture, and a number

of papers have attempted to solve this problem. Iqbal and Gall [35] considered multiple

person pose estimation as an association problem between two persons, and used linear

programming to solve the association problem anew for each person. Chen et al. proposed

a novel network structure called Cascaded Pyramid Network (CPN) [15], which includes

GlobalNet and RefineNet. The GlobalNet is used to locate visible keypoints, while the

RefineNet is used to handle keypoints that are difficult to see or hidden. Fang et al. [23]

used Non-Maximum Suppression to solve the occlusion problem and eliminate redundant

poses, the problem caused by redundant detections. A similar approach was implemented

in Ref. [63] to eliminate redundant detections.

2.5. Metrics

In the early works, frequently used metric was the Percentage of Correctly estimated

body Parts (PCP) [25]. In PCP, a limb is considered to be detected and to be a correct

part if the distance between the predicted and true joint position is less than the bone
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length multiplied by a chosen factor. The true joint position of the limb is at most half

the length (PCP at 0.5), as shown in Equation (1). Another widely used metric is PCK

(Percentage of Correct Keypoints) [95] and its variant PCKh, shown in Equation (2). In

both metrics, a joint is considered detected and correct if it is within a certain number

of pixels from the ground truth joint, determined by the height and width of the person

bounding box (or person’s head in the case of PCKh). More recent metrics are Percentage

of Detected Joints (PDJ) [88], shown in Equation (3), and Object Keypoint Similarity

(OKS) [75], shown in Equation (4). PDJ considers a joint to be correctly detected if

the distance between the predicted joint and the true joint is within a certain fraction

of the diagonal of the bounding box. OKS is calculated from the distance between the

predicted points and the ground truth points normalized by the person’s scale. The

OKS metrics show how close the predicted keypoint is to the ground truth, with a value

from 0 to 1. The final performance calculation usually involves thresholding the OKS

metrics and calculating the Average Precision (AP) and Average Recall (AR), as shown

in Equation (5). Mean Per Joint Position Error (MPJPE) is the most commonly used

metric. MPJPE, Equation (6), calculates the Euclidean distance between the estimated

3D joint and the ground truth position, and the final score is calculated by averaging

the distances across all frames. A common addition in the evaluation process is to align

the poses before calculating the metrics. The most widely used alignment method is

Procrustes alignment, which relies on Procrustes analysis to compare the two poses and

align them on all axes. Metrics that use Procrustes alignment are usually marked with

the prefix PA (e.g., PA-PCK, PA-MPJPE).

PCP, PCKh, and PDJ metrics are calculated as follows:

PCP =

∑n
i=0 bool(di < 0.5 ∗ limb lengthi)

n
(1)

PCKh =

∑n
i=0 bool(di < 0.5 ∗ height of the head)

n
(2)

PDJ =

∑n
i=1 bool(di < 0.05 ∗ diagonal)

n
(3)

where di is the Euclidean distance between the ground truth keypoint and predicted
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keypoint, bool(condition is a function that returns 1 if the condition is true and 0 if it is

false, n is the number of keypoints on the image. limb length, head height, and diagonal

are expressed as the number of pixels per the model predictions expressed in pixels as

well.

In PDJ, the diagonal is calculated from the bounding box using the Pythagorean

theorem, i.e., diagonal =
√

(height2 + width2).

The OKS metric is calculated as follows:

OKS = exp(− d2i
2s2k2

i

) (4)

where di is the Euclidean distance between the ground truth keypoint and predicted

keypoint, s is the square root of the object segment area (scale), and k is a per-keypoint

constant that controls fall off.

AP and AR metrics with Precision and Recall formulas are calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

AP =
n∑

i=0

Precisioni

AR =
n∑

i=0

Recalli

(5)

where n is the number of keypoints, TP represents True Positives, FP represents False

Positives, and FN represents False Negatives.

The MPJPE metric is calculated as follows:

EMPJPE(f, φ) =
1

Nφ

Nφ∑
i=1

∥∥∥P (f)
f,φ(i)− P

(f)
gt,φ(i)

∥∥∥
2

(6)

where f denotes a frame and φ denotes the corresponding skeleton. P
(f)
f,φ(i) is the

estimated position of joint i and P
(f)
gt,φ(i) is the corresponding ground truth position. Nφ

represents the number of joints.
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2.6. Standardization — Spatial Alignment, Normalization, and

Retargeting

Because images may be of different sizes, a person may appear in a different part

of the image, requiring a preprocessing step to allow consistent calculation of accuracy

metrics. In addition, the use of accelerometers or motion capture sensors such as mo-

caps complicates the task of accurately evaluating pose estimation methods. In these

cases, it is suggested to apply pose transformations to remove potential errors caused by

inappropriate preprocessing.

A simple solution is to normalize the resulting keypoint coordinates by treating them

as an L2-normalized vector array. In addition, the poses can be aligned by a selected

pose point (e.g., a point between the hips [77]) or by Procrustes analysis, as in Refs. [71,

87, 13, 99]. In our experiments, we defined and applied a simple normalization procedure

where the person is scaled so that the height of the person is 1, and we will here refer to

it as the h-norm. The H-norm assumes that there is at least one frame in the sequence in

which the person is stretched, finds that frame, and then scales the person based on this

frame. The height of the person is calculated as the distance between the nose and the

foot keypoints, taking into account the foot that is further away from the nose. Finally,

the h-norm sets the height of the person in the selected ”stretched” image to 1 and scales

the other images accordingly.

A more advanced solution is to use a retargeting method, as proposed in Refs. [55, 100,

62, 1], which transfers the joint angles from the predicted pose to a standardized skeleton.

The result is a new pose where the limbs are always the same length, which also solves

the problem of pose estimation models with small variations in keypoint detection. For

example, a hand may be detected at the wrist or in the palm region, and this mismatch

of detections results in an incorrect limb length.

In this experiment, we applied the simplest way of implementing a retargeting method,

which is to use a direction vector. A keypoint Pt is retargeted using the root keypoint Pr

by subtracting the two points to produce a direction vector −→p t (the magnitude vector).

Then, we rescale −→p t to the distance between the targeted root point Tr and the targeted

keypoint Tt to produce the direction vector
−→
t t. Finally, we add

−→
t t to point Tr producing
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the retargeted keypoint T ′
t . An example of the retargeted pose is shown in Figure 7.

Figure 7: An example of pose retargeting where the predicted pose is retargeted based on
the target skeleton. Retargeting will translate the joint angles from the predicted pose to
a standardized skeleton, thus ensuring that a pose has the same lengths of limbs.

2.7. Datasets

Several publicly available datasets are provided for various image processing tasks and

domains. Among the most popular datasets are COCO [49] and ImageNet [21], which

contain many tagged images of various objects in the real-world conditions.

It is necessary to properly collect the data and prepare it for machine learning for

various tasks such as image classification, object detection, object localization, object

segmentation, object tracking, etc. For image classification, the images are annotated with

a label corresponding to the class of the object that exists on the scene; for detection, the

objects in the scene are surrounded by a bounding box, or the image area corresponding

to the object is segmented. Finally, the skeleton of the object should be labelled for pose

estimation.

The most well-known dataset in the field of pose estimation is the Human3.6M dataset

[34]. It consists of 3.6 million human poses and corresponding images captured with a mo-

tion capture system. The dataset contains 11 actors performing 17 activities (discussing,

smoking, taking pictures, talking on the phone, etc.). Examples from the dataset are

shown in Figure 8a.

There are also appropriate datasets with images or video sequences that are specific

to a particular domain. For example, in the sports domain, data on Olympic sports
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Figure 8: Examples from the Human3.6 dataset (a) and the RI-HJS dataset (b) for 3D
pose estimation.

are very popular for classifying sports scenes and are collected in the Olympic Sports

Dataset [59], and SVW [76] contains short sequences of actions related to 16 and 30

sports, respectively. There are also specialized databases of videos related to specific

sports, such as UNIRIHBD [37], for researching the performance of athletes in handball,

basketball [82], and volleyball [31].

Older publicly available image datasets such as KTH [78] and Weizmann [9] were

filmed under controlled conditions with fewer actors, while on the other hand, datasets

such as HACS [98] and Kinetics 700-2020 [79] were filmed under real-world conditions and

contain many more classes and data. Kinetics, for example, is a large dataset (with 400

to 700 classes corresponding to different human activities depending on the version) that

contains manually tagged videos downloaded from YouTube. Other popular datasets in

the sports domain are UCF Sports Action Data Set [81] and Sports-1M [41].

In the experimental part of this work, we prepared and used our own dataset of

handball scenes collected in Rijeka (RI-HJS). Handball is an Olympic team sport played

with a ball and is very popular in Europe, but is not represented in the aforementioned

databases for training models for sports scenes. RI-HJS contains 21 short clips with

an average length of 9 s, in which 2 different players perform several handball jump

shots. Both players were equipped with Wear-Notch motion capture sensors to capture the
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ground truth positions of the joints. The documentation states that the static accuracy of

the Wear-Notch sensors is approximately 1–2◦ yaw/tilt/roll. We used a single still camera

with 1920 × 1080 resolution positioned on the tripod 1.5 m from the ground, while the

players were about 7–10 m away from the camera. Examples from the dataset are shown

in Figure 8b.
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3. Tracking

Multiple object tracking (MOT) in videos is an actively researched area in computer

vision, and in this paper we present the main methods to achieve the best performance.

The main goal of multiple object tracking (MOT) is to track the position and identity

of multiple objects so that each object is assigned the same unique ID in each frame in

which it appears in the video.

Tracking produces the best results when objects are moving uniformly, in the same

direction, and without occlusions. Examples where tracking works well include runners

chasing each other on the edge of a playground, or cars moving in the same direction

and at the same speed on the road without being obscured by objects. However, this is

usually not a realistic scenario, especially in team sports where many players change the

direction of movement, speed, distance from the camera, position, and activity performed.

They also frequently enter and exit the camera’s field of view, so they are visible in some

shots and not in others. They also stand very close to each other to interfere with the

opponent and prevent him from taking appropriate action. They often occlude each other,

and because of the obscuring, it is difficult to detect their whole body. The players of

the team wear the same jerseys, so they can be identified only by the number on the

jersey or some details such as hair colour or sneakers. In dynamic scenes, tracking more

objects is still a big challenge. However, thanks to the improved performance of object

and skeleton detectors, even in crowded scenes, and improved computer performance,

tracking by detection has become the leading paradigm for MOT.

In tracking by detection, the tracking algorithm relies on the results of the object

detectors in each frame and combines the information

In general, multiple object tracking is about detecting bounding boxes of an object

in successive frames and a method to map them between image sequences, thus creating

object trajectories. The taxonomy of tracking methods described in this paper is shown

in Figure 9, while an example of tracking on an image is shown in Figure 10.
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Figure 9: Taxonomy of the tracking methods.

Figure 10: Two frames of a tracked player executing a jump shop where poses are esti-
mated and performed necessary transformation. Blue bounding boxes visualize the de-
tectors’ outputs, while white bounding boxes visualize the tracking algorithm bounding
box prediction. To standardize pose sizes because players can be further away or closer
to the camera, we perform transformations to the pose (i.e., standardization).
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3.1. Motion-Based Tracking

Motion-based detection methods mainly consist of background subtraction and dif-

ference between adjacent frames. Motion models are often robust and computationally

light, but their performance is heavily affected by noise and depends heavily on frame

registration, so even small errors in frame registration or illumination changes can lead

to large errors in motion-based object detection. A typical traditional approach has been

background modelling using Gaussian Mixtures (GMM). However, since these are not ca-

pable of detecting objects in the scene, several methods have been proposed that combine

background distribution estimation with numerous filters for video post-processing and

object detection.

Motion-based tracking involves recording the motion of an object in a source video

clip, then analysing its motion and trajectory, and using this motion behaviour to predict

a target object in a sequence of video clips. A well-known example is the use of the

Kalman filter [47, 56] to estimate the position of a linear system, assuming that the errors

are Gaussian. The Kalman filter [39] is an algorithm that uses a series of measurements

observed over time, including noise and other inaccuracies. It provides estimates of target

variables that are usually more accurate than estimates based on a single measurement.

The Kalman filter is usually combined with various techniques to represent object features

or to improve the estimate of the target position [10, 26, 24]. One of the most popular

tracking systems that use the Kalman filter is Simple Online and Realtime Tracking

(SORT) [8], a system based on state estimation techniques designed for online tracking

where only previous and current frames are available. SORT uses the Kalman filter to

predict object position in the current frame based on the previous frames, i.e., object

movement across previous frames, along with the Hungarian matching algorithm [44] to

perform data mapping and assignment on the same track (connecting bounding boxes

across frames). The Hungarian algorithm searches for the optimal bounding box that

best matches a given bounding box in the previous frame, given a cost allocation function

that depends only on the parameters of the bounding box. The parameters used to assign

objects on the track are the Euclidean distance of each detected object from the predicted

centre of the last object on the track and the difference in bounding box size between the
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detected object and the last assigned object on the same track. This algorithm does not

consider visual features and similarities between objects in successive frames. An object

is assigned to a track if the reliability of the detector is higher than the set threshold. If

the number of detected objects exceeds the number of currently active tracks, new tracks

are created and initialized with the new object.

In some works [4, 38, 29, 93, 67, 61], optical flow was used for object tracking by

separating the moving foreground objects from the background and generating an optical

flow field vector for the moving object. Optical flow is a low-level feature determined

from the time-varying image intensity between subsequent frames. The moving point in

the image plane estimated from successive video frames, e.g., by using the Lucas–Canada

method [51], generates a 2D path x(t) ≡ (x(t), y(t))T with coordinates at the centre of the

camera and the current direction of motion described by the velocity vector dx(t)/dt. The

2D velocities of all visible points in the image form a 2D vector field of motion, where the

magnitude corresponds to the velocity of motion and the angle represents the direction

of motion.

Other works, such as Refs. [60, 96, 50, 40], use Recurrent Neural Network (RNN) to

learn the motion behaviour of objects and use them for object tracking, usually applying

them to bounding box coordinates. RNNs have connections that feed activations from

an input in a previous time step back into the network, called memory cell units, which

affect the output for the current input. These activations from the previous time step can

be held in the internal state of the network to model long-range dependencies, so that the

temporal context of the network is not limited to a fixed window and the network can

model sequences such as video images in action recognition.

3.2. Feature-Based Tracking

Feature-based tracking is a method in which objects (features) in the data are first

segmented, and then these segmented objects are tracked (correlated) in successive time

steps based on the representation of their appearance, i.e., colour, texture, shape, and

so on. Wojke et al. [91] improved the method proposed in Ref. [8] SORT by introduc-

ing a deep association metric. This is achieved by capturing object features within the
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bounding box to enable object tracking through longer occlusion periods, thus reducing

the number of identity switches. Subsequent work, such as Refs. [84, 42, 28], has focused

on improving object associations between frames using different methods or constructing

a single model to perform object tracking and association. Further improvements were

made by segmenting objects within the detected bounding box to eliminate unnecessary

information (background, other objects, etc.), as proposed in Ref. [89], and subsequent

improvements to the new approach [80, 68, 97].

3.3. Pose Tracking

Iqbal et al. [36] first formulated the problem of pose estimation and tracking for

multiple persons and presented a sophisticated ”Multi-Person PoseTrack” dataset. The

authors proposed a method to solve this problem by representing the joint body detection

with a spatiotemporal graph and solving an integer linear program to partition the graph

into subgraphs corresponding to the plausible body pose trajectories for each person.

Xiu et al. proposed a PoseFlow method [92], which consists of two techniques, namely,

Pose Flow Builder (PF-builder) and Pose Flow non-maximum suppression (PF-NMS).

PF-Builder is used to associate the cross-frame poses pointing to the same person by

iteratively constructing a pose flow using a sliding window, where PF-NMS uses the pose

flow as a single unit in NMS processing to stabilize tracking. Doering et al. [22] proposed

a temporal model that predicts temporal flow fields, i.e., vector fields that indicate the

direction in which each body joint will move between two successive frames. Raaj et

al. [69] built on the Part Affinity Fields (PAF) [11] representation and proposed an

architecture that can encode and predict Spatio-Temporal Affinity Fields (STAF). Their

model encodes changes in the position and orientation of keypoints over time in a recurrent

manner, i.e., the network takes STAF heatmaps from previous frames and estimates them

for the current frame. Bao et al. [5] proposed a framework for pose-aware tracking-by-

detection that combines pose information with methods for detecting people in videos and

associating people. The system uses prediction of the location of people in the detection

phase, and thus uses temporal information to fill in the missing detections. In addition,

the authors propose a Pose-guided Graph Convolutional Network (PoseGCN) for person
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association, a modelling task that uses the structural relationships between person and

the global features of a person.

In Ref. [6], Bazarevsky et al. focused on developing a lightweight method for esti-

mating and tracking the single-person pose. They followed the top-down pipeline and

used a face detector and certain computations to determine the width and height of a

person’s bounding box, which made the detection fast. For the pose estimation step, the

authors chose a combined heatmap, offset, and regression approach, using heatmaps and

offset losses only during training. Kong et al. [43] proposed a framework consisting of the

Posebased Triple Stream Network (PTSN) and an online multi-state matching algorithm.

PTSN is responsible for computing the similarity values between the historical tracklets

and the candidate detection in the current frame. The values come from three network

streams that model three pose cues, i.e., pose-based appearance, movements, and athlete

interactions. An example of a tracked 2D pose sequence over 80 frames is shown in Figure

11.

Figure 11: A 3D plot visualization of the 2D sequence joints in space and time when
executing a jump shot, showing a side and top view of the plot.
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3.4. Metrics

The evaluation of tracking algorithms usually involves a number of metrics. The

most basic metric is the number of ID switches (IDsw) [94], which counts how many

times an algorithm has switched (or lost) an object ID, as shown in Equation (7). An

improvement on the IDsw metric is the IDF1 metric [74], which is computed as the ratio

of correctly identified detections to the average number of detections based on ground

truth and computed detections. ID precision and ID recall provide information about

tracking tradeoffs. At the same time, the IDF1 score allows all trackers to be ranked on a

single scale that balances identification precision and recall by their harmonic mean (see

Equation (8)).

The most widely used metric is Multiple Object Tracking Accuracy (MOTA) [7], which

combines three sources of error: false positives, missed targets, and identity switches into

a single number, as shown in Equation (9). Another popular metric is Multiple Object

Tracking Precision (MOTP) [7], which calculates the offset between the annotated and

predicted bounding boxes, as shown in Equation (10). Finally, the Mostly Tracked targets

(MT) [48] metric measures tracking completeness by calculating the ratio of trajectories

covered by a track hypothesis to at least 80% of their respective lifetimes. The metric ML

(Mostly Lost Targets [48]) is a complement to MT, which computes the ratio of trajectories

covered by a track hypothesis during at most 20% of their respective lifetimes.

The IDsw metric is calculated as follows:

IDSWt =
n∑

i=0

bool(ID(oi)t−1 ̸= ID(oi)t) (7)

where t is the frame index, n is a number of objects in the frame, o is the tracked

object, and bool(condition) is a function that returns 1 if the condition is true and 0 if it

is false.

The IDF1 metric is calculated as follows:

IDF1 =
2 IDTP

2 IDTP + IDFP + IDFN
(8)

where IDTP represents the number of correctly identified objects, IDFP represents
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the number of falsely identified objects, while IDFN represents the number of objects

detections that fall outside the valid region of its corresponding ground truth.

The MOTA metric is calculated as follows:

MOTA = 1−
∑

t FNt + FPt + IDSWt∑
t GTt

(9)

where t is the frame index, and GT is the number of ground truth objects.

The MOTP metric is calculated as follows:

MOTP =

∑
t,i dt,i∑
t ct

(10)

where ct denotes the number of matches in frame t and dt,i is the bounding box overlap

of target i with its assigned ground truth object.
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3.5. Datasets

Currently, the most popular and widely used dataset is Multiple Online Tracking

(MOT) [54], which contains seven different indoor and outdoor scenes of public places

with pedestrians as the objects of interest. The dataset provides detections of objects in

the video frames using three detectors: SDP, Faster-RCNN, and DPM.

Datasets where most people have similar appearance, such as sports and dance datasets,

can greatly affect methods that rely on appearance as a tracking feature, and it is impor-

tant to evaluate models in such scenarios. This type of dataset includes DanceTrack [83]

and SportsMOT [90]. DanceTrack consists of 100 videos with a total of more than 105

annotated frames and contains dancers in static scenes with uniform appearance, various

movements, and frequent transitions. SportsMOT consists of 240 videos with a total of

more than 105 annotated frames and contain 3 types of scenarios: Basketball, Football,

and Volleyball, covering outdoor and indoor scenes as well as different camera angles.

Datasets such as TAO [20] and GMOT [3] aim to evaluate the generality of tracking

models and encourage tracking methods to generalize to different scenarios and objects,

rather than overfitting to a single scenario and benchmark. TAO contains 2907 videos

taken in different environments where multiple object categories are annotated (e.g., car,

truck, animal, etc.), and is currently the most diverse tracking dataset with 833 different

object categories annotated for tracking. GMOT contains 40 videos of complex scenes

evenly distributed across 10 object categories. Some of the main features of the dataset

are: over 80 objects of the same class can appear in 1 frame and annotations are done

manually with careful inspection in each frame, occlusion, target entry or exit, motion,

deformation, etc.

In this paper, for model testing purposes we use our custom dataset of 20 players

practicing different handball actions during training sessions in Rijeka (RI-HB-PT) to

test the pose estimation models. RI-HB-PT contains 2 videos with a total of 22,676

frames and 216,601 bounding box annotations. The training is very dynamic, and there

is a lot of occlusion as players pass each other very often. We used a single still camera

(1920 x 1080) positioned on the tripod 1.5 m from the ground, while the player was about

5–10 m away. Examples from some data sets are shown in Figure 12.
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Figure 12: Examples from the tracking datasets DanceTrack (a), SportsMOT (b), MOT17
(c), and RI-HB-PT (d).
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4. Evaluation of the 3D Pose Estimation Methods

We selected some well-known and well-performing methods for 2D and 3D pose esti-

mation to evaluate on the Human3.6M dataset [34] and on our own RI-HJS dataset of

handball players performing a jump shot. The Human3.6M dataset was selected because

it is considered the benchmark dataset in the field of pose estimation and contains 3.6

million human poses commonly used for training pose estimation models.

RI-HJS is a customised dataset of handball scenes. We used this dataset to evaluate

the robustness of models learned on a large number of standard poses from Human3.6M,

and to estimate the level of generality that can be achieved on new examples from handball

for which they have not been trained. Important for testing the models is the fact that the

handball examples used are from the new domain, but have similar indoor conditions as

other indoor sports or ordinary activities, with artificial lighting, with the player moving

quickly on the field and performing different techniques and actions with the ball.

The goal of this experiment is to find a combination of models that provides the best

overall results in an unseen sports environment. We considered 2D pose estimation meth-

ods: PoseRegression (https://github.com/dluvizon/pose-regression, accessed on 1

February 2022) [52], ArtTrack (https://github.com/eldar/pose-tensorflow, accessed

on 1 February 2022) [32], Mask R-CNN (https://github.com/facebookresearch/detectron2,

accessed on 1 February 2022) [27], and UDP-Pose (https://github.com/HuangJunJie2017/

UDP-Pose, accessed on 1 February 2022) [30], and 3D pose estimation models: GnTCN

(https://github.com/3dpose/GnTCN, accessed on 1 March 2022) [17], EvoSkeleton (https:

//github.com/Nicholasli1995/EvoSkeleton, accessed on 1 March 2022) [45], and Video-

Pose3D (https://github.com/facebookresearch/VideoPose3D, accessed on 1 March

2022) [65]. All 3D pose estimation models make predictions based on the results of 2D

estimation models. Thus, there are 12 possible combinations of models for a final 3D

prediction from an image. The 2D models PoseRegression and ArtTrack were trained

using the MPII [2] training dataset, while the Mask R-CNN and UDP-Pose models were

trained using the COCO 2017 training dataset.

In addition, all three 3D models, i.e., GnTCN, EvoSkeleton, and VideoPose3D, were

trained with the Human3.6 training dataset, which allows for fair evaluation and com-
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parison. Further details of the training are given in Table 3. Model combinations were

evaluated using the Human3.6M validation dataset and our custom dataset of handball

players executing a jump shot collected in Rijeka (RI-HJS), as described in Section 2.6.

Experiments that used top-down methods were given ground truth bounding boxes to

eliminate object detector errors, i.e., to evaluate only the accuracy of the pose estimation

methods.

Table 3: Training details of the evaluated 2D and 3D pose estimation models. GT in the
Bounding box column means that the models used ground truth bounding boxes in the
training process. The column 2D keypoints show the 2D pose estimation model, which
produced inputs for the training of the 3D pose estimation model.

Model Dataset Optimizer Learning Rate Epoch Bounding Box 2D Keypoints

PoseRegression MPII RMSProp 0.001 120 GT -
ArtTrack MPII SGD 0.002 20 GT -
Mask R-CNN COCO SGD 0.01 37 GT -
UDP-Pose COCO Adam 0.001 210 GT -
GnTCN Human3.6M Adam 0.001 100 GT HRNet
EvoSkeleton Human3.6M Adam 0.001 200 GT HRNet
VideoPose3D Human3.6M Adam 0.001 80 Mask R-CNN CPN

The final results are shown in Table 4 with respect to the metrics PA-PCK and PA-

MPJPE described in Section 2.5. The best results for PA-PCK is when it scores 100%,

and for PA-MPJPE when is 0. The KSM and KSM + RET columns in Table 4 show the

improvement in the performance of the metrics when the proposed Kalman smoothing is

applied to the predicted sequence and pose retargeting. KSM means Kalman smoothing

is applied to the predicted sequence to remove the noise and oscillations of the keypoints

generated by the HPE method. Kalman is applied separately to all axes of the coordinate

system (XYZ) for each keypoint to independently smooth the time series of keypoints

across the sequence. KSM + RET means that a Kalman filter is applied to the predicted

sequence for smoothing, while retargeting is applied to both the predicted and the ground

truth sequence.
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Table 4: Results of model combinations for 3D pose estimations on the Human3.6M
dataset and the custom dataset of players performing handball jump-shot (RI-HJS). The
best results are marked in bold. Metrics are computed on the normalized poses using the
h-norm described in Sections 2.5 and 2.6 on 13 keypoints. KSM in the table is shorthand
for Kalman smoother, which is applied on the predicted sequence before evaluation, while
KSM + RET is shorthand for Kalman smoother applied on the predicted sequence and
Retargeting applied both on predicted and ground truth sequences.

Dataset Models ▲PA-PCK0.15 ▲PA-PCK0.15 +
KSM

▲PA-PCK0.15 +
KSM + RET

▼PA-MPJPE ▼PA-MPJPE +
KSM

▼PA-MPJPE +
KSM + RET

PoseRegression + GnTCN 67.742 +1.554 +9.269 0.131 -0.003 -0.021
PoseRegression + EvoSkeleton 68.257 +0.431 +8.370 0.130 -0.001 -0.019
PoseRegression + VideoPose3D 69.703 +0.236 +10.065 0.127 0.000 -0.020
ArtTrack + GnTCN 91.015 +0.769 +3.291 0.067 -0.002 -0.010
ArtTrack + EvoSkeleton 86.698 +1.888 +6.069 0.079 -0.003 -0.015

Human3.6M ArtTrack + VideoPose3D 93.056 +0.167 +1.905 0.061 0.000 -0.006
Mask R-CNN + GnTCN 96.896 +0.210 +0.654 0.049 -0.001 -0.003
Mask R-CNN + EvoSkeleton 96.275 +0.528 +1.325 0.054 -0.002 -0.007
Mask R-CNN + VideoPose3D 97.935 -0.068 +0.386 0.045 0.000 -0.002
UDP-Pose + GnTCN 97.790 +0.140 +0.446 0.045 0.000 -0.003
UDP-Pose + EvoSkeleton 97.645 +0.271 +0.773 0.049 -0.001 -0.005
UDP-Pose + VideoPose3D 98.023 -0.075 +0.345 0.044 0.000 -0.002

PoseRegression + GnTCN 60.381 +0.283 +2.057 0.150 -0.001 -0.008
PoseRegression + EvoSkeleton 62.475 +0.357 +2.158 0.144 -0.001 -0.006
PoseRegression + VideoPose3D 58.784 +0.290 +5.029 0.154 0.000 -0.013
ArtTrack + GnTCN 80.310 +0.864 +1.398 0.106 -0.002 -0.006
ArtTrack + EvoSkeleton 80.549 +2.079 +2.501 0.107 -0.006 -0.010

RI-HJS ArtTrack + VideoPose3D 59.736 -0.027 +8.668 0.151 0.000 -0.020
Mask R-CNN + GnTCN 84.545 +0.771 +1.135 0.098 -0.002 -0.005
Mask R-CNN + EvoSkeleton 86.485 +2.132 +2.415 0.094 -0.006 -0.010
Mask R-CNN + VideoPose3D 73.718 -0.152 +3.084 0.124 0.000 -0.008
UDP-Pose + GnTCN 90.797 +0.551 +1.370 0.083 -0.001 -0.004
UDP-Pose + EvoSkeleton 94.436 +0.695 +1.009 0.074 -0.002 -0.005
UDP-Pose + VideoPose3D 76.357 -0.232 +2.916 0.117 -0.000 -0.007
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4.1. Discussion of the Pose Estimation Results

Table 4 shows that the tested models scored much better on the Human3.6M dataset

than in the custom RI-HJS datasets in PA-PCK and PA-MPJPE metrics (Figures 13 and

14). Better results on the Human3.6M dataset than on the custom dataset have been

expected, given that all 3D models were pretrained on the training set of the Human3.6M

dataset.

Figure 13: Comparison of the 3D pose estimation model results in terms of PA-PCK on
Human 3.6M and custom RI-HJS datasets (higher is better). All models experienced a
significant drop in performance on the RI-HJS dataset, except the two-step model UDP-
Pose + EvoSkeleton, which retained high accuracy, showing robustness in an unseen
environment. It is interesting to note that all two-step models that use VideoPose3D
experienced the largest performance drop compared to other models.

The lower performance values for the user-defined dataset indicate that the tested

models are not robust enough to be applied to new environments without retraining.

Figure 15 shows the differences between the results on the Human 3.6M test set and

the results on the user-defined set obtained by the models trained on the Human 3.6M

training set. It is interesting to note that the difference in the performance drop ranges

from 3% to more than 33%. It should be noted that the UDP-Pose + EvoSkeleton

model achieved almost the same high level of performance in the new custom set. In

other words, all the tested models had the lowest performance drop when combined with

the EvoSkeleton model, which ranged from 3% to a maximum of 10%, suggesting its

robustness and its ability to be used in new sports scenes such as the handball scenes
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Figure 14: Comparison of the 3D pose estimation model results in terms of PA-MPJPE
on Human 3.6M and custom RI-HJS datasets (lower is better). The comparison shows a
significant drop in performance on the RI-HJS dataset, which is not surprising given that
the models have never seen uncommon poses such as the handball jump-shot from the
RI-HJS dataset. Two-step models that use VideoPose3D are more prone to errors due to
unseen data, as they have the largest performance drop.

tested. The videoPose3D model, on the other hand, had the largest drop in performance

regardless of which model it was used with; more specifically, it had a significant drop in

performance of over 20% with all models except PoseRegression, where the drop was also

significant but only half as large (about 11%).

Figure 15: The robustness of the tested 3D models trained on the Human3.6M dataset
shown as a difference of obtained results and performance drops between PA-PCK pose
estimation results on Human 3.6M and custom RI-HJS datasets.
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Overall, the models using UDP-Pose for 2D pose estimation were found to perform

better, which is not surprising since the authors reported better results than Mask R-CNN.

Using a method to smooth predicted 3D sequences proved beneficial in most cases, ex-

cept in the case of VideoPose3D, where it does not seem to improve the predicted sequence,

but rather looks like the sequence has already been smoothed directly in VideoPose3D.

Figure 16 shows the improvements in pose prediction sequence after applying Kalman

smoothing with respect to PA-PCK on RI-HJS datasets, and Figure 17 shows the improve-

ments after applying Kalman smoothing and retargeting with respect to PA-MPJPE on

the Human3.6M datasets.

Figure 16: Comparison of pose sequence estimation in terms of PA-PCK on custom RI-
HJS datasets (higher score is better). Two-step models that use EvoSkeleton show a
significant improvement when using smoothing on the sequence of poses, showing the
lack of consistency in the process of ”lifting” 2D keypoints to 3D space. When using
retargeting on the ground truth and smoothed predicted sequence, the results are signifi-
cantly improved, indicating that all models lack an understanding of the human skeleton
structure, which is especially true in the case of VideoPose3D.

The average improvement using 3D predicted sequence smoothing (KSM) is 0.7%

for the PCK metric (i.e., 0.57% on Human3.6M and 0.84% on RI-HJS) and 1.4% for

the MPJPE metric (i.e., 1.26% on Human3.6M and 1.52% on RI-HJS). Retargeting to

standardize both predicted sequence bone lengths and ground truth improved the overall

result in all cases. The average improvement using retargeting and smoothing (KSM

+ RET) is 3.87% for the PCK metric (i.e., 4.04% on Human3.6M and 3.71% on RI-

HJS) and 10.1% for the MPJPE metric (i.e., 12.95% on Human3.6M and 7.36% on RI-

HJS). Interestingly, retargeting improved EvoSkeleton’s overall score the most on the

Human3.6M dataset, but improved VideoPose3D’s overall score the most when evaluated
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Figure 17: Comparison of pose sequence estimation in terms of PA-MPJPE measure on
Human3.6M datasets (lower is better). All models show a slight improvement when using
smoothing on the sequence of poses, showing the lack of consistency in the detection
location of keypoints and ”lifting” 2D keypoints to the 3D space. An exception to this
conclusion is the VideoPose3D model, which constructed a smooth sequence of poses by
utilizing temporal information. When using retargeting on the ground truth and smoothed
predicted sequence, results are significantly improved, which indicates that all models lack
an understanding of the human skeleton structure.

on a custom dataset. This suggests that the models have the potential for performance

improvement in constructing valid and consistent poses. Based on these results, we can

conclude that of the two-stage models evaluated, the UDP pose + EvoSkeleton proved

to be the most robust and stable, achieving the highest overall score on the datasets

evaluated.

4.2. Analysis of the Pose Estimation Errors

Analysing the 3D pose estimation images and predictions, we find that the errors are

mainly propagated due to poor 2D pose estimation. Poor predictions occur mainly when

one or more joints are occluded. Then the 2D pose estimation model usually assigns

the position of the invisible joint to the position of the visible joint on the opposite side.

Examples of this problem are shown in Figure 18. Another common problem that is not

easily understood or explained is the detection of keypoints on the opposite side of the
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player. The result is usually a valid human structure but rotated 180 degrees, i.e., the

left side is swapped with the right and opposite sides, as shown in Figure 19.

Figure 18: Examples of poor detection of keypoint location that happens mostly because
the true keypoint location is occluded or less clear. The right side of the player is coloured
purple while the keypoint location is occluded or less clear. The right side of the player is
coloured purple while the left side of the person is coloured blue. In the first row, where
the left elbow and hand are not visible, methods PoseRegression and ArtTrack incorrectly
assume the location, while Mask R-CNN and UDP-Pose placed the left elbow and hand
on the right elbow and hand of the player. The second row shows a situation where parts
are visible but less clear, where all methods fail to detect the left hand, which is close
to the head, while methods ArtTrack and Mask R-CNN miss the right foot. The third
row shows situations where methods ArtTrack and Mask R-CNN produced invalid human
structures by detecting the right foot on the location of the left foot, while the UDP-Pose
almost correctly detected the keypoints. PoseRegression generally did not perform well
on uncommon poses such as the handball jump-shot.

With the goal of reducing errors due to missed detection of visible joints, false detection

of visible joints, and invalid pose rotation when switching left and right sides, we trained

Mask R-CNN and UDP-Pose on the dataset RI-HJS. Both models were trained on 227
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Figure 19: Examples of wrong player side keypoint detection, with an unclear reason
for this occurrence. The right side of the player is coloured purple while the left side of
the person is coloured blue. While all methods detected almost all keypoints correctly,
all methods switched sides of the player, producing an invalid pose. Occurrences of this
problem can also be observed on a few keypoints in Figure 18.

images while evaluation was performed on the rest of the dataset. Both models were

trained with a learning rate of 0.001 and an Adam optimizer with 30 epochs. We trained

only the Mask R-CNN and UDP-Pose because the PoseRegression and ArtTrack models

performed poorly in the previous evaluation in Table 4. The results of the evaluation

performed on the test set of the RI-HJS dataset are shown in Table 5.

Table 5 shows the results on the test part of the dataset RI-HJS after training the Mask

R-CNN and UDP-Pose models on 227 images from the training part of the dataset RI-

HJS. The evaluation shows that all two-stage models using models trained on the RIHJS

dataset perform significantly better than models not trained on this dataset. Models

using Mask R-CNN show an average improvement of 2.79 on the PA-PCK metric and an

average improvement of 0.007 on PA-MPJPE. Models using UDP-Pose show an average

improvement of 1.06 on the PA-PCK metric and an average improvement of 0.002 on

PA-MPJPE. Even with training, the Mask R-CNN model did not achieve the accuracy

of UDP-Pose. In addition, EvoSkeleton appears to be the most robust of the 3D models,

providing the best results when paired with both 2D models. A graphical representation

of the comparative results before and after training the most successful models Mask

R-CNN and UDP-Pose on the training set of RI-HJS is given in Figure 20.

Examples of detections after training the Mask R-CNN and UDP Pose models are

shown in Figures 21 and 22. Further comparisons between the trained and untrained 2D

models are shown in Supplementary Figures S1–S4.
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Table 5: Results of model combinations for 3D pose estimations on the custom dataset
of players performing handball jump-shot (RI-HJS). The best results are marked in bold.
Models Mask R-CNN and UDP-Pose were trained on 227 images from the RI-HJS dataset,
while evaluation was performed on the rest of the dataset. Metrics are computed on the
normalized poses using the h-norm described in Sections 2.5 and 2.6 on 13 keypoints.
KSM in the table is shorthand for Kalman smoother that is applied on the predicted
sequence before evaluation, while KSM + RET is shorthand for Kalman smoother applied
on the predicted sequence and Retargeting applied both on predicted and ground truth
sequences.

Dataset Models ▲PA-PCK0.15 ▲PA-PCK0.15 +
KSM

▲PA-PCK0.15 +
KSM + RET

▼PA-MPJPE0.15 ▼PA-MPJPE0.15

+ KSM
▼PA-MPJPE0.15

+ KSM + RET

Mask R-CNN + GnTCN 87.574 +0.644 +0.970 0.090 -0.002 -0.004
Mask R-CNN + EvoSkeleton 89.562 +1.875 +2.004 0.086 -0.006 -0.009

RI-HJS Mask R-CNN + VideoPose3D 76.970 -0.196 +2.258 0.118 0.000 -0.007
UDP-Pose + GnTCN 92.205 +0.486 +0.974 0.080 -0.001 -0.003
UDP-Pose + EvoSkeleton 94.462 +0.537 +0.303 0.073 -0.002 -0.003
UDP-Pose + VideoPose3D 78.122 -0.267 +2.053 0.115 -0.000 -0.006

Figure 20: Comparison of pose sequence estimation in terms of PA-PCK on custom RI-
HJS datasets before and after additional training of the Mask R-CNN and UDP-Pose
models on training part on RI-HJS dataset (higher score is better).
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Figure 21: Examples of detection after training on the 227 images of the RI-HJS dataset.
The right side of the player is coloured purple while the left side of the person is coloured
blue. Untrained models made a mistake and switched the players’ sides, shown in Figure
19. After training, UDP-Pose successfully detected keypoints on the correct sides, while
Mask R-CNN did not manage to detect all keypoint sides correctly.
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Figure 22: Examples of detection after training on the 227 images of the RI-HJS dataset.
The right side of the player is coloured purple while the left side of the person is coloured
blue. Untrained models missed detection when the left hand was hidden or less clear,
as shown in Figure 18. After training, UDP-Pose successfully detected the left hand on
the second row, while on the first row, it made a reasonable guess of the hand position.
Mask R-CNN performed worse on both examples after training, wrongly detecting the
right knee location on the left knee. 207



5. Evaluation of Tracking Methods

We chose some well-known and well-performing methods for tracking and at least one

method for each methodology. Tracking methods were evaluated against the following

datasets: DanceTrack [83], SportsMOT [90], MOT17 [54], and our custom dataset RI-

HB-PT.

The goal of this experiment is to evaluate the tracking performance of the methods

that provide the best overall results in an unseen environment. We considered the tracking

methods CentroidKF (https://github.com/adipandas/multi-object-tracker, accessed

on 1 April 2022) [47] (Kalman filter motion tracking), SORT (https://github.com/

adipandas/multi-object-tracker, accessed on 1 April 2022) [8] (Kalman filter motion

tracking), DeepSORT (https://github.com/abhyantrika/nanonets_object_tracking,

accessed on 1 April 2022) [91] (motion and feature tracking), FlowTracker (https://

github.com/hitottiez/sdoftracker, accessed on 1 April 2022) [61] (optical flow motion

tracking), and Tracktor++ (https://github.com/phil-bergmann/tracking_wo_bnw,

accessed on 1 April 2022) [28] (motion and feature tracking). None of the selected track-

ers have seen previously tested datasets, so the evaluation was performed on all unseen

datasets. The evaluation was performed on the training part of the datasets, since the

annotations and ground truths are only available for this part. The final results are shown

in Table 6, using the metrics described in Section 3.4.

5.1. Discussion of Tracking Results

Table 6 shows that there is no clear winner that performs best in all datasets or met-

rics. DeepSORT performs best on the re-identification task and significantly outperforms

the other methods on all datasets except RI-HB-PT in terms of IDF1, Identity Switch-

ing (IDsw), and Mostly Tracked targets (MT). For the MOTP metric, Tracktor++ and

SORT achieve the best overall results, but based on the MOTA metrics, Tracktor++ and

DeepSORT share first place. FlowTracker, surprisingly, scores significantly lower than the

compared methods, but performs better in datasets where the camera is still and there
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are fewer entrances and exits from the scene. The CentroidKF and SORT methods rely

on the Kalman filter and are very simple, but perform well in certain scenarios. It ap-

pears that camera motion strongly influences these methods, as they perform significantly

better when the camera is stationary than when it is moving. Table 7 shows the averaged

results for all datasets and confirms the observations described earlier. Examples where

the models performed poorly are shown in Supplementary Figures S5–S9.

Table 6: Results of tracking methods on DanceTrack, SportsMOT, MOT17, and a custom
RI-HB-PT dataset of players practicing various handball actions during a practice session.
The best results according each metrics are marked in bold. Metrics are computed as
described in Section 3.4.

Dataset Models ▲MOTA ▲MOTP ▲IDF1 ▼IDsw ▲Recall ▲Precision ▲MT ▼ML

CentroidKF 76.9 0.201 7.9 47,550 95.3 95.3 409 0
SORT 27.5 0.313 11.7 16,052 66.1 66.1 20 0

DanceTrack DeepSORT 68.0 0.160 43.0 4717 97.6 77.5 418 0
FlowTracker 38.1 0.262 13.5 10,448 66.4 72.4 59 1
Tracktor++ 67.4 0.262 29.4 18, 255 75.1 96.9 166 0

CentroidKF 15.4 0.247 5.9 43,469 64.7 64.7 133 0
SORT 15.6 0.254 6.2 48,186 65.5 65.5 4 0

SportsMOT DeepSORT 79.9 0.149 63.7 2939 99.2 84.4 635 0
FlowTracker 25.4 0.281 12.2 9873 62.6 64.7 16 3
Tracktor++ 64.6 0.297 42.9 7949 78.0 89.8 298 0

CentroidKF 60.7 0.140 49.0 11,200 83.1 83.1 366 26
SORT 56.5 0.159 52.4 9909 80.7 80.7 220 2

MOT17 DeepSORT 71.0 0.062 70.9 1159 90.5 90.5 664 24
FlowTracker 37.1 0.156 38.2 2093 47.4 83.6 162 310
Tracktor++ 64.8 0.258 64.8 3263 73.4 91.3 356 115

CentroidKF 69.4 0.231 19.3 9912 87.0 87.0 310 15
SORT 49.0 0.261 21.4 6299 76.0 76.0 225 16

RI-HB-PT DeepSORT 70.2 0.063 38.7 2276 99.7 77.8 353 4
FlowTracker 68.0 0.222 16.6 3770 84.6 85.1 125 145
Tracktor++ 92.4 0.202 49.6 1346 94.8 98.1 176 137

Table 7: Averaged results of trackers across all datasets (DanceTrack, SportsMOT,
MOT17, RI-HB-PT), i.e., averaged results from Table 6. The best results according
each metrics are marked in bold.

Models ▲MOTA ▲MOTP ▲IDF1 ▼IDsw ▲Recall ▲Precision ▲MT ▼ML

CentroidKF 55.60 0.204 20.52 28,057 82.52 82.52 304 10
SORT 37.15 0.246 22.92 20,111 72.07 72.07 117 4
DeepSORT 72.15 0.108 54.07 2772 96.75 80.60 517 7
FlowTracker 42.15 0.230 20.12 6546 65.25 76.45 88 115
Tracktor++ 72.30 0.254 46.67 7703 80.32 93.52 249 63
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6. Conclusions

In this work, we evaluated 12 selected 2-stage models for 3D pose estimation and meth-

ods for smoothing and retargeting the sequences. We reported the results and concluded

that the application of smoothing and retargeting methods significantly improves the per-

formance of the models. We also evaluated the performance of the two-stage model on a

custom dataset to assess its robustness in different/unknown environments. The results of

this evaluation are surprising in that most pipelines showed significant performance degra-

dation; only pipelines based on EvoSkeleton had the smallest degradation. However, the

UDP-Pose + EvoSkeleton and UDP-Pose + GnTCN models were able to achieve equally

high values in both familiar and unfamiliar environments. They achieved an accuracy of

correctly estimated body parts of over 90% and a mean joint position error of less than

0.08%, which undoubtedly enables the use of these models for pose estimation in dynamic

scenes, such as handball sports.

The greatest performance gain for the models appears to be in constructing good and

consistent poses, as smoothing the time series of keypoints over the predicted sequence and

retargeting the poses consistently improved the overall score. The improvement in results

from smoothing the predicted 3D sequence was seen in the accuracy of the estimated body

parts (according to the PCK metric, 0.57% in the Human3.6M dataset and 0.84% in the

RI-HJS dataset) and in the reduction of error in the joint position estimation (according

to the MPJPE metric, by 1.26% in the Human3.6M dataset and 1.52% in the RI-HJS

dataset).

In addition, the retargeting procedure used to normalize the data using the standard-

ized bone length improved the overall score by approximately 4% in all cases in terms of

the accuracy of the estimated body parts (i.e., PCK metric 4.04% on Human3.6M and

3.71% on RI-HJS). In addition, the mean error of joint position was reduced by 10% (i.e.,

according to MPJPE metric 12.95% on Human3.6M and 7.36% on RI-HJS). It is impor-

tant to note that the performance of top-down pose estimation methods can be affected

by object detector performance (e.g., by generating invalid bounding boxes). The detailed

performance effects of different object detectors on pose estimation methods are beyond

the scope of this work, but may be investigated in future work.
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To track the poses of one athlete while acting, poses must be collected throughout the

video and mapped on consecutive frames with an algorithm. We selected five stateof-the-

art tracking methods and evaluated them against public and user-defined datasets. The

main finding after the evaluation is that there is no particular method that performs best in

all tested scenarios. However, the DeepSORT method outperforms the rest of the methods

in most of the datasets, except for our custom dataset RI-HB-PT, especially in terms

of IDF1, Identity switch (IDsw), and Mostly Tracked targets (MT). On the other hand,

camera motion seems to strongly affect methods based on the Kalman filter or optical flow,

where feature-based tracking methods show their strength. Based on the averaged overall

results, we conclude that Tracktor++ and DeepSORT methods provide promising results

for tracking people represented by skeletons in dynamic sports scenarios. Therefore, these

methods should be considered in the definition of athlete action recognition models.

The experiment has shown that existing state-of-the-art methods for pose estimation

already perform satisfactorily and can be used for estimating the poses of a single athlete

in individual or team sports. However, for more complex tasks such as tracking more

athletes in team sports and comparing athletes’ performances or actions, where multi-

object tracking methods are to be used, further research and development of methods are

needed to successfully use them in dynamic environments such as sports scenes.

Supplementary Materials: The following are available online at https://www.mdpi.

com/article/10.3390/jimaging8110308/s1, Figure S1: Example of 3D sequences pro-

duced by three 3D HPE models and Mask R-CNN, Figure S2: Example of 3D sequences

produced by three 3D HPE models and trained Mask R-CNN on RI-HJS dataset, Figure

S3: Example of 3D sequences produced by three 3D HPE models and UDP-Pose, Figure

S4: Example of 3D sequences produced by three 3D HPE models and trained UDP-Pose

on RI-HJS dataset, Figure S5: Example of scenario where CentroidKF tracker performs

poorly, Figure S6: Example of scenario where SORT tracker performs poorly, Figure S7:

Example of scenario where FlowTracker tracker performs poorly, Figure S8: Example of

scenario where DeepSORT tracker performs poorly, Figure S9: Example of scenario where

Tracktor++ tracker performs poorly.
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Person Pose Forecasting Models on Handball Actions. 2024 8th International Confer-

ence on Computer, Software and Modeling (ICCSM), ISBN:979-8-3503-6714-0, DOI:

10.1109/ICCSM63823.2024.00018

For clarity, the article has been reformatted, otherwise the content is the same as the pub-

lished version of the work. © 2024 IEEE. Reprinted, with permission, from Romeo Šajina
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1. Introduction

Pose forecasting is a task in computer vision that involves predicting future poses

based on a sequence of previous pose observations. The goal is to anticipate a person’s

movement or behavior over time, which has applications in action recognition, motion

analysis, and human-computer interaction. Earlier research in pose forecasting primarily

focused on single-person scenarios, where the objective is to predict the future poses of

a single individual given the sequence of previous poses. This task, though challenging,

laid the groundwork for subsequent advancements in more complex scenarios.

Applications of pose forecasting in sports analytics, surveillance, and social robotics

demanded more comprehensive analyses of human interactions, shifting the focus toward

multi-person pose forecasting. This presents a more challenging problem, as it requires

models to capture intricate dependencies and interactions between multiple individuals

in a scene. Multi-person pose forecasting involves predicting the future poses of multiple

individuals simultaneously, considering their spatial and temporal relationships.

This paper focuses on the challenges and advancements in multi-person pose fore-

casting, emphasizing the necessity of capturing interaction dependencies to achieve more

precise and robust predictions in dynamic environments. Through empirical evaluation

and analysis, we demonstrate the effectiveness of state-of-the-art models when pre-trained

on public datasets or when fine-tuned on custom dataset HBS (Handball Shot). The anal-

ysis presented in this paper aims to assess the practical applicability of pose forecasting

models in real-world scenarios, specifically demonstrated on a custom HBS dataset.

In short, our contributions are:

1. evaluation of pre-trained state-of-the-art models for multi-person pose forecasting

on a custom HBS test dataset to evaluate their practical applicability in real-world

scenarios

2. analyzing the performance of these models on the HBS test dataset after fine-tuning

them on the HBS training dataset, thereby examining their adaptability to new

domains

3. introducing a novel custom dataset named HBS, featuring scenarios where two play-

ers execute action handball shots, enriching the available resources for pose forecast-

ing research
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2. Related work

The task of single-person pose forecasting involves modeling temporal dependencies

within a sequence of observed poses to accurately predict the subsequent poses. Early

works such as [11, 5, 4] have explored various approaches for single-person pose forecast-

ing and demonstrated the feasibility and potential of pose forecasting for understanding

human motion dynamics.

In recent years, advanced deep learning architectures and attention mechanisms have

been leveraged to address the complexities of multi-person pose forecasting. Models such

as [12, 9, 8, 13, 6, 7] have been developed specifically to capture interaction dynamics and

spatial dependencies among multiple individuals for accurate pose forecasting. The pro-

posed models explored various architectures for pose forecasting, each tailored to address

specific challenges in capturing temporal dependencies and spatial interactions within ar-

ticulated sequences. Attention mechanisms and transformer-based models have gained

significant attention due to their ability to model long-range dependencies efficiently. So-

MoFormer [9], TBiFormer [6], MRT [12], and JRTransformer [13] are notable examples

that leverage self-attention mechanisms to capture complex dependencies between poses

over time. Graph Convolutional Networks (GCNs) have also proved to be a powerful ar-

chitecture for multi-person pose forecasting, where the skeleton structure is represented as

a graph and spatial dependencies are learned through graph convolutions. Approaches like

Future Motion [11], LTD [4], and SocialTGCN [7] have demonstrated success in modeling

dynamic interactions among multiple individuals by leveraging graph-based representa-

tions.

Additionally, traditional architectures such as Multilayer Perceptrons (MLPs) [8] and

Long-Short Term Memory (LSTM) networks [5] have also been applied to pose forecasting

tasks, demonstrating performance comparable to state-of-the-art models.

These diverse paradigms reflect the ongoing research and adaptation of neural network

architectures to effectively tackle the challenges of multi-person pose forecasting tasks.
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3. Problem description

The multi-person pose forecasting task aims to predict the future movements of multi-

ple individuals within a scene based on their observed pose sequences. Each person’s pose

is characterized by key anatomical joints like elbows, knees, and shoulders, defining their

spatial configuration. The task involves predicting the trajectories of these joints over a

specified future timeframe, denoted by T time steps. To accomplish this, the model is

provided with a sequence of historical poses for each individual, detailing the positions of

their joints in a three-dimensional space relative to a global coordinate system. For each

individual indexed as n, these historical poses form a chronological series Xn
1:t, capturing

the evolution of their poses up to the present moment. The length of the input sequence

t dictates the depth of historical data used for prediction. The primary challenge is to

generate future pose sequence Xn
t+1:T for each individual, where T denotes the number of

future time steps that the model aims to forecast.
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4. HBS dataset description

The Handball Shot (HBS) dataset is our new dataset comprising 10 training ses-

sion scenes where two players execute handball shot actions in parallel. Each scene was

recorded using Wear-Notch motion capture sensors attached to both players, enabling

precise capture of their movements. The sensors record data at 40 frames per second

(FPS), resulting in sequences of 5-second duration for each scene, yielding approximately

4000 unique poses across the dataset. To facilitate model training and evaluation, we

divided the dataset into train and test sets. The train set includes data from 7 scenes

with two players, while the test set comprises data from 3 scenes with two players. No-

tably, the HBS dataset differs from other publicly available datasets commonly used for

training, such as 3D Poses in the Wild (3DPW) [10] and Archive of motion capture as

surface shapes (AMASS) [3] in that handball shot actions exhibit rapid, dynamic, and

complex motion, contrasting with the more conventional actions seen in existing datasets.

Recently, datasets like The Extreme Pose Interaction (ExPI) [2] have been introduced

to create environments with more extreme motion dynamics featuring two couples per-

forming 16 distinct actions. The HBS dataset aligns with this trend of creating more

challenging datasets for multi-person pose forecasting, focusing on capturing the intrica-

cies of handball shot actions for advanced model evaluation and development. An example

of scene sequence is shown in Figure 1

Figure 1: An example of a scene from the HBS dataset where two players parallelly
execute a handball shot during a training session.
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5. Experiments

In our experiments, we aim to assess the performance of pose forecasting models

under different training conditions. Specifically, in the first experiment, we will evaluate

the effectiveness of models pre-trained on 3DPW and AMASS datasets on our custom

Handball Shot (HBS) test dataset. This experimental design allows us to gauge how well

the models generalize from generic pose data to domain-specific handball shot actions.

In the subsequent experiment, we will assess the performance of models on the HBS test

dataset after conducting fine-tuning specifically on the training part of this dataset. This

approach provides valuable insights into the transferability and adaptability of pre-trained

models in dynamic and specialized scenarios.

5.1. Metrics

A commonly used metric for pose forecasting is Mean Per Joint Position Error (MPJPE).

This metric calculates the average Euclidean distance between predicted joint positions

and corresponding ground truth positions across all joints. A lower MPJPE value indi-

cates a closer alignment between predicted poses and ground truth data. The MPJPE

metric is calculated as follows:

EMPJPE(ŷ, y, φ) =
1

Jφ

Jφ∑
j=1

∥∥∥P (f)
ŷ,φ(j)− P (f)

y,φ(j)
∥∥∥
2

(1)

where f denotes a time step and φ denotes the corresponding skeleton. P
(f)
ŷ,φ(j) is

the estimated position of joint j and P
(f)
y,φ(j) is the corresponding ground truth position.

Jφ represents the number of joints. ∥·∥2 denotes the Euclidean distance (L2 norm), and

1
Jφ

∑Jφ
j=1 represents the mean distance across all joints.

Recently, a more popular metric is the Visibility-Ignored Metric (VIM) [1]. VIM

assesses the mean distance between predicted and ground truth joint positions at the last

pose (T ). This metric involves flattening joint positions and coordinates into a unified

vector representation of dimensionality 3J , where J denotes the number of joints. The
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VIM score is computed as follows:

EVIM(ŷ, y, φ) =
1

3Jφ

3Jφ∑
j=1

∥∥∥P (j)
ŷ,φ − P (j)

y,φ

∥∥∥
2

(2)

where J represents the number of joints, P
(i)
y,φ is the ground-truth position of the i-th

joint (flattened), P
(i)
ŷ,φ is the predicted position of the i-th joint (flattened), ∥·∥2 denotes

the Euclidean distance (L2 norm), and 1
3Jφ

∑3Jφ
j=1 represents the mean distance across all

joints.

5.2. Training

This section outlines the training strategies and hyperparameters used for pre-training

on the 3DPW and AMASS datasets and subsequent fine-tuning on the Handball Shot

(HBS) train dataset. Initially, all models were trained on the 3DPW and AMASS datasets

based on the methodologies and hyperparameter configurations specified in their respec-

tive papers. For the second experiment, all pre-trained models underwent fine-tuning on

the HBS train dataset for 50 epochs with a fixed learning rate of 0.0001. The objective of

fine-tuning was to adapt the models to the unique characteristics of handball shot actions

captured in the HBS dataset.

The sequence configuration comprises 16 input poses (t) corresponding to an output

of 14 poses (T ), aligning with the setup of the SoMoF Benchmark [1] upon which many

of the models were developed. For the 3DPW dataset, poses are sampled at a frequency

of 2, translating to input poses covering 1070 milliseconds, and output poses spanning

930 milliseconds. Similarly, the HBS dataset is also sampled at a frequency of 2. Given

its recording rate of 40 FPS, the input sequence from the HBS dataset represents 775

milliseconds, while the output sequence covers 675 milliseconds. This setup standardizes

the sequence lengths across datasets to enable a second experiment of fine-tuning.
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5.3. Results on HBS dataset

The results presented in Table 1 offer insights into the performance of multi-person

pose forecasting models evaluated on the Handball Shot (HBS) test dataset, leveraging

pre-training on the 3DPW and AMASS datasets. The analysis unveils notable varia-

tions in performance across different time intervals and evaluation metrics. The VIM

metric emphasizes the accuracy of individual poses at certain time intervals, and models

such as SoMoFormer, Future Motion, MPFSIR, and SocialTGCN demonstrate competi-

tive performance, with Future Motion achieving slightly superior overall scores compared

to others. Interestingly, while SocialTGCN performs well in long-term forecasting sce-

narios, it surprisingly exhibits suboptimal results in short-term forecasting tasks, while

other models generally perform better in short-term forecasting. The MPJPE metric,

which emphasizes the accuracy of pose sequences over individual poses, highlights the

standout performance of MPFSIR. This model consistently achieves the lowest MPJPE

scores across various time intervals, indicating its superior ability to accurately forecast

multi-person pose sequences. Furthermore, models like Future Motion and SoMoFormer

also demonstrate competitive performance, particularly excelling at shorter time inter-

vals. However, the results suggest that the overall effectiveness of these models may vary

depending on the specific forecasting requirements, with MPFSIR showcasing robust per-

formance across different time horizons.

Table 1: Evaluation results of multi-person pose forecasting models on the Handball Shot
(HBS) test dataset when pre-trained on 3DPW and AMASS datasets

Method
VIM MPJPE

75ms 175ms 375ms 475ms 675ms Overall 75ms 175ms 375ms 475ms 675ms Overall

Zero Velocity 68.91 127.67 238.84 293.51 382.84 222.35 133.27 212.36 360.59 435.76 581.38 344.67

LTD [4] 46.11 90.26 178.25 223.02 300.20 167.57 87.30 144.15 255.39 313.85 431.48 246.44

MRT [12] 40.09 82.53 165.42 205.49 292.87 157.28 74.41 128.96 237.56 292.73 407.81 228.29

TBIformer [6] 41.81 81.85 154.54 187.42 245.39 142.20 78.22 129.46 225.61 272.18 363.06 213.70

DViTA [5] 37.85 80.51 156.37 191.77 251.66 143.63 67.42 120.32 222.83 273.44 369.93 210.79

JRTransformer [13] 29.74 72.82 152.65 189.85 262.80 141.57 50.77 104.17 212.17 264.53 368.22 199.97

SocialTGCN [7] 33.20 72.15 149.28 181.05 232.54 133.64 60.61 109.14 209.62 257.78 345.65 196.56

SoMoFormer [9] 27.71 65.76 142.36 179.64 253.39 133.77 48.36 95.02 193.19 243.78 346.59 185.39

Future Motion [11] 28.22 65.20 136.23 169.33 239.72 127.74 49.60 95.59 188.73 235.01 328.81 179.55

MPFSIR [8] 28.62 66.33 135.35 166.32 259.55 131.24 50.04 94.71 186.88 231.47 325.19 177.66
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The results presented in Table 2 highlight the impact of fine-tuning pre-trained multi-

person pose forecasting models on the Handball Shot (HBS) train dataset, revealing no-

table enhancements in accuracy across both evaluation metrics. Notably, SoMoFormer

emerges as a standout performer, achieving the lowest scores across VIM and MPJPE

metrics after fine-tuning. This indicates superior precision in short-term and long-term

multi-person pose forecasting tasks.

Table 2: Evaluation results of multi-person pose forecasting models on the Handball Shot
(HBS) test dataset after fine-tuning

Method
VIM MPJPE

75ms 175ms 375ms 475ms 675ms Overall 75ms 175ms 375ms 475ms 675ms Overall

Zero Velocity 68.91 127.67 238.84 293.51 382.84 222.35 133.27 212.36 360.59 435.76 581.38 344.67

DViTA [5] 37.31 76.43 138.81 167.55 217.20 127.46 68.16 116.27 203.72 244.76 323.45 191.27

TBIformer [6] 37.29 72.05 126.37 148.89 185.48 114.02 70.09 114.83 194.66 229.93 293.37 180.58

SocialTGCN [7] 33.41 68.88 123.90 148.17 186.50 112.17 61.66 106.83 185.64 222.11 288.52 172.95

JRTransformer [13] 28.76 68.50 125.15 148.69 194.49 113.12 49.13 98.16 181.45 217.98 288.36 167.01

Future Motion [11] 29.52 63.61 123.63 152.41 210.23 115.88 53.61 96.93 178.56 219.05 298.66 169.36

MRT [12] 34.65 68.22 115.83 135.10 167.65 104.29 63.99 108.21 180.22 210.96 267.67 166.21

MPFSIR [8] 29.02 65.79 123.73 146.99 199.59 113.02 50.43 96.28 178.51 215.49 287.81 165.70

LTD [4] 33.29 66.19 115.46 132.53 160.87 101.67 61.89 104.01 174.28 205.02 258.65 160.77

SoMoFormer [9] 25.85 58.10 100.79 120.77 157.76 92.65 44.91 85.44 152.55 182.04 238.45 140.68

Several other models, including LTD, MRT, TBIformer, and JRTransformer, also ex-

hibit considerable improvements in forecasting capabilities across different time intervals

following fine-tuning. These enhancements highlight the effectiveness of domain-specific

adaptations in optimizing model performance for dynamic handball shot actions.

Interestingly, while models like MPFSIR, SocialTGCN, Future Motion, and DViTA

may experience slight performance degradation in short-term forecasting metrics after

fine-tuning, they significantly improve long-term forecasting accuracy. This suggests that

fine-tuning on the HBS train dataset enhances the models’ ability to capture complex

interaction dependencies over extended time intervals, leading to overall performance

gains across diverse forecasting scenarios.

The overall improvements following fine-tuning, as detailed in Table 3, reveal vary-

ing performance boosts across different model architectures. Transformer-based models

exhibit the most substantial improvement, with enhancements ranging from 19.82% to

33.69% on the VIM metric and 15.50% to 27.20% on the MPJPE metric. In contrast,

models employing GCN architecture show relatively modest performance gains, ranging

231



Table 3: Percentage improvements in VIM and MPJPE metrics after fine-tuning multi-
person pose forecasting models on the Handball Shot (HBS) train dataset, categorized by
model architecture.

Method Model type VIM MPJPE

Future Motion [11] GCN 9.28% 5.67%

MPFSIR [8] MLP 13.88% 6.73%

DViTA [5] LSTM 11.26% 9.26%

SocialTGCN [7] GCN & TCN 16.07% 12.01%

TBIformer [6] Transformer 19.82% 15.50%

JRTransformer [13] Transformer 20.10% 16.48%

SoMoFormer [9] Transformer 30.74% 24.12%

MRT [12] Transformer 33.69% 27.20%

LTD [4] GCN 39.33% 34.76%

from 9.28% to 16.07% on VIM and 5.67% to 12.01% on MPJPE after fine-tuning. No-

tably, the LTD model, utilizing GCN architecture, experiences a significant performance

increase of 39.33% on VIM and 34.76% on MPJPE, which can be attributed to its poor

performance during pre-trained evaluation. MLP and LSTM architectures demonstrate

comparable improvements after fine-tuning, ranging from 11.26% to 13.88% on VIM and

6.73% to 9.26% on MPJPE. These findings underscore the efficacy of domain-specific

fine-tuning in optimizing model performance for dynamic handball shot actions, with

Transformer-based models proving most adaptable to domain-specific datasets.

Figure 2 illustrates the predicted poses of a test example from all models, with GT

representing ground-truth poses. While Transformer-based models demonstrated the best

adaptation to the new domain in terms of overall performance metrics, their predicted

poses often lack movement dynamic and appear static, resembling repeated poses in dif-

ferent locations. An exception to this trend is SoMoFormer, which produces valid and

realistic movement aligned with the model’s performance on the dataset. TBIFormer,

JRTransformer, and MPFSIR generate even some invalid poses with minimal movement

dynamic. Interestingly, models like SocialTGCN, Future Motion, and LTD exhibit more

realistic movement dynamics, suggesting that GCN-based models may excel in modeling

movement dynamics, while Transformer-based models excel in global position prediction,

resulting in superior VIM and MPJPE scores. These observations highlight the need for

232



a more comprehensive metric that rewards accuracy in movement dynamics regardless of

global position, serving as a potential area for future research and development.

Figure 2: An example of predicted poses at different time intervals in a test scene from
fine-tuned models, with GT representing ground-truth poses.

233



6. Conclusion

In conclusion, this study investigated the effectiveness of multi-person pose forecasting

models on the Handball Shot (HBS) dataset through two experiments: evaluating pre-

trained models and fine-tuning them on the HBS test dataset. The analysis revealed

valuable insights into the applicability and adaptability of state-of-the-art models in real-

world scenarios involving dynamic handball actions.

Firstly, the evaluation of pre-trained models showcased competitive performance across

various architectures, with models like SocialTGCN, Future Motion, MPFSIR, and So-

MoFormer demonstrating notable accuracy in multi-person pose forecasting on HBS. It

should be noted that the MPFSIR model consistently had low MPJPE scores in this

experiment.

Secondly, fine-tuning the pre-trained models on the HBS train dataset led to significant

performance improvements across all models. Transformer-based models demonstrated

the most significant improvements in both short-term and long-term forecasting accuracy,

highlighting the efficacy of domain-specific fine-tuning.

Overall, this research underscores the importance of domain adaptation for optimizing

multi-person pose forecasting models to specific action contexts like handball shots. The

findings contribute to advancing the understanding of model adaptability in dynamic

environments and lay a foundation for future research in the domain of action recognition

and motion analysis. Further exploration could focus on refining fine-tuning strategies

and exploring additional datasets to enhance model robustness and generalizability in

practical applications.
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1. Uvod

U suvremenim pristupima predvidanja kretanja vǐse osoba na sceni, duboko učenje

igra ključnu ulogu primjenjujući različite arhitekture kako bi se odgovorilo na složenost di-

namičnih scena. Osim najnovijih modela koji koriste arhitekturu Transformera, primjećuje

se značajna uloga graf konvolucijskih mreža (GCN) i jednostavnih mreža kao što je to

vǐseslojni perceptron (MLP). Transformeri su pokazali uspješnost u modeliranju vremen-

skih zavisnosti i redoslijeda dogadaja. S druge strane, GCN-ovi pružaju moćan alat za

modeliranje kompleksnih medusobnih zavisnosti izmedu subjekata na sceni, uzimajući u

obzir topološke odnose izmedu njih. Integracija tih arhitektura pridonosi sveobuhvatnom

pristupu predvidanja kretanja u scenama s vǐse sudionika. Ovaj rad fokusira se na analizu

i evaluaciju raznolikih modela s naglaskom na njihovu sposobnost predvidanja kretanja

vǐse osoba na sceni, uključujući pristupe temeljene na Transformer, GCN i MLP arhitek-

turi. Ključna karakteristika predvidanja kretanja vǐse osoba na sceni leži i u potrebi

za modeliranjem interakcija izmedu osoba i medusobnih zavisnosti. Ovaj problem se

može rješavati ručnim oblikovanjem značajki dinamike interakcije, ali takoder postoji po-

tencijal da model samostalno nauči ove dinamike kroz odgovarajuće skupove podataka.

Kod evaluacije modela koristiti će se metrike Mean Per Joint Position Error (MPJPE)

i Visibility-Ignored Metric (VIM), kako bi se pružio dublji uvid u njihove performanse

na novom MI-Motion skupu podataka. Kroz ovu analizu, rad će doprinijeti razumije-

vanju kompleksnosti i raznolikosti modela za predvidanje kretanja vǐse osoba na sceni,

istražujući njihovu primjenjivost i efikasnost u stvarnim scenarijima interakcije.

Prema tome, doprinose ovog rada se može sažeti na sljedeći način:

1. evaluacija najnovijih modela za predvidanje kretanja vǐse osoba na sceni na MI-

Motion skupu podataka kako bi se pružio dublji uvid u primjenjivost modela na

novom skupu podataka

2. analiza najnovijih modela za predvidanje kretanja vǐse osoba na sceni u različitim

scenarijima, kao što su: park, ulica, unutarnji prostor, posebna mjesta i složene

gomile.

3. analiza performansi i efikasnosti modela za predvidanje kretanja vǐse osoba na sceni
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2. Pregled literature

U istraživanju predvidanja kretanja vǐse osoba razmatramo raznolike pristupe koji se

koriste u relevantnim radovima. Bez obzira na raznolikost arhitektura i formulacija prob-

lema, primjetan je zajednički element - Discrete Cosine Transform (DCT), koji se često

koristi za pretvaranje točaka iz koordinatnog sustava u frekvencijsku domenu, olakšavajući

modelima učenje predvidanja kretanja osoba [2, 4, 7, 3, 5, 6]. Smanjenje težine zadatka

postiže se i pretvaranjem sekvenci poza u pomak izmedu slijednih poza, što se izračunava

kao razlika izmedu dviju uzastopnih poza [8]. Modeli se razlikuju u korǐstenim arhitektu-

rama, obuhvaćajući konvolucijske mreže, vǐseslojne perceptrone, pa sve do Transformera.

Graf konvolucijske mreže (GCN) se često koriste u modelima temeljenim na konvoluci-

jskim mrežama [2, 4], dok se vremenske konvolucijske mreže (TCN) koriste za modeliranje

vremenskih zavisnosti izmedu poza u sekvenci [4]. Arhitekture Transformera postaju

sveprisutne u predvidanju kretanja, pridonoseći inovacijama u blokovima i formulaciji

problema [3, 6, 8]. Autori u radu [6] posebno ističu značaj modeliranja sekvenci zglobova

umjesto poza, omogućavajući paralelno predvidanje cijele budućnosti za sve zglobove. U

radu [8] se dodaju informacije o relacijama izmedu zglobova u formulaciju problema kako

bi se pobolǰsale performanse modela. Efikasnost modela naglašena je u radu [5], gdje se

koriste blokovi s vǐseslojnim perceptronom kako bi se postigle usporedive performanse uz

značajno manju veličinu modela. U kontekstu predvidanja kretanja vǐse osoba na sceni,

posebna pažnja posvećuje se modeliranju socijalnih interakcija medu osobama na sceni,

budući da te interakcije značajno utječu na buduća kretanja svakog pojedinca. Modeli

koji uključuju ovu komponentu [4, 7, 3, 5, 6, 8] često grupno obraduju sve osobe na

sceni, omogućavajući modelu da samostalno uči o medusobnim zavisnostima izmedu kre-

tanja pojedinaca. Ova zajednička obrada pruža modelu potrebne informacije o socijalnim

interakcijama, čime se postiže bolje razumijevanje dinamike kretanja vǐse osoba u kom-

pleksnom scenariju. Tablica 1 pruža sveobuhvatan pregled različitih modela korǐstenih

u istraživanju predvidanja kretanja vǐse osoba na sceni. Svaki model je opisan prema

ključnim karakteristikama, uključujući sposobnost rada s vǐse osoba, vrstu arhitekture

koju primjenjuje, te ukupan broj parametara izražen u milijunima.
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Tablica 1: Pregled karakteristika modela za predvidanje kretanja vǐse osoba na sceni.

Model
Vǐse
osoba

Vrsta
Broj

parametra (M)

MRT [7] ✓ Transformer 8,92

HRI [2] GCN 2,83

TBIFormer [3] ✓ Transformer 8,88

SocialTGCN [4] ✓ GCN & TCN 3,37

SoMoFormer [6] ✓ Transformer 4,88

MPFSIR [5] ✓ MLP 0,36

JRTransformer [8] ✓ Transformer 3,70

3. MI-Motion skup podataka

Skup podataka MI-Motion (Multi-person Interaction Motion) [4] predstavlja obiman

skup podataka s vǐsestrukim subjektima (3-6) koji izvode različite interakcije u pet ra-

zličitih scenarija svakodnevnih aktivnosti. Autori su prikupili pakete interaktivnih akcija

s Unreal Engine asset store-a i snimili odredene specijalizirane akcije koristeći sustav za

praćenje pokreta temeljen na markerima. Umjesto nasumičnog miješanja akcija, što može

rezultirati nepraktičnim podacima, autori su primijenili pažljiv pristup prilagodbe inter-

aktivnih pokreta korǐstenjem ovih sekvenci akcija unutar Unreal Engine 5 game engine-a.

Nadalje, pobolǰsali su pokrete koristeći urednik animacija kako bi stvorili prirodna in-

teraktivna ponašanja. Ovaj metodološki pristup osigurava da generirani pokreti budu

realistični i vjerojatni, pružajući precizniju reprezentaciju interaktivnih scenarija. Sinte-

tizirani skup podataka sastoji se od 210 sekvenci s 3 do 6 subjekata, kategoriziranih prema

pet različitih scenarija aktivnosti (park, ulica, unutarnji prostor, posebna mjesta i složene

gomile), kako je ilustrirano na Slici 1. 3D ključne točke subjekata zabilježene su kroz

ukupno 167 tisuća okvira. Kako bi osigurali pouzdanu evaluaciju, autori su uspostavili

odgovarajuće podjele za učenje i testiranje.
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Slika 1: Prikaz primjera scena iz skupa podataka MI-Motion. Raznolikost scena uključuje
prikaze iz parka, ulice, unutarnjih prostora, posebnih mjesta i složenih gomila. Svaka scena
nosi svoje karakteristične značajke koje uključuju specifične uvjete, dinamiku i medusobne
interakcije.

4. Evaluacija performansi modela

4.1. Piprema skupa podataka i formulacija problema

MI-Motion skup podataka je sustavno pripremljen kako bi se omogućila učinkovita

evaluacija modela za predvidanje kretanja vǐse osoba. Prvotno prikupljene sekvence,

snimljene brzinom od 75 okvira u sekundi (FPS), su prilagodene za potrebe istraživanja.

U procesu pripreme podataka, uzorkovanje je provedeno kako bi se smanjila frekvencija

na 25 FPS, čime se osigurava učinkovitija analiza bez značajnog gubitka informacija. Od

ukupno 20 dostupnih zglobova, odabrano je 18 ključnih zglobova kako bi se fokusiralo na

bitne dijelove ljudskog tijela relevantne za predvidanje kretanja. Ovaj odabir zglobova

omogućuje smanjenje dimenzionalnosti podataka, čime se pojednostavljuje ulazni skup za

modele i olakšava učenje.

U procesu učenja i evaluacije modela, svaka ulazna sekvenca u model bit će reprezen-

tirana s 25 okvira (1000 ms), dok će predvidanje budućeg kretanja obuhvaćati 50 okvira

(2000 ms). Konačan izgled pripremljene sekvence za učenje i predvidanje je prikazan na

Slici 2. Ova precizna i pomno osmǐsljena obrada MI-Motion skupa podataka stvara solidnu

osnovu za objektivnu evaluaciju modela za predvidanje kretanja vǐse osoba, pridonošenje

dubljem razumijevanju njihove primjenjivosti i učinkovitosti u različitim scenarijima.
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Slika 2: Prikaz formulacije problema predvidanja kretanja vǐse osoba na sceni. Ulazni
podaci u model obuhvaćaju 1 sekundu prethodnih kretanja osobe, dok model koristi tu
informaciju kako bi predvidio buduća kretanja u razdoblju od 2 sekunde.

4.2. Evaluacijske metrike

Metrika MPJPE (Mean Per Joint Position Error) predstavlja široko prihvaćenu mjeru

za evaluaciju preciznosti metoda predvidanja kretanja osoba [2, 5, 7, 6]. Ova metrika kvan-

tificira prosječnu euklidsku udaljenost izmedu predvidenih položaja zglobova i stvarnih

položaja, obuhvaćajući sve zglobove u strukturi tijela. Niža vrijednost MPJPE označava

bolje poravnanje predvidenih položaja sa stvarnim, pružajući mjeru ocjene točnosti predvidenog

položaja zglobova. Metrika omogućuje analizu performansi predvidanja na razini po-

jedinačnih zglobova, pridonoseći dubljem razumijevanju preciznosti modela u zadatku

predvidanja položaja tijela.

Formula za izračun MPJPE metrike izgleda kako slijedi:

EMPJPE(y, φ) =
1

Nφ

Nφ∑
i=1

∥∥∥P (f)
y,φ(i)− P

(f)
gt,φ(i)

∥∥∥
2

(1)

gdje f označava vremenski korak, a φ označava odgovarajuću strukturu tijela. P
(f)
y,φ(i)

predstavlja predvideni položaj zgloba i, dok P
(f)
gt,φ(i) označava stvarni položaj tog zgloba.

Nφ predstavlja ukupan broj zglobova u strukturi tijela.

Još jedna često korǐstena metrika je VIM (Visibility-Ignored Metric) [1], koja se

izračunava kao srednja udaljenost izmedu stvarnih i predvidenih položaja zglobova. Za

izračun ove udaljenosti, dimenzije zglobova i koordinata spajaju se u zajednički vektor,

rezultirajući pojedinačnim vektorskim prikazom i za stvarne i za predvidene položaje

zglobova. Dimenzionalnost ovog vektora iznosi 3J, gdje J označava broj zglobova. Nakon

što su položaji zglobova vektorizirani, izračunava se euklidska udaljenost (L2 norma)

izmedu svakog odgovarajućeg para stvarnih i predvidenih položaja zglobova. Zatim se
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izračunava prosječna vrijednost preko svih zglobova kako bi se dobio konačni rezultat

VIM.

VIM metrika izračunava se kako slijedi:

EVIM(y, φ) =
1

3Jφ

3Jφ∑
i=1

∥∥∥P (i)
gt,φ − P (i)

y,φ

∥∥∥
2

(2)

gdje J označava broj zglobova, P
(i)
gt,φ predstavlja stvarni položaj i-tog zgloba (vek-

toriziran), P
(i)
y,φ označava predvideni položaj i-tog zgloba (vektoriziran), ∥·∥2 označava eu-

klidsku udaljenost (L2 norma), a 1
3Jφ

∑
i = 13Jφ predstavlja srednju vrijednost izračunatu

preko svih zglobova. Ova metrika pruža pouzdanu procjenu uskladenosti izmedu predvidenih

i stvarnih položaja zglobova, doprinoseći sveobuhvatnoj evaluaciji točnosti predvidanja

položaja.

5. Rezultati evaluacije

Rezultati evaluacije, prikazani u tablicama 2 za MPJPE metriku i 3 za VIM metriku,

otkrivaju značajne razlike u performansama različitih modela u zadatku predvidanja kre-

tanja vǐse osoba na sceni. Modeli MPFSIR i JRTransformer ističu se kao najuspješniji, dok

MRT model ostvaruje najslabije rezultate. Analiza rezultata ukazuje na potrebu za posti-

zanjem ravnoteže izmedu kratkoročnog i dugoročnog predvidanja kretanja. Modeli poput

TBIFormer, SoMoFormer i JRTransformer pokazuju bolje performanse u kratkoročnom

predvidanju, no istovremeno imaju poteškoće u dugoročnim predvidanjima u usporedbi s

konkurentskim modelima koji ostvaruju bolje rezultate dugoročnog predvidanja, unatoč

lošijem kratkoročnom predvidanju. Iz rezultata se može uočiti da modeli s arhitek-

turom Transformera dominiraju u kratkoročnom predvidanju, ali su lošiji u dugoročnom

predvidanju. S druge strane, modeli koji se oslanjaju na konvolucijske mreže ili vǐseslojne

perceptrone ostvaruju bolje dugoročne rezultate, dok su im performanse u kratkoročnom

predvidanju inferiornije u usporedbi s Transformer modelima. Analizom VIM metrike

se može uočiti da modeli s arhitekturom Transformera uzimaju u obzir vremenske za-

visnosti, gdje veća kratkoročna greška rezultira većom dugoročnom greškom. S druge
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strane, modeli s drugim arhitekturama pokazuju manji utjecaj kratkoročnog predvidanja

na dugoročnu preciznost.

Tablica 2: Prikaz rezultata modela iskazan kroz MPJPE metriku.

Scena Park Ulica Unutarnji prostor Posebna mjesta Složene gomile

Vrijeme (ms) 400 1200 2000 400 1200 2000 400 1200 2000 400 1200 2000 400 1200 2000

MRT [7] 61 150 241 52 122 172 64 139 189 115 240 328 64 166 252

HRI [2] 93 131 177 65 95 119 75 116 135 138 217 262 77 130 180

TBIFormer [3] 38 104 165 36 90 132 40 98 132 92 204 268 39 112 174

SocialTGCN [4] 45 92 133 36 73 95 49 91 117 103 195 243 43 97 140

SoMoFormer [6] 37 93 144 27 75 99 36 85 111 86 184 240 30 85 118

MPFSIR [5] 32 81 125 24 62 77 32 73 97 80 172 217 27 72 101

JRTransformer [8] 29 79 123 22 62 86 28 71 95 78 173 226 24 68 97

Tablica 3: Prikaz rezultata modela iskazan kroz VIM metriku.

Scena Park Ulica Unutarnji prostor Posebna mjesta Složene gomile

Vrijeme (ms) 400 1200 2000 400 1200 2000 400 1200 2000 400 1200 2000 400 1200 2000

MRT [7] 56 129 210 50 91 135 56 105 136 100 177 224 57 138 198

HRI [2] 54 103 148 43 56 81 50 79 89 102 145 142 51 95 134

TBIFormer [3] 41 97 146 36 73 112 38 78 97 87 155 169 39 100 144

SocialTGCN [4] 42 80 115 33 56 72 42 64 87 88 139 145 39 80 112

SoMoFormer [6] 40 89 135 32 63 86 36 69 89 83 141 167 34 82 100

MPFSIR [5] 36 80 113 28 49 62 33 61 77 79 124 135 31 64 82

JRTransformer [8] 34 78 114 27 53 74 30 60 79 78 135 146 29 62 79

Modeli ostvaruju najmanje zadovoljavajuće rezultate na scenariju ”Posebna mjesta”,

pri čemu se model MPFSIR izdvaja kao najuspješniji s iznimno dobrim rezultatima u obje

evaluacijske metrike. Nasuprot tome, najbolje performanse modela bilježe se na scenariju

”Ulica”, gdje su kretanja osoba jednostavnija i uglavnom neovisna o prisutnosti drugih

osoba u sceni. U scenarijima koji uključuju socijalne interakcije, modeli koji integriraju

modeliranje medusobnih zavisnosti izmedu osoba pozicioniraju se bliže vrhu rezultatske

ljestvice, reflektirajući bolje razumijevanje kompleksnih socijalnih dinamika i njihov utje-

caj na kretanje.

Tablica 4 prikazuje prosječne greške modela izražene kroz VIM i MPJPE metrike u

različitim scenarijima. Iz tablice se može uočiti značajna varijabilnost rezultata modela s

arhitekturom Transformera, naglašavajući kako različite formulacije problema i blokovi u

modelu mogu izazvati bitno različite performanse. Iz analize rezultata proizlazi da modeli
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raznolikim strategijama uče predvidati buduće kretanje, posebno ističući se modeli HRI,

SocialTGCN i MPFSIR po značajnom unaprjedenju rezultata na VIM metrici u odnosu na

MPJPE metriku. Ovi rezultati sugeriraju da navedeni modeli uspješno predvidaju poze u

specifičnim vremenskim okvirima, neovisno o složenim vremenskim zavisnostima izmedu

prethodnih okvira koji vode do odredene poze. Nadalje, primjećuje se da modeli mogu is-

praviti eventualne pogreške u inicijalnom kratkoročnom predvidanju, postižući preciznije

dugoročno predvidanje, što je posebno uočljivo u rezultatima VIM metrike. MPJPE

metrika, s druge strane, striktnije kažnjava pogreške u kratkoročnom predvidanju čak i

prilikom evaluacije dugoročnog kretanja. Unatoč relativno malim skupom podataka za

učenje modela, najmanji model MPFSIR, ostvaruje rezultate usporedive s najboljim mod-

elom JRTransformer, što dovodi u pitanje potrebu za dodatnom složenošću Transformer

modela u kontekstu predvidanja kretanja osobe. Važno je napomenuti da ograničenje

veličine skupa podataka može utjecati na performanse Transformer modela, koji inače

zahtijeva obilje podataka za postizanje optimalnih rezultata.

Tablica 4: Prikaz rezultata modela iskazan kroz MPJPE i VIM metrike s prosječnim
greškama kroz sve scenarije.

Metrika MPJPE VIM

Vrijeme (ms) 400 800 1200 1600 2000 Prosjek 400 800 1200 1600 2000 Prosjek

MRT [7] 71 123 163 201 236 159 64 99 128 156 181 126

HRI [2] 90 117 138 156 175 135 60 81 96 111 119 93

TBIFormer [3] 49 90 122 149 174 117 48 79 101 120 134 96

SocialTGCN [4] 55 88 110 129 146 105 49 70 84 99 106 81

SoMoFormer [6] 43 80 104 125 142 99 45 74 89 105 115 86

MPFSIR [5] 39 71 92 109 123 87 41 65 76 86 94 72

JRTransformer [8] 36 68 91 110 125 86 40 63 78 91 98 74

Na slici 3 prikazana je jedna sekvenca kretanja s ulaznim podacima od 1 sekunde te

predvidanjima sljedećih 2 sekunde za svaki model. Ova vizualna reprezentacija omogućuje

usporedbu izmedu predvidanja modela i stvarnih kretanja, pružajući uvid u točnost i

preciznost svakog modela u predvidanju budućih kretanja osoba na sceni.
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Slika 3: Prikaz jedne sekvence kretanja s ulaznim podacima od 1 sekunde i predvidanjima
sljedećih 2 sekunde za svaki model. Na vrhu su prikazana stvarna kretanja kao referentni
podaci (GT - ground truth).
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6. Zaključak

Ovaj rad proučava i usporeduje performanse različitih modela za predvidanje kre-

tanja vǐse osoba na sceni. Kroz evaluaciju temeljenu na metrikama MPJPE i VIM,

analizirane su prednosti i nedostaci modela s različitim arhitekturama, pridonoseći bol-

jem razumijevanju njihove učinkovitosti u raznolikim scenarijima. Evaluirani modeli

se mogu grupirati u dvije osnovne kategorije: modeli s arhitekturom Transformera i

modeli koji ne koriste arhitekturu Transformera. Modeli s arhitekturom Transformera

pokazali su se učinkovitima u kratkoročnim predvidanjima, ali su istovremeno lošiji u

dugoročnom predvidanju, nasuprot modelima koji ne koriste arhitekturu Transformera,

a koji su pokazali suprotnu dinamiku. Rezultati sugeriraju da modeli s arhitekturom

Transformera bolje usvajaju modeliranje vremenskih zavisnosti unutar sekvenci, pri čemu

točnost kratkoročne greške značajnije utječe na točnost dugoročne greške u usporedbi s

modelima bez arhitekture Transformera. Kao zajednički pobjednici istaknuli su se modeli

MPFSIR i JRTransformer, koji su pokazali slične rezultate unatoč pripadnosti različitim

skupinama modela. Ovo ukazuje na relevantnost daljnjeg istraživanja obiju skupina mod-

ela kako bi se još bolje razumjele njihove prednosti i ograničenja, te unaprijedila raznolikost

pristupa u predvidanju kretanja vǐse osoba na sceni.

Osim toga, dobiveni rezultati postavljaju pitanje opravdanosti dodatne složenosti

modela arhitekture Transformera u kontekstu predvidanja kretanja osoba, s obzirom na

činjenicu da model MPFSIR postiže iste rezultate koristeći znatno manje parametara

i efikasniju arhitekturu. Ovo istraživanje dodatno ističe izazove povezane s primjenom

Transformer modela na manjim skupovima podataka, gdje takvi modeli ne mogu pot-

puno iskazati svoj puni potencijal. Za sveobuhvatnu usporedbu modela, nužno je provesti

evaluaciju na velikom skupu podataka kako bi se istražilo mogu li modeli sa arhitekturom

Transformera značajnije nadmašiti performanse drugih modela.
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