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digitalnih tehnologija, Sveučilište u Rijeci
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Abstract

This dissertation researches computer vision techniques, utilizing deep learning models such as
U-Net and GPT-4o, to improve the diagnosis of canine eye diseases in veterinary ophthalmol-
ogy. One of the the contribution of this work is the development of the DogEyeSeg4 dataset, a
collection of real-world clinical images specifically annotated for canine ophthalmology. Ad-
ditionally, synthetic images based on DogEyeSeg4 dateset images were generated using Stable
Diffusion with LoRA fine-tuning to enhance model robustness and generalization.

A modified U-Net model, U-Net+ResNet34(RSD), was trained on DogEyeSeg4 and synthetic
images, for precise semantic segmentation of canine eye symptoms such as corneal cloudiness,
scleral redness, excessive tearing, and colored mass protrusion in the eye corner. The study
also trained individual binary segmentation models for each symptom, utilizing heatmaps from
SSD eye detection to reduce false positives. Although these binary models improved symptom
isolation, they faced challenges with overlapping conditions and increased complexity. Ulti-
mately, the multiclass U-Net+ResNet34(RSD) model provided better overall performance and
efficiency.

GPT-4o interpreted the segmented images, outperforming other Large Language Models (LLMs)
in generating accurate diagnostic suggestions, particularly when using segmentation masks
from the adjusted U-Net with a ResNet backbone alongside the original images.

Despite promising results, challenges remain in diagnosing complex or subtle conditions like
corneal ulcers. Addressing these challenges should be considered when developing more ac-
cessible and reliable diagnostic tools. These findings underscore the potential for AI-driven
tools to revolutionize veterinary ophthalmology, offering more accurate and efficient diagnostic
processes that can ultimately improve animal care.

Keywords: canine ophthalmology, computer vision, U-Net, GPT-4o, image segmentation, deep
learning, veterinary diagnostics, DogEyeSeg4, synthetic image augmentation



Prošireni sažetak

Disertacija istražuje primjenu tehnika računalnog vida za poboljšanje dijagnostike očnih bolesti
kod pasa, s posebnim naglaskom na veterinarsku oftalmologiju. Cilj rada je unaprijediti pro-
ces dijagnostike korištenjem modela dubokog učenja, kao što su U-Net i GPT-4o, te razviti
sveobuhvatan sustav koji kombinira segmentaciju slika i interpretaciju dijagnostičkih rezultata.
Razvijeni sustav omogućava veterinarima točniju i bržu dijagnozu očnih bolesti, smanjujući
potrebu za ručnom analizom i stručnim znanjem u svakodnevnoj kliničkoj praksi. Osnovni cilj
istraživanja je poboljšanje postojećih modela računalnog vida za dijagnostiku kroz inovativnu
primjenu stvarnih kliničkih slika, sintetičke augmentacije podataka i naprednih modela dubokog
učenja.

Postupak istraživanja uključivao je nekoliko ključnih faza. U početku je stvoren i objavljen
novi skup podataka pod nazivom DogEyeSeg4, koji sadrži slike snimljene u stvarnim uvje-
tima veterinarske klinike. Ovaj skup podataka uključuje različite pasmine, osvjetljenje i speci-
fične kliničke uvjete, što ga čini pogodnim za treniranje modela koji se mogu generalizirati na
širok raspon dijagnostičkih scenarija. Budući da su stvarni klinički podaci često ograničeni, ko-
rištena je sintetička augmentacija, pri čemu su sintetičke slike dodane kao sloj na stvarne slike
kako bi se povećala varijabilnost i broj dostupnih podataka za treniranje. Time je osigurano da
model može bolje prepoznati rijetke ili manje uobičajene simptome, čime se poboljšava njegova
sposobnost generalizacije.

Unaprijed̄en segmentacijski model U-Net+ResNet34(RSD) korišten je za automatsko prepozna-
vanje simptoma poput zamućenja rožnice, crvenila bjeloočnice, prekomjernog suzenja i protruz-
ija obojene mase u kutu oka. Osim višeklasnog modela, trenirani su i individualni binarni mod-
eli za svaki simptom, koristeći toplinske karte iz SSD detekcije oka kako bi se smanjili lažno
pozitivni rezultati. Iako su binarni modeli poboljšali izolaciju pojedinih simptoma, suočili su se
s izazovima preklapajućih stanja i većom složenošću, dok je višeklasni U-Net+ResNet34(RSD)
model pružio bolju ukupnu učinkovitost.

Nakon segmentacije, slike su proslijed̄ene modelima GPT-4 i GPT-4o koji su zaduženi za in-
terpretaciju simptoma i generiranje tekstualnih dijagnoza. Usporedba rezultata izmed̄u GPT-4
i njegove napredne verzije GPT-4o pokazala je da GPT-4o nudi značajno bolje dijagnostičke
prijedloge, osobito kada se koriste maske segmentiranih slika zajedno s originalnim slikama.
Evaluacija uspješnosti obavljena je korištenjem raznih metrika, uključujući BERTScore, CLIP-
Score i druge koje se koriste za evaluaciju teksta, pri čemu su rezultati pokazali superiornost
kombiniranih pristupa u odnosu na modele koji se oslanjaju isključivo na neobrad̄ene slike.

Rezultati istraživanja ukazuju na visoku učinkovitost razvijenog sustava u prepoznavanju i di-
jagnosticiranju bolesti oka kod pasa. Modeli su se pokazali posebno uspješnima u dijagnosti-
ciranju bolesti poput uveitisa i prolapsa žlijezde trećeg očnog kapka, gdje je GPT-4o postigao
najviše rezultate. Takod̄er je uočen problem kod dijagnosticiranja kornealnog ulkusa, gdje GPT-
4o nije uspio prepoznati bolest, za razliku od GPT-4.



Ovi rezultati ukazuju na potrebu za daljnjim poboljšanjima u modelima, osobito u slučajevima
kada su simptomi suptilni ili atipični. Nadalje, segmentacijski model U-Net+ResNet34(RSD)
pokazao se robusnim u širokom spektru slučajeva, no performanse su varirale ovisno o kvaliteti
ulaznih slika, što ukazuje na potrebu za dodatnim usavršavanjem kako bi se smanjila ovisnost
o vanjskim faktorima poput osvjetljenja i fokusa slike. Zaključci ovog istraživanja ukazuju
na veliki potencijal primjene računalnog vida i modela dubokog učenja u svakodnevnoj vet-
erinarskoj praksi. Integracija modela U-Net+ResNet34(RSD) za segmentaciju i GPT-4o za
dijagnostičku interpretaciju omogućava brže i preciznije prepoznavanje bolesti oka kod pasa,
smanjujući potrebu za ručnom analizom od strane eksperta te omogućujući veterinarima brže
donošenje odluka. Daljnji razvoj ovog sustava uključuje proširenje skupa podataka DogEye-
Seg4 kako bi se uključile slike iz više izvora i raznih pasmina, širi spektar simptoma, te istraži
nove arhitekture modela, poput samokonfigurirajućih modela i transformera, koji bi mogli do-
datno unaprijediti preciznost segmentacije i dijagnoze. Takod̄er, realna primjena ovog sustava u
realnim uvjetima u veterinarskim klinikama predstavlja značajanu pomoć veterinarima ubrzava-
jući i olakšavajući donošenje preliminarne dijagnoze na temelju automatski segmentiranih slika.
Očekuje se da će daljnje usavršavanje modela i prikupljanje povratnih informacija iz stvarnih
kliničkih okruženja poboljšati uspješnost sustava i osigurati njegovu širu primjenu.

Konačno, sustav nudi mogućnosti za daljnja istraživanja u području veterinarske medicine, ne
samo za oftalmološke bolesti već i za druge dijagnostičke zadatke, što može dovesti do razvoja
novih alata koji će unaprijediti kvalitetu skrbi za životinje.

Ključne riječi: veterinarska oftalmologija, računalni vid, U-Net, GPT-4o, segmentacija slike,
duboko učenje, veterinarska dijagnostika, DogEyeSeg4, sintetička augmentacija slika
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Chapter 1

Introduction

1.1 Problem and Research Subject with Hypothesis

The field of veterinary ophthalmology faces significant challenges in diagnosing and managing
ocular conditions in canines, primarily due to the limited availability of advanced diagnostic
tools. While human medicine has seen remarkable progress with the integration of computer
vision techniques, especially in the domain of ophthalmology[1], these technological advance-
ments have not been fully leveraged in veterinary applications. The disparity between the di-
agnostic capabilities available in human and veterinary medicine highlights a critical gap that
this research aims to address. The core problem of this dissertation is to bridge this gap by
developing and applying computer vision methods specifically tailored for canine eye disease
detection and diagnosis.

The subject of this research centers on the innovative application of deep learning models, par-
ticularly those designed for image segmentation, to help diagnosing ocular conditions in dogs.
The research explores the potential of adapting and optimizing image segmentation models,
which have proven effective in human medical imaging, to meet the challenges posed by vet-
erinary ophthalmology. This includes dealing with diverse imaging conditions, varying image
quality, and the need for precise segmentation of specific ocular features.

To guide this research, the following hypotheses have been formulated:

• A Computer vision model can recognize certain canine ocular conditions in still im-
ages taken in an unconstrained environment.

• Modification of the input and architecture of the U-Net network contributes to a
better segmentation of canine eye conditions.

The first hypothesis addresses the core objective of demonstrating that a computer vision model,
when applied to images captured in non-ideal, real-world settings, can accurately identify spe-
cific ocular conditions in canines. This aspect of the research is crucial because, unlike con-
trolled laboratory environments, real-world veterinary practices often involve images that vary
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Introduction

significantly in quality due to factors such as lighting, angle, and the behavior of the animals
during imaging.

The second hypothesis related to the technical enhancement of the model itself, positing that
by modifying both the input features and the architectural elements of the U-Net network, the
model’s performance in segmenting canine eye conditions can be improved. This hypothesis
suggests that through careful adjustments and refinements, the model can be made more robust
and capable of handling the complexities associated with veterinary ophthalmic images, which
often include a wide range of conditions and variations.

Together, these hypotheses set the foundation for a comprehensive investigation into the ap-
plicability of advanced computer vision techniques in veterinary medicine, aiming to develop
tools that could revolutionize the way canine eye diseases are diagnosed and managed in clinical
settings.

1.2 Purpose and Objectives

The purpose of this dissertation is to apply advanced computer vision techniques to assist med-
ical staff with the diagnosis of canine oculus conditions. Specifically, the research is directed
towards developing a dataset and implementing deep learning models aimed at achieving two
primary tasks: symptom segmentation and disease recognition in real-world veterinary set-
tings. Symptom segmentation here refers to semantic segmentation, where the model distin-
guishes between specific regions within the eye, such as the cornea, sclera, and conjunctiva,
to identify areas with ocular symptoms like corneal cloudiness or scleral redness. This seg-
mentation provides a detailed pixel-level analysis, supporting a more accurate assessment of
observable abnormalities in the eye.

Following semantic segmentation, the segmented images and identified symptoms are processed
by a large language model (LLM) to generate a diagnostic interpretation. The objective for
the LLM is to produce an accurate diagnosis that aligns with reference diagnoses, aiding in
identifying the disease (e.g., "cherry eye") based on the segmented symptoms. Additionally,
there is potential for the LLM to suggest treatment guidance for the identified ocular condition,
though this application has not been tested in this study.

The specific objectives, aligned with the expected scientific contributions, are:

1. An image dataset for machine learning of canine eye diseases: Creation of a publicly
available, annotated dataset for training machine learning models on canine eye diseases.

2. Deep convolutional neural network model for recognition of canine eye clinical symp-
toms and diseases from still images in unconstrained environments: Development of
a CNN-based model for identifying eye symptoms and diseases in images captured under
varied conditions.

3. Deep neural network based on U-Net for segmentation of canine eye clinical symp-
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toms from still images in unconstrained environments: Implementation of a U-Net-
based model for segmenting clinical symptoms in canine eye images.

4. An improved method for segmentation of canine eye conditions based on U-Net:
Refinement of the U-Net model to improve segmentation accuracy for diagnosing canine
eye conditions.

1.3 Brief Review of Previous Research

Computer vision has made significant strides in human medical diagnostics, with successful
applications in ophthalmology, such as the detection of glaucoma and retinal diseases using
Convolutional Neural Networks (CNNs)[2, 3]. However, the application of similar technolo-
gies in veterinary medicine, particularly for diagnosing canine eye diseases, is limited. Pre-
vious studies have demonstrated the potential of CNNs for disease recognition in controlled
environments[4], but there remains a gap in their application under real-world, unconstrained
conditions. This research aims to bridge that gap by developing a tailored dataset and a spe-
cialized U-Net model for veterinary use. In recent years, models like Grounding SAM[5] have
introduced flexible, prompt-driven approaches to object detection and segmentation, offering
utility in fields with limited labeled data. Grounding SAM combines Grounding DINO[6] for
object detection with SAM (Segment Anything Model)[7] for segmentation, relying on text
prompts instead of extensive retraining. This adaptability, beneficial for domains like veteri-
nary ophthalmology, provides solution when conventional labeled datasets are unavailable.

1.4 Scientific Methods

The research employs several scientific methods:

1. Data Collection and Annotation: A custom dataset was created using images collected
from veterinary clinics and annotated by experts.

2. Deep Learning Model Development: The U-Net architecture was modified and trained
using transfer learning and data augmentation techniques to improve segmentation accu-
racy.

3. Model Evaluation: The performance of the model was assessed using metrics such as
the Jaccard Index and Dice Similarity Coefficient, followed by statistical analysis using
ANOVA and Tukey HSD tests.

4. Application Development: A web-based tool was developed and deployed using Docker
to ensure portability and scalability.

3
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1.5 Structure of the Dissertation

The dissertation is structured as follows:

• Chapter 2: Provides a comprehensive literature review, covering the use of computer
vision in human and veterinary medicine and an overview of deep learning techniques
relevant to this research.

• Chapter 3: Details the methodology, including dataset creation, model architecture,
training processes, and the development of the web application.

• Chapter 4: Presents the experimental results, including model performance metrics, sta-
tistical analyses, and a discussion of the prototype application.

• Chapter 5: Discusses the implications of the findings, the contribution of the novel
dataset, model effectiveness, and limitations, concluding with suggestions for future re-
search.

• Chapter 6: Summarizes the dissertation’s contributions, the significance of the research
for veterinary practice, and final remarks on the study’s impact.

4



Chapter 2

Literature Review

The application of computer vision techniques has significantly advanced the field of medicine,
particularly in the diagnosis and analysis of various medical conditions. Deep Convolutional
Neural Networks (CNNs), a class of deep learning models, have been widely used in ophthal-
mology for tasks such as detecting glaucoma, diabetic retinopathy, and other retinal disease
recognition tasks, providing high accuracy in ocular image analysis and disease classifica-
tion [8, 9]. These advancements are attributed to CNNs’ ability to automatically extract and
learn relevant features from ocular images, improving diagnostic accuracy compared to tradi-
tional manual methods [10, 11, 12].

The development of these CNN-based models has been supported by a variety of publicly avail-
able datasets, which have enabled the training and validation of models in human ophthalmol-
ogy. Notable datasets include: ORIGA-light dataset focusing on optic nerve head segmentation
and glaucoma assessment [13], Drishti-GS designed for glaucoma detection, containing anno-
tated fundus images for training CNNs [14], Retinal Fundus Image for Glaucoma Detection
with a focus on glaucoma diagnosis [15], RIM-ONE, a large dataset for retinal image anal-
ysis, primarily used for glaucoma detection [16], iBUG focuses on facial landmark detection
but has also been used for eye-tracking and ocular disease analysis [17], OpenEDS dataset that
includes annotated eye images for eye-tracking and ocular disease applications [18], UBIRIS
primarily for biometric purposes, but also applied in ocular disease diagnosis [19], and TEyeD
dataset containing eye-tracking data, useful for studying eye movements and diagnosing condi-
tions such as glaucoma [20]. These datasets have significantly contributed to the development
of effective models for human ophthalmology.

In contrast, the application of computer vision techniques in veterinary ophthalmology, partic-
ularly for canine eye diseases, is much less developed. Datasets and research in this field are
scarce. Studies focusing on conditions such as canine glaucoma are limited [21, 22, 23], and
the few available datasets are typically small and lack the diversity seen in human datasets. A
notable study used CNNs to diagnose ulcerative keratitis in dogs, but it was constrained by
a limited dataset and acquired under controlled conditions [24]. Additionally, A recent study
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further explored CNNs in veterinary ophthalmology, applying transfer learning and data aug-
mentation to enhance diagnostic performance across multiple ocular conditions. However, this
work was limited by a non-public dataset[25]. This highlights the need for more extensive
datasets and research into canine ophthalmology.

The U-Net architecture, introduced for biomedical image segmentation, has become a popular
choice for various medical imaging tasks due to its encoder-decoder structure, which enables
precise feature extraction and localization [26]. U-Net’s architecture is particularly effective in
segmenting medical images where pixel-level accuracy is critical. It has demonstrated robust
performance across multiple domains, including ophthalmology, where it has been applied to
tasks such as optic disc segmentation, retinal layer segmentation, and detecting diseases like
glaucoma and cataracts [27, 28, 29, 30]. Studies have consistently shown that U-Net performs
well in medical image analysis, confirming its relevance in both human and veterinary medical
contexts [26, 27, 28, 31, 32, 33].

Transformer-based models, such as Swin Transformer [34] and SegFormer [35], have recently
gained attention for their superior ability to capture global context, making them particularly ef-
fective in fine-grained segmentation tasks across human and veterinary fields. However, U-Net
continues to be a formidable option, especially in situations with limited data availability, where
it still performs robustly [36]. In fact, a comparison between U-Net and transformer-based ar-
chitectures for medical image registration demonstrated that U-Net, with minimal adjustments,
can surpass the performance of these newer transformer models [36].

One of the key strengths of U-Net is its adaptability, particularly when combined with transfer
learning. Transfer learning allows models to leverage pre-trained weights from large datasets,
enabling them to perform well even on smaller datasets typical in veterinary applications. U-
Net has been successfully combined with advanced CNN backbones like ResNet [37], Effi-
cientNet [38], VGG [39], and Inception [40], significantly improving its feature extraction ca-
pabilities [11, 12]. These backbones help enhance the model’s ability to learn from limited
data, making it well-suited for applications where obtaining large datasets is impractical. Fur-
thermore, studies have shown that U-Net does not require an extensive dataset to achieve good
results, especially when augmented with transfer learning techniques [41].

While U-Net can perform well with small datasets, the creation of synthetic datasets can further
enhance model performance by augmenting the available training data. Synthetic data gener-
ation techniques, such as those using Generative Adversarial Networks (GANs) and diffusion
models, have become valuable tools for augmenting datasets in various domains [42, 43]. Dif-
fusion models, particularly Stable Diffusion, have shown promise in generating high-quality
synthetic images by iteratively refining noisy images [44]. Stable Diffusion, which employs
a U-Net-like architecture for image synthesis, can be used to create realistic synthetic im-
ages [45, 46, 47] of diseased eyes, which can significantly improve the training of CNNs for
canine ophthalmology. These synthetic datasets could address the shortage of annotated data in
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veterinary ophthalmology and enhance model robustness [48].

A web-based application utilizing a U-Net model trained on real and synthetic datasets could
provide a valuable diagnostic tool for veterinarians. This application could assist in the early de-
tection and treatment of canine eye diseases. In combination with image segmentation, the inte-
gration of Large Language Models (LLMs) could further enhance the diagnostic process. LLMs
such as ChatGPT [49], Mistral [50], Gemini [51], Llama [52], and Claude [53] have demon-
strated significant potential in medical data interpretation. These models, when integrated with
image analysis tools, could help in interpreting symptoms, guiding veterinarians through diag-
nostic workflows, and improving decision-making. Evaluation metrics like BERTScore [54],
CLIPScore [55], BLEU [56], METEOR [57], ROUGE [58], and SPICE [59] have shown that
LLMs can effectively process complex medical information, making them suitable for integra-
tion into diagnostic applications.

A mobile web application will be developed as part of this research, utilizing advanced AI
methods to support canine eye disease diagnosis. The application combines U-Net-based im-
age segmentation, trained on a custom dataset DogEyeSeg4 [60] along with synthetic data, to
identify and analyze ocular symptoms.

7



Chapter 3

Methodology

3.1 Dataset

In veterinary ophthalmology, especially in the niche of canine eye diseases, obtaining suitable
datasets poses significant challenges. Unlike human medical datasets, which benefit from more
standardized and widely available sources, veterinary datasets are relatively scarce. The images
needed for training models in this domain must capture a variety of conditions across multiple
breeds, often under non-ideal circumstances. As a result, a custom dataset was developed to
support this research, addressing the scarcity of available data. The following sections describe
the DogEyeSeg4 dataset, constructed to overcome these challenges, as well as a synthetic dataset
generated to augment the available real-world data.

3.1.1 DogEyeSeg4 Custom Dataset

Given the limited availability of publicly accessible canine ophthalmic datasets, the develop-
ment of the DogEyeSeg4 dataset became essential. The process of gathering suitable data from
real-world clinical environments posed several difficulties. First, patient compliance during eye
examinations often impacted image quality. Dogs, being non-cooperative subjects, frequently
moved during assessments, resulting in blurry images or requiring multiple attempts to capture
usable data. Second, the diversity of breeds presented additional variability in eye structure,
fur coloration, and size, all of which affected the clarity and focus of the images. These fac-
tors, while reflective of real-world conditions, made it difficult to obtain consistent, high-quality
images that were necessary for robust model training.

The images in the DogEyeSeg4 dataset were collected from two specialized veterinary oph-
thalmology clinics and a veterinary eye disease atlas [61]. Clinical environments, unlike con-
trolled laboratory settings, introduce uncontrollable variables such as inconsistent lighting, non-
standardized camera equipment, and varying angles of capture. These factors result in natural
but challenging conditions for machine learning models. The lighting in veterinary clinics often
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varies depending on the location of the examination, leading to different levels of contrast and
exposure in the images. Additionally, images were captured without staged conditions, meaning
the dataset includes a range of natural scenarios rather than perfectly lit or artificially enhanced
images. This variety adds to the complexity but also enhances the dataset’s applicability to
real-world diagnostic conditions.

The DogEyeSeg4 dataset consists of 145 images, which include both close-up images of the
canine eye and full headshots. Example images with corresponding masks are shown in Fig-
ure 3.1. This diversity is crucial because veterinary practitioners often capture images that show
either the entire head of the animal or focus specifically on the affected eye, depending on the
diagnostic requirement. Close-up images provide detailed views of specific conditions such as
corneal cloudiness or excessive tearing, while whole-head images are more common in clinical
settings and may capture multiple symptoms, including redness of the sclera or colored masses
in the corner of the eye, from a broader perspective. Each image was resized to 320×320 pixels
for consistency during model training, and the dataset is annotated with one-channel masks in
PNG format.

Figure 3.1: Example of images in DogEyeSeg4 dataset with corresponding masks showing closeup of
an eye (upper row) and whole head (lower row) [62].
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The four annotated classes, described in Figure 3.2 [62], correspond to the following symptoms:

• S1 Cloudiness or haziness of the cornea,
• S2 Redness of the sclera,
• S3 Excessive tearing,
• S4 A colored mass in the corner of the eye.

Figure 3.2: visual representation of medical symptoms in the top-left to bottom-right order: S1 - cloudi-
ness or haziness of the cornea; S2 - sclera redness; S3 - excessive tears; and a S4 - colored mass protrusion
in the corner of the eye[62].

These symptoms correspond to several common diseases, such as Cherry Eye, Glaucoma,
Uveitis, Corneal Ulceration, and Bacterial Keratitis. To ensure the clinical relevance and ac-
curacy of the dataset, each image and its annotation were reviewed by a veterinary specialist.
This review process was critical in maintaining the diagnostic precision of the dataset, espe-
cially given the variability in patient behavior and the non-standardized clinical conditions un-
der which the images were captured.

Ensuring the dataset complied with data protection regulations, particularly the General Data
Protection Regulation (GDPR) [63], was a critical part of the dataset creation process. All
images included in the dataset were anonymized to safeguard the privacy of clients and their
animals. Anonymization involved the removal of any identifiable information, such as exami-
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nation dates, client names, and animal identifiers. By adhering to GDPR guidelines, the dataset
was rendered compliant with strict privacy regulations. Additionally, since the images were
gathered during standard veterinary care and no animals were harmed for the purpose of im-
age acquisition, ethical approval was not required for this study. This was made explicit in the
ethics and consent statement accompanying the dataset: "Images were collected as part of rou-

tine clinical evaluations, and no ethical approval was necessary as no harm was caused to the

animals."

One of the key challenges in assembling this dataset was balancing the representation of each
class. For example, some symptoms, such as excessive tearing (S3), appeared more frequently
than others, such as the colored mass (S4). To avoid bias in model training due to class im-
balance, similar images were manually removed, resulting in an even distribution of ocular
conditions across the dataset (see Figure 3.3). This process not only balanced class representa-
tion but also increased the dataset’s diversity, supporting more robust model training across all
four classes.

Figure 3.3: Distribution of classes in the DogEyeSeg4 Dataset. The number represents the recurrence
of certain ocular diseases in images. Ocular symptoms which accompany Corneal edema, Episcleral
congestion, Epiphora and Cherry Eye are Cloudiness or haziness of the cornea (S1), Redness of the
sclera (S2), Excessive tearing (S3) and A colored mass in the corner of the eye (S4) respectively [62].

To further enhance the dataset’s utility, data augmentation techniques were applied. Building
on methodologies from medical image segmentation, particularly with respect to U-Net archi-
tecture, augmentation methods such as horizontal flipping, rotation by up to 15 degrees, and
translation by 50 pixels were used, as seen in Figure 3.4 [62]. These augmentations introduce
variation in camera angles and positions, simulating different real-world scenarios where veteri-
nary professionals might capture images from slightly different perspectives. Importantly, zoom
augmentation was avoided to prevent interpolation, which could introduce noise into the masks
and degrade the accuracy of the annotations. The augmentation process expanded the dataset to
200 images, increasing its robustness and making it more suitable for training machine learning
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models that need to generalize across diverse imaging conditions.

Figure 3.4: Example of applied augmentations on original image in top row: horizontal flip (middle
row left), horizontal shift (middle row right), rotation (bottom row left), and vertical shift (bottom row
right) [62].

3.1.2 Synthetic Datasets

Due to the limited availability of real-world data and the need for large datasets to train deep
learning models, synthetic image generation has become a valuable resource in medical imag-
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ing, including veterinary ophthalmology. Several techniques exist for generating synthetic im-
ages, each offering strengths and weaknesses in tackling this issue. These methods include
Generative Adversarial Networks (GANs) [64], Variational Autoencoders (VAEs) [65], and
Diffusion Models [66]. Additionally, procedural methods like rule-based systems and 3D ren-
dering techniques are also applied for synthetic image generation, offering high control over
image features, albeit with increased manual intervention and resource demand [67].

GANs utilize a two-part system, where the generator creates images, and the discriminator
attempts to distinguish them from real images. While GANs are capable of producing high-
resolution, realistic images, they are computationally expensive and often unstable during train-
ing, with issues like "mode collapse," where limited variations of images are generated. VAEs,
by contrast, are probabilistic models that encode input data into a latent space and then decode
it back, generating new data by sampling from this latent space. VAEs are more stable to train
than GANs but tend to produce lower-resolution images that may lack the detailed features
required in tasks such as ophthalmic disease diagnosis.

Diffusion models, particularly the Stable Diffusion variant used in this study, offer a more
balanced approach, combining computational efficiency with high-quality image generation. A
significant feature of diffusion models is their reliance on the U-Net architecture. In diffusion
models, U-Net serves as the backbone for the denoising process, transforming random noise into
coherent images. This structure makes diffusion models particularly well-suited for generating
structured medical images [68].

Beyond learning-based techniques, rule-based image generation and 3D rendering techniques
are also used in certain fields for procedural image creation [67]. Rule-based systems apply
predefined algorithms to generate images, offering high customization but requiring extensive
manual intervention. Rendering techniques simulate 3D environments and lighting to create
highly detailed images, but these methods demand considerable setup and computational re-
sources [69].

For this study, Stable Diffusion[70] was selected due to its balance between image quality and
computational efficiency. The models WildlifeX Animals[71] and Realistic Vision V6.0 B1
HyperVAE[72] were used, available on Civitai Generative AI[73]. A large number of synthetic
images of various dog breeds were generated, and through manual selection, only images that
closely matched the characteristics of images in the DogEyeSeg4 dataset and maintained real-
istic quality were retained. Images with unrealistic characteristics were excluded.

Example images generated using Stable Diffusion can be observed in Figure 3.5[74]. Example
prompt for the bottom center image in Figure 3.5 is:

• Positive prompt: "Dalmatian dog’s head, portrait of a dog in a park, realistic image,
realistic fur, award-winning wildlife (medium long shot:1.4), 35mm film movie still."

• Negative prompt: "abnormal, ugly, abnormal skin"
• Other parameters: Steps: 20, Sampler: DPM++ 2M, Schedule type: Karras, CFG scale:
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7, Size: 512x512, Model: wildlifexAnimals.

Diffusion models, particularly those built with the U-Net architecture, offer significant advan-
tages in terms of structural detail and precision, which are crucial in medical applications like
ophthalmology. The U-Net backbone, with its skip connections, helps preserve the fine-grained
information necessary to capture subtle disease symptoms in canine eye images [26].

Figure 3.5: Stable diffusion generated images with fixed posture of different dog breeds. Images shows
high degree of reality with certain difficulty like double set of ears [74].

Stable Diffusion was further enhanced using Low-Rank Adaptation (LoRA), which allowed
for parameter-efficient fine-tuning of the model, reducing both time and computational re-
sources [75]. LoRA training was conducted using 25 randomly selected images per class from
the DogEyeSeg4 dataset, accompanied by descriptive text prompts, such as "Cherry Eye in both
eyes, a dog with a pink tongue and a black and brown face." The LoRA model was trained
over 10 epochs with a training batch size of 2, and U-Net learning rate of 5e-4. By using a
small subset of real-world images from the DogEyeSeg4 dataset, Stable Diffusion was fine-
tuned to specialize in generating images that accurately depict canine ophthalmic diseases like
Glaucoma, Cherry Eye, and Uveitis.

Examples of such images using LoRA are presented in Figure 3.6 [74]. An example prompt for
generating the bottom left image in Figure 3.6 includes:
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• Positive prompt: "lora:CherryEye_Lora:1, CherryEye, prolapse in the corner of an eye,
realistic image, realistic fur, award-winning wildlife (medium long shot:1.4), 35mm film
movie still."

• Negative prompt: "abnormal, ugly, abnormal skin."
• Other parameters: Steps: 20, Sampler: DPM++ 2M, Schedule type: Karras, CFG scale:

7, Size: 512x512, Model: wildlifexAnimals_wildlifexAnimals.

For each symptom class, 100 images were generated, resulting in 400 additional synthetic im-
ages for the DogEyeSeg4 dataset. While rule-based systems and 3D rendering methods provide
high control over specific image features, their high manual effort and resource demands made
them less practical for large-scale image generation compared to Stable Diffusion [69].

Figure 3.6: Close-up Stable Diffusion images using custom LoRA describing various medical conditions
based on DogEyeSeg4 dataset [74].

In diffusion models, the process of image generation involves gradually transforming random
noise into coherent images. This denoising process is managed by a U-Net architecture, which
effectively captures both high-level structures and fine details. The model is trained to learn
how to reverse the noise-adding process, allowing it to generate clean, high-quality images
from noisy input during inference [66, 68]. In this study, the fine-tuning of Stable Diffusion was
performed using custom LoRA, which reduced memory requirements by updating only a subset
of the model’s parameters [76]. The use of a U-Net backbone allowed the model to capture the
intricate details of various eye diseases, making it particularly effective for generating clinically
relevant images of canine ophthalmic conditions.

One of the key features of Stable Diffusion in this study was its ability to add disease symptoms
to otherwise healthy eyes using inpainting [77, 78]. Inpainting allows for localized changes to
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specific regions of an image while leaving the rest of the image unchanged. This feature was
valuable for introducing symptoms like scleral redness or corneal cloudiness into healthy eye
images, which can be examined in Figure 3.7 [74]. Using positive prompts such as "cloudy
cornea with red sclera," the model could generate localized disease manifestations, allowing
for the creation of synthetic images that accurately represented various stages of disease pro-
gression. This capability enhanced the diversity of the dataset, ensuring that a wide range of
symptoms and severities were represented.

Figure 3.7: Stable Diffusion generated image containing symptoms using Inpainting showing (a) healthy
eyes, left eye with: (b) prolapsed eyelid gland, (c) red sclera, (d) cloudy cornea, (e) epiphora and (f) all
previously mentioned symptoms [74].

In addition to generating new images, diffusion models offer unique opportunities for augmen-
tation:

• Symptom Severity Modification: Adjusting the text prompts allowed for the generation
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of images with varying degrees of disease severity, from mild to severe symptoms [46].
• Symptom Combination: Diffusion models can create images with multiple symptoms,

such as excessive tearing and a colored mass, replicating complex real-world cases.
• Stochastic Variability: The inherent randomness in diffusion models ensures that even

with the same prompt, slight variations occur in the generated images, further diversifying
the dataset without requiring additional real-world data collection [45].

Advantages of Using Synthetic Images

• Scalability of Data: Synthetic image generation facilitates the creation of extensive
datasets, which is particularly valuable for rare conditions or underrepresented canine
breeds. This approach addresses the scarcity of real-world data, allowing researchers
to simulate a wide range of clinical scenarios that might otherwise be difficult to cap-
ture [79].

• Efficiency in Cost and Time: Compared to the collection and annotation of real-world
images, synthetic data can be generated rapidly and at a significantly lower cost. This en-
ables the efficient scaling of datasets required for training deep learning models, reducing
the time and resources associated with manual data acquisition [80].

• Controlled Variability: Synthetic generation allows researchers to precisely control the
inclusion of specific symptoms, conditions, and their severity. This level of control en-
sures that the dataset remains balanced, mitigating issues related to class imbalance, and
comprehensively covering the spectrum of disease presentations [80].

• Ethical Benefits: The use of synthetic images circumvents the need for invasive clini-
cal procedures or additional veterinary visits. As a result, it provides an ethically sound
method for expanding datasets without subjecting animals to unnecessary tests or dis-
comfort [48].

Limitations When Synthetic Images Are Used

• Realism Constraints: Although synthetic image generation has made significant ad-
vancements, the resulting images may still exhibit subtle artifacts or unrealistic features.
These imperfections could lead to a degradation in model performance when applied to
real-world scenarios, as the models may struggle to generalize from synthetic to actual
clinical data [47].

• Bias Propagation: Synthetic datasets, while generated artificially, can inadvertently carry
over biases from the real-world data used in the fine-tuning process. This issue may limit
the generalizability of models trained exclusively on synthetic data, as the diversity and
complexity of real-world cases might not be fully captured [44].

• Necessity for Clinical Validation: Despite their utility, synthetic images require thor-
ough validation to ensure their clinical relevance. Without rigorous validation processes,
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models trained on synthetic data might underperform when deployed in real-world clini-
cal settings, especially when tasked with recognizing nuanced or rare conditions [48].

3.2 Model Architecture and Training

3.2.1 U-Net

The U-Net architecture is widely regarded as a robust model for image segmentation, particu-
larly in the field of biomedical image analysis. U-Net excels at pixel-wise classification tasks.
Its architecture consists of two symmetric parts: an encoder (contracting path) and a decoder
(expanding path), forming a U-shaped structure that allows the network to both extract features
and reconstruct spatial details at the pixel level.

The encoder in U-Net serves to downsample the input image through a series of convolutional
and max-pooling layers, extracting increasingly abstract features. Each convolutional block
consists of two 3×3 convolutional layers followed by a ReLU activation function. The down-
sampling occurs through max-pooling layers, which reduce the spatial resolution by a factor of
two at each step. This progression allows U-Net to capture the local features in early layers and
more complex global patterns in deeper layers.

A visual representation of the U-Net architecture is shown in Figure 3.8 [62]. At the deepest
point in the architecture, the bridge links the encoder and decoder by combining features learned
from the encoder’s deepest layer with features from the decoder’s shallowest layer. This design
ensures that global and local features are propagated through the network, facilitating accurate
segmentation even in cases of complex images with small or subtle regions of interest [81]. The
combination of these feature maps is essential for generating detailed and contextually accurate
segmentations, particularly in medical applications where high precision is critical.

The decoder mirrors the encoder, progressively upsampling the feature maps and restoring the
spatial resolution of the input image. The decoder combines the upsampled feature maps with
the feature maps from the corresponding encoder layers via skip connections. These skip con-
nections help retain the spatial context and fine details from the encoder, ensuring that the
segmentation is accurate at a pixel level [26, 82]. The decoder uses transpose convolutions
(deconvolutions) to increase the image resolution and further refine the output segmentation
mask [83].

The final output is a pixel-wise segmentation mask, where each pixel is assigned a class label
based on the features extracted by the encoder and decoder. U-Net has proven to be effective in
tasks that require accurate segmentation with limited training data, making it particularly well-
suited for medical imaging, where annotating large datasets is often challenging [26, 82]. Its
symmetrical structure and use of skip connections make it highly capable of handling both large
and small objects in an image, and it performs well even when there is significant variation in

18



Methodology

Figure 3.8: The standard U-Net architecture where left encoder part and right decoder part form the letter
U. The encoder effectively captures detailed features from the input images, which are then upsampled
by the decoder part of U-Net. The decoder uses transposed convolutions to restore the image to its
original size, using skip connections from the corresponding encoder layers to refine the segmentation
output with high-resolution details retained [62].

object size and shape.

U-Net with modified Backbone

Transfer learning significantly enhances the capability of deep learning models, particularly in
specialized tasks such as medical image segmentation, by leveraging pre-trained neural net-
works. The U-Net architecture benefits from incorporating robust feature-extracting networks,
known as backbones, which are pre-trained on large and diverse datasets like ImageNet [84].
These backbones capture a wide array of features, from simple textures to complex structures,
which are crucial for accurate segmentation.

One popular choice for a backbone in U-Net is the VGG network [39], known for its sim-
plicity and effectiveness in feature extraction due to its deep architecture of 16 convolutional
layers. The typical VGG-16 architecture, as shown in Figure 3.9 [62], consists of multiple
convolutional layers followed by max-pooling layers, which progressively reduce the spatial
dimensions while increasing the depth, capturing finer details at each layer.

Another powerful backbone is the ResNet18 [85], which incorporates residual connections to
allow training of much deeper networks by addressing the vanishing gradient problem. These
residual connections act as shortcuts that enable the gradient to flow through the network with-
out diminishing, preserving the strength of the signal (Figure 3.10 [62]). This architecture
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Figure 3.9: The VGG-16 architecture [62].

is particularly beneficial for U-Net, enhancing its ability to learn from medical images where
preservation of spatial hierarchies is critical.

Figure 3.10: The ResNet18 architecture [62].

The Inception V3 network [86], known for its efficiency in handling multi-scale information,
uses modules composed of parallel convolutional layers with varying kernel sizes. This design
allows the network to capture features at various scales within the same layer, making it highly
effective for tasks that require the detection of objects of different sizes, such as different types
of tissues or cells in medical images. The Inception V3 network is shown in Figure 3.11 [62].

Improved U-Net with Backbone Integration: The improved U-Net model incorporates these
backbone networks into its architecture, where each encoder block is an instance of either
VGG-16, ResNet18, or Inception V3. This integration allows the U-Net to utilize advanced
feature extraction capabilities of these networks, enhancing its performance significantly[87].
The decoder of the improved U-Net model up-samples the feature maps and combines them
with the extracted features at corresponding levels from the encoder, optimizing the segmenta-
tion accuracy as seen in Figure 3.12 [62].
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Figure 3.11: The Inception V3 architecture [62].

Figure 3.12: Schematic of the enhanced U-Net architecture, integrating a backbone (e.g., VGG, ResNet)
within both encoder and decoder blocks. The Encoder Blocks (EB) incorporate convolutional layers from
the backbone, downscaling the input while extracting progressively complex features. Only the feature-
extracting layers of the backbone are used, omitting fully connected layers. The Decoder Blocks (DB)
then upsample these features, using skip connections from corresponding EBs to preserve high-resolution
details, ultimately reconstructing the output image [62].

U-Net Algorithm

The training of the U-Net model involves an iterative process of adjusting network weights
to minimize the loss between the predicted segmentation masks and the ground truth. The
algorithm begins by initializing the weights of both the encoder and decoder networks ran-
domly. The model is then trained using a dataset consisting of training images and correspond-
ing ground truth segmentation masks.
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For each training image, the following steps are performed in the training loop:

1. The encoder network encodes the input image, extracting a set of feature maps at different
levels of abstraction.

2. The feature maps from the encoder are concatenated with the corresponding feature maps
from the bridge, which combines contextual information from both high- and low-level
layers of the network.

3. The concatenated feature maps are then passed through the decoder network, which pro-
gressively upsamples the feature maps and reconstructs the spatial resolution to generate
a predicted segmentation mask.

4. The loss between the predicted segmentation mask and the ground truth segmentation
mask is calculated using the selected loss function (such as Dice loss or cross-entropy
loss).

5. The encoder and decoder network weights are updated using an optimization algorithm
(e.g., stochastic gradient descent or Adam) to minimize the loss.

The algorithm continues to iterate through the training images, updating the network weights
after each image and its corresponding mask are processed. After each training loop, a check
is performed to evaluate the convergence of the model. If the loss converges or reaches a
satisfactory level, the training process is terminated. Otherwise, the loop continues until the
model reaches optimal performance, as described in Algorithm 1.

Algorithm 1 U-Net Algorithm for Segmentation [62]
Require: Training images and corresponding ground truth segmentation masks
Ensure: Trained U-Net model

1: Initialize encoder and decoder network weights randomly
2: while not converged do
3: for each training image and ground truth segmentation mask do
4: Encode image using encoder network
5: Concatenate encoder feature maps with bridge feature maps
6: Decode concatenated feature maps using decoder network to generate predicted

segmentation mask
7: Calculate loss between predicted and ground truth segmentation masks
8: Update encoder and decoder network weights using an optimization algorithm
9: end for

10: end while

Once the model is trained, it can be used to predict segmentation masks for new images. The
prediction involves passing the input image through the encoder and decoder, generating a prob-
ability map for each pixel in the image. The class with the highest probability is assigned to
each pixel, resulting in the final segmentation output. This process ensures that the U-Net model
learns to accurately segment images based on the features extracted during the training phase,
providing robust pixel-wise predictions for medical imaging tasks.
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Loss Function

In deep learning, loss functions are essential components that assess the disparity between a
model’s predicted output and the actual ground truth values. A higher loss indicates greater
error in the model’s predictions, while a lower loss suggests improved accuracy. The princi-
pal objective of loss functions is to guide the model toward minimizing prediction errors by
adjusting its trainable parameters, such as weights and biases.

There are numerous loss functions available, each designed to reward or penalize a model dif-
ferently, depending on the nature of the task. The choice of the most appropriate loss function is
critical for achieving optimal performance. In this research, three primary loss functions were
used: Dice Loss (DL), Cross Entropy (CE) loss, and Focal Loss (FL), all of which are highly
relevant for segmentation tasks in medical imaging.

Dice Similarity Coefficient (DSC) is a statistical measure that evaluates the similarity between
two samples. In the context of image segmentation, it quantifies the overlap between the pre-
dicted segmentation ŷ and the ground truth mask y. For binary classification tasks, the DSC is
defined as:

DSC =
2∑

N
i=1 yi · ŷi

∑
N
i=1 yi +∑

N
i=1 ŷi

, (3.1)

where:

• N is the total number of pixels in the image.
• yi represents the ground truth label at pixel i (1 for foreground, 0 for background).
• ŷi represents the predicted probability at pixel i (ranging from 0 to 1).

The DSC ranges between 0 and 1, where 1 indicates perfect overlap and 0 indicates no overlap.

Since maximizing the DSC is equivalent to minimizing 1−DSC, we define the Dice Loss (DL)
for binary classification as:

DL(y, ŷ) = 1−DSC (3.2)

Dice Loss is particularly effective when working with small, imbalanced regions of interest, as
it directly optimizes the overlap between the predicted and actual segmentation masks.

To further understand DSC, it’s important to relate it to the concepts of precision and recall,
which are fundamental in evaluating classification performance. Precision and recall are defined
as:

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

, (3.3)

where:

• T P (True Positives) is the number of correctly predicted positive pixels.
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• FP (False Positives) is the number of incorrectly predicted positive pixels.
• FN (False Negatives) is the number of positive pixels that were incorrectly predicted as

negative.

Using these definitions, the Dice Similarity Coefficient is mathematically equivalent to the F1-
score, which is the harmonic mean of precision and recall:

DSC = F1 =
2 ·Precision ·Recall
Precision+Recall

. (3.4)

This is true for binary classification tasks where the DSC and F1-score yield the same numerical
value, measuring the balance between precision and recall.

In this research, Dice Loss was used to transform this metric into a continuous, differentiable
function that can be applied during the training of the model. The differentiability of Dice Loss
makes it suitable for optimization via gradient-based methods.

For multi-class segmentation problems, which is also used in this research, Dice Loss can be
extended by computing the loss for each class separately and then averaging:

DL(y, ŷ) = 1− 1
C

C

∑
c=1

2∑
N
i=1 yi,c · ŷi,c

∑
N
i=1 yi,c +∑

N
i=1 ŷi,c

, (3.5)

where:

• C is the number of classes.
• yi,c is the ground truth label for class c at pixel i (1 if pixel i belongs to class c, 0 other-

wise).
• ŷi,c is the predicted probability for class c at pixel i.

Cross Entropy (CE) Loss is another widely used loss function in classification tasks. It mea-
sures the divergence between the predicted probability distribution and the actual labels. For
binary classification, the Binary Cross Entropy (BCE) loss is defined as:

BCE(y, ŷ) =− 1
N

N

∑
i=1

[yi log(ŷi)+(1− yi) log(1− ŷi)], (3.6)

where:

• yi is the ground truth label at pixel i (1 or 0).
• ŷi is the predicted probability at pixel i (ranging from 0 to 1).

Binary Cross Entropy Loss penalizes the model when the predicted probabilities deviate from
the actual labels. It is particularly effective for binary classification tasks and is commonly used
due to its smooth and convex nature, which facilitates optimization.

For multi-class classification problems, which involve more than two classes, the Categorical
Cross Entropy (CCE) loss is used. The formula for CCE is:
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CCE(y, ŷ) =− 1
N

N

∑
i=1

C

∑
c=1

yi,c log(ŷi,c), (3.7)

where:

• yi,c is the ground truth label for class c at pixel i.
• ŷi,c is the predicted probability for class c at pixel i.

CCE measures the divergence between the predicted probability distribution over classes and
the actual one-hot encoded labels.

However, both BCE and CCE can struggle in imbalanced class distributions where larger classes
dominate the loss, affecting the segmentation performance of smaller classes. To address this
imbalance, Focal Loss (FL) was introduced. Focal Loss builds upon Cross Entropy by focusing
more on hard-to-classify examples, particularly those incorrectly classified or with low confi-
dence. This is achieved by down-weighting well-classified examples and focusing the learning
process on challenging ones. For multi-class classification, Focal Loss modifies the Categorical
Cross Entropy Loss as:

FL(y, ŷ) =− 1
N

N

∑
i=1

C

∑
c=1

αc(1− ŷi,c)
γyi,c log(ŷi,c), (3.8)

where:

• α or αc is a weighting factor for balancing the importance of different classes.
• γ (gamma) is the focusing parameter that adjusts the rate at which easy examples are

down-weighted.

By incorporating the modulating factor (1− ŷi,c)
γ , Focal Loss places more focus on misclas-

sified examples (where ŷi,c is low) and less on well-classified ones (where ŷi,c is high). When
γ = 0, Focal Loss reduces to the standard Cross Entropy Loss (CCE).

In this research, the impact of individual loss functions and in combination provides valuable
insight in finding most successful training model.

Activation Functions

Activation functions are an essential component of neural networks, determining the output
of each neuron and introducing non-linearity into the network. This non-linearity enables the
network to learn complex patterns and make accurate predictions. In U-Net and similar con-
volutional neural networks, common activation functions include ReLU, Sigmoid, and Soft-
max [88].

The ReLU (Rectified Linear Unit) activation function is defined as:
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ReLU(x) =

x, if x > 0

0, if x ≤ 0
(3.9)

ReLU is widely used due to its simplicity and effectiveness, as it avoids the vanishing gradient
problem that can occur with other activation functions like Sigmoid [89].

The Sigmoid activation function, defined as:

Sigmoid(x) =
1

1+ e−x , (3.10)

is often used in the final layer of binary classification models. It maps the output to a value
between 0 and 1, making it suitable for probability estimation. However, Sigmoid suffers from
the vanishing gradient problem, which can slow down training [90].

For multi-class segmentation tasks, Softmax is typically used in the final layer. Softmax nor-
malizes the output probabilities for each class, ensuring they sum to 1. It is defined as:

So f tmax(xi) =
exi

∑
n
j=1 ex j

, (3.11)

where xi represents the input to the i-th class. Softmax is particularly useful for multi-class
classification, as it allows the network to assign probabilities to multiple classes and select the
most likely class for each pixel [91].

3.2.2 GPT-4 and GPT-4o

Large Language Models (LLMs) and their various iterations, such as different versions of GPT
(e.g., GPT-4, GPT-4o), Mistral, Gemini, Claude, and Llama, have demonstrated significant
potential in medical diagnostics by aiding in symptom analysis and preliminary diagnosis. Each
of these models brings unique strengths to processing medical data. For instance, ChatGPT
excels at handling complex medical data and producing fluent, context-rich responses, while
Mistral is specifically designed for efficient query resolution. Similarly, Gemini adapts well
to dynamic conversational settings, and Claude offers a well-rounded approach to general data
analysis. Despite these advantages, most of these models are challenged when tasked with
complex, multi-symptom medical scenarios, as their architecture primarily focuses on textual
understanding rather than deep multimodal analysis [80].

The introduction of GPT-4 marks a notable advancement over these earlier models. While the
previously mentioned LLMs excel at interpreting symptom descriptions and providing initial
diagnoses, GPT-4 surpasses them with its ability to incorporate context-driven responses and
integrate detailed multimodal inputs [92]. More importantly, its evolved version, GPT-4o, ex-
tends the capabilities of the original model by incorporating object detection and segmentation
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tasks, which are critical in image-based diagnostics. This enhancement makes GPT-4o partic-
ularly valuable for tasks requiring a combination of natural language processing and detailed
image analysis, as seen in veterinary ophthalmology diagnostics.

The GPT-4 model, recognized for its robust performance in language-related tasks, has been
innovatively adapted for image analysis, deviating from its primary design as a text-processing
engine. This unconventional application involves using images as input, where the model is
expected to generate outputs that align with the visual content observed, rather than textual
data. This method leverages the model’s latent ability to handle multimodal tasks despite its
foundational design as a language model [93].

While GPT-4 exhibits capabilities in image classification, it inherently lacks direct functional-
ities for object detection and segmentation—key components in detailed image analysis. Ad-
dressing these limitations, the enhanced version, GPT-4o, introduces mechanisms to perform
these tasks by generating segmentation masks akin to those in ground truth data of test images,
marking a significant enhancement over its predecessor [74]. The core architecture of GPT-4 is
built upon the Transformer model, specifically tailored for language generation but applicable to
a broader range of sequence processing tasks. This architecture is illustrated in Figure 3.13 [74]
and encompasses several critical components:

• Embedding Layer: Converts input tokens, for example, words in a sentence like "The
dog chased the", into rich, informative embeddings, supplemented with positional encod-
ings to preserve the sequential nature of the input data. This embedding process preserves
the order of the tokens, essential for accurate understanding of the input sequence.

• Multi-Head Attention: This mechanism allows the model to dynamically focus and re-
focus on different segments of the input data, facilitating a deeper understanding of the
contextual interdependencies. For instance, when processing a sentence, the attention
mechanism might focus on "dog" and "chased" simultaneously to understand their rela-
tionship.

• Feed-Forward Networks: Positioned to process the data sequentially from the attention
mechanisms, these networks are pivotal in refining the data handling.

• Residual Connections and Layer Normalization: These components are integral for
maintaining the flow of gradients during training, thus enhancing the stability and perfor-
mance of the model.

• Output Layers: Comprising a linear layer followed by a softmax activation, these layers
produce the output, which is a probability distribution over possible next tokens. For
example, given the input "The dog chased the," the model might predict "cat" with the
highest probability, completing the sentence as "The dog chased the cat."

To effectively deploy GPT-4 and GPT-4o in veterinary ophthalmology, specific contextual adap-
tations are necessary. These models are configured to act as theoretical consultants, analyzing
visual data from images and predicting possible veterinary conditions. The setup demands a tai-
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Figure 3.13: Architecture of a Transformer Decoder block in the GPT model. The process begins with
the input—text tokens with positional information, transformed into vector embeddings encoding both
meaning and position. These embeddings pass through layers of multi-head attention and feed-forward
networks, with normalization applied for stability. Multiple Transformer Decoder Blocks (denoted as
Nx) capture contextual relationships. The model’s output is a probability distribution over possible next
tokens, generated by a linear layer and softmax function, enabling text generation based on the input
sequence. [74].
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lored prompt that provides the models with a context encapsulating the task of diagnosing based
on visual cues alone, without supplementary background information. An exemplary prompt
used in this scenario is demonstrated in Figure 3.14 [74], where the models’ output includes
diagnostic suggestions and segmentation masks, crucial for practical applications [94].

Figure 3.14: An example of input prompt to GPT-4 and GPT-4o requesting segmentation of medical
conditions and most probable diagnosis [74].

The outcomes derived from this innovative application of GPT-4 and GPT-4o are directly com-
pared against traditional methods, providing a benchmark for assessing the efficacy of integrat-
ing language models in image-based diagnostic tasks. This comparative analysis is essential for
validating the models’ utility and effectiveness in real-world scenarios [74].

3.2.3 Grounding SAM

Grounding SAM, a combination of Grounding DINO [6] and SAM [7], provides a versatile
approach for object detection and segmentation driven entirely by text prompts rather than
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domain-specific pre-training. This prompt-based approach removes the need for extensive, cus-
tomized datasets and enables applications where labeled data are limited or hard to obtain.
Grounding SAM leverages zero-shot learning capabilities, enabling it to adapt across tasks and
images without retraining, setting it apart from traditional models like YOLO [95] and Mask
R-CNN [96], which rely on task-specific data and fine-tuning for high accuracy.

Grounding DINO stands for "Grounding DEtection with TRansformers and Open-vocabulary
using Denoising." It is a transformer-based object detection model that extends the original
DETR (Detection Transformer) architecture by incorporating improved denoising techniques.
Grounding DINO can detect objects in images based on textual descriptions, effectively ground-
ing language in visual data. The model is capable of associating specific parts of an image with
words in a text prompt, allowing for open-vocabulary object detection without the need for
extensive labeled datasets.

Grounding DINO is the first step in the Grounding SAM framework, responsible for object
detection. It operates by taking both images and text prompts as input. The transformer-based
architecture of Grounding DINO enables it to process relationships between various objects
in the image through its self-attention mechanism. This process allows the model to focus on
relevant parts of the image, enhancing its ability to detect objects even in visually complex or
noisy environments. The text prompts provided to Grounding DINO are essential for guiding
the object detection process. For instance, in the case of diagnosing canine eye diseases, text
prompts describing symptoms in layman’s terms (e.g., "excessive tearing") are used, as medical
terminology might not yield effective results due to the model’s limitations in domain-specific
vocabulary.

Once the objects have been detected by Grounding DINO, the bounding boxes are passed to
SAM, which stands for "Segment Anything Model." SAM is designed to generate accurate
segmentation masks for any object in an image based on prompts. It utilizes a promptable
segmentation approach, where prompts can be in the form of points, bounding boxes, or text
descriptions. SAM’s architecture includes a transformer-based image encoder that produces
segmentation masks with high precision, even in complex scenes.

SAM’s task is to convert these bounding boxes into precise segmentation masks, which provide
pixel-level accuracy for each detected object. SAM utilizes a transformer-based image encoder
that can handle a wide range of segmentation tasks with minimal human intervention, making
it highly versatile for medical applications, where segmentation accuracy is paramount.

In veterinary ophthalmology, SAM’s segmentation masks are particularly useful for delineating
fine details of ocular symptoms, such as corneal cloudiness or scleral redness. This level of
precision in image segmentation ensures that even subtle abnormalities can be detected and an-
alyzed, providing critical data for diagnostic purposes. SAM’s ability to generate accurate seg-
mentation masks in a zero-shot manner—without the need for task-specific training—positions
it as a powerful tool in the medical domain.
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The combined operation of Grounding DINO and SAM is depicted in Figure 3.15 [74], which
illustrates the process of diagnosing canine ocular conditions. The input image, typically a
clinical photograph of a dog’s eye, is first processed by Grounding DINO, which identifies
areas of interest based on the provided text prompt. Grounding DINO generates bounding
boxes around the detected areas, such as the eye or tear ducts, and these are passed to SAM
for detailed segmentation. SAM then produces segmentation masks that outline the detected
regions with pixel-level precision. The segmented regions, such as areas of corneal opacity or
excessive tearing, are used as input for further analysis.

A significant challenge in applying Grounding SAM to medical image analysis is prompt engi-
neering, particularly when dealing with complex medical terminology. Grounding DINO and
SAM require prompts that can be interpreted accurately by the model. Medical terms such
as "epiphora" or "keratitis" may not yield effective segmentation results due to their special-
ized nature. Instead, prompts need to be rephrased in simpler terms, such as "watery eyes"
or "eye inflammation," to ensure the model can process and detect the relevant symptoms.
Figure 3.16 [74] demonstrates how the structure and content of the text prompt significantly
influence the model’s output, highlighting the importance of careful prompt formulation.

3.2.4 Single Shot Multibox Detector (SSD) for Eye Detection

The Single Shot Multibox Detector (SSD) [97] was utilized to pinpoint the eye region in canine
images, serving as an assisting tool for the improved segmentation task. SSD stands out for its
real-time performance, accomplishing object localization and classification simultaneously in a
single forward pass of the network. This efficiency is achieved by omitting a separate region
proposal generation stage, a common feature in other detection systems like Mask R-CNN,
which simplifies the detection process and reduces computational overhead.

The architecture of SSD is built upon a robust base convolutional neural network, which is
employed for feature extraction from the input image. Following this feature extraction phase,
SSD utilizes additional convolutional layers to produce feature maps at multiple scales. This
multi-scale feature extraction allows SSD to detect objects of various sizes effectively. Key
components of the SSD workflow include:

• Feature Extraction: Utilizes a pretrained network like VGG16 or ResNet to derive rich
feature maps from the input image. These features form the foundation for detecting
objects at various scales.

• Detection Heads: Each feature map level has associated detection heads that output
scores and bounding boxes for potential objects at that scale.

• Non-Maximum Suppression (NMS): This step refines the detection by removing over-
lapping boxes, ensuring that each detected object is represented by the single best bound-
ing box.

The process flow of the SSD model is illustrated in Figure 3.17, which clarifies the stages from
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Figure 3.15: Grounding Dino and SAM integration flowchart [74].
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Figure 3.16: Grounding Dino prompting examples showing diversity with resulting detection and its
prediction score. Prompts used for generating detection from top to bottom are: (a) "colored mass pro-
trusion in the corner of the eye", (b) "colored mass protrusion in the eye" and (c) "red mass protrusion".
Third prompt (c) is used for segmentation by SAM implementation (d) [74].

image input through to the final predictions. The diagram shows how the image is processed
through the VGG16/ResNet layers for feature extraction, followed by multi-scale detection
heads, and culminating in the NMS stage to produce the final object predictions.

Given the absence of publicly available models for detecting canine eyes, a custom SSD model
was trained specifically for this task. The dataset consisted of 99 images of dog eyes from
various breeds and medical conditions, including healthy eyes, each annotated with ground
truth bounding boxes in XML format. From this dataset, 20 images were set aside for testing,
while the remaining 79 images were used for training.This approach was designed to ensure
that the model could accurately identify eye regions across diverse scenarios.

The performance of the custom-trained SSD model was evaluated with next outcomes. The
model achieved an average Intersection over Union (IoU) of 0.92 with a standard deviation of
0.08, and an average Dice Score of 0.96 with a standard deviation of 0.05. An F1 score of
0.90, calculated using Precision (0.97) and Recall (0.84), defines a well-suited detection model.
These results highlight the SSD model’s high precision in localizing the eye region within the
canine images, confirming its effectiveness for this specific application in veterinary ophthal-
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Figure 3.17: Single Shot Multibox Detector diagram for eye detection.

mology. While the model demonstrates strong performance metrics, occasional detection inac-
curacies underscore the need for ongoing adjustments and improvements in model training.

3.3 Web Application Development

The development of the web application for eye symptoms segmentation and medical condi-
tion prediction focuses on providing a robust, user-friendly interface to assist veterinarians and
pet owners in diagnosing canine ocular diseases using AI-based image analysis. The web ap-
plication is built to integrate the suitable segmentation model, ensuring seamless deployment,
accessibility, and scalability.

The development process is initiated by designing an intuitive user interface that would guide
users through the image acquisition and diagnostic process. As seen in Figure 3.18, the system
starts with a user interface that allows users to either capture images of their dog’s eyes or
upload them from local storage.

This flexibility accommodates both veterinary professionals and pet owners who may not have
prior experience with such diagnostic tools. The quality and framing of these images are cru-
cial for accurate segmentation [62], so the interface should include an overlay mask, as shown
in Figure 3.19 [42], guiding users on how to correctly align the dog’s eye for optimal image
capture [42].

The backend architecture of the application was designed to support the high computational
demands of the segmentation model while ensuring portability. The system is containerized
using Docker [98], which simplifies the deployment process and ensures that the application
runs consistently across different platforms. This containerized approach also allows the ap-
plication to scale efficiently, accommodating an increasing number of users without sacrificing
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Figure 3.18: A web-based application flowchart for eye symptoms segmentation and medical condition
prediction.

performance. The core image processing tasks are handled by a suite of Python [99] libraries,
including TensorFlow [100] for model execution, OpenCV [101] for image manipulation, and
Pillow [102] for image formatting. The backend server, built using Flask [103], ensures sta-
ble communication between the web interface and the desired segmentation model, processing
images and delivering results in real-time [42]. The entire setup ensures that the application is
portable, scalable, and easy to deploy on both local machines and cloud-based servers.

To ensure efficient handling of requests and model processing, the deployment was optimized
for server environments equipped with advanced graphics processing units (GPUs), ensuring
that the heavy computational tasks, such as segmenting and analyzing canine eye images, are
handled with minimal latency. This server-based approach also allows for future scalability,
where additional images can be collected and processed, contributing to the improvement of
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Figure 3.19: An overlay mask acting as capturing images guide for accurate segmentation [42].

the model through continuous retraining and dataset expansion. Additionally, the application is
built with the capacity to expand into mobile platforms, further enhancing its accessibility.

The web application not only provides diagnostic insights but also aims to enrich the model
by collecting user data with their consent. Each user interaction and image submission can
potentially contribute to the growth of the dataset, allowing for further model refinement. This
continuous loop of data collection, analysis, and improvement represents the application’s po-
tential for evolving alongside the veterinary community’s needs. The user experience is further
enhanced with feedback features, guiding users with next steps based on the results, and pro-
viding valuable insights into their pet’s ocular health.

The combination of these technical and practical design choices has led to a comprehensive
tool for diagnosing canine eye diseases, setting the foundation for further developments and
improvements.
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Experiments and Results

This section presents experimental procedures and outcomes, focusing on the performance of
various models in diagnosing canine ocular diseases. It is structured to provide insights into
the evaluation process through several stages. First, we describe the test dataset used for model
evaluation, including its structure and content. Next, we elaborate on the metrics applied to
assess both segmentation and text generation tasks.

The core of the experimentation focuses on the training and evaluation of the U-Net model, both
with and without backbone networks. A comparative study is also performed between the U-
Net model trained on a real dataset versus one trained on a combined real and synthetic dataset
to evaluate the impact of synthetic data augmentation. In a separate experiment, the benefits of
binary vs. multiclass models were assessed along with their limitations.

Additionally, this section compares the performance of U-Net against GPT-4 and Grounding
DINO in both segmentation and diagnostic interpretation tasks. These comparisons highlight
the strengths and weaknesses of different approaches, allowing for a comprehensive assessment
of model efficacy in real-world applications.

4.1 Test Dataset

The test dataset for evaluating the U-Net, GPT-4, and Grounding SAM models was assembled
to ensure diversity and clinical relevance, drawing from a wide range of veterinary resources.
The images in the dataset were sourced from veterinary medical encyclopedias, peer-reviewed
medical articles, and specialized veterinary clinics, all of which provided documented diag-
noses and necessary permissions [61]. Each image in the dataset was resized to a standardized
320×320 pixel format to facilitate consistent processing and analysis across models. This stan-
dardization is crucial to maintain the uniformity of input data and ensure the comparability of
model outputs during testing.

A representative example from the dataset, as seen in Figure 4.1, includes images of an Amer-
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ican Bulldog [104] and a crossbred dog [105], both diagnosed with Cherry Eye. These im-
ages depict a pink-colored ocular protrusion from the medial canthus—a classic sign of Cherry
Eye—accompanied by excessive tearing. Although both dogs present similar symptoms, their
differing breeds introduce subtle anatomical variations that challenge automatic segmentation
models. The models must learn to handle such variations and correctly interpret symptoms
in diverse breeds. This illustrates some of the inherent difficulties that computer vision must
address when attempting to accurately segment and diagnose eye conditions in canines.

Figure 4.1: Images of an American bulldog (left) and a crossbred dog (right) show a pink-colored mass
protruding from the medial canthus of both eyes, accompanied by signs of inflammation, including pain
and excessive tearing, indicative of Cherry Eye [104, 105].

The test dataset was annotated in detail to reflect four key ocular symptoms that are commonly
observed in veterinary ophthalmology:

• S1 - Cloudiness or haziness of the cornea,
• S2 - Redness of the sclera,
• S3 - Excessive tearing,
• S4 - A colored mass in the corner of the eye.

In this context, "symptoms" refer to visible signs, such as cloudiness or redness, that indicate
underlying issues but are not diagnoses themselves. Conversely, "diseases" are specific diag-
nosed conditions that may manifest one or more of these symptoms. For consistency, both
symptoms and diseases are collectively referred to as "ocular conditions" in this study. The
goal of this study is to recognize diseases through symptom interpretation, as each disease is
characterized by a unique combination of symptoms.

Each image was paired with a one-channel mask, stored in PNG format, annotating the four
distinct classes of symptoms. These annotations are validating the models, as they provide
ground truth data that allows the evaluation. The pixel intensity in the mask varies depending
on the symptom being represented, allowing for precise identification of each condition. This
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approach mirrors the methodology used for the DogEyeSeg4 custom dataset, ensuring consis-
tency between training and test datasets.

The dataset includes images representing five significant ocular diseases in canines: Cherry
Eye, Glaucoma, Uveitis, Corneal Ulceration, and Bacterial Keratitis. Each of these diseases is
featured through five distinct cases, providing a total of 25 images for comprehensive model
testing.

• Cherry Eye: This condition is characterized by the prolapse of the gland of the third
eyelid, visible as a pink-colored mass in the corner of the eye. Cherry Eye can cause
discomfort and, if left untreated, may lead to more severe complications such as dry eye
or infection. The test images show various stages of Cherry Eye, providing the models
with different levels of protrusion and tear production to segment and interpret.

• Glaucoma: Caused by elevated intraocular pressure, Glaucoma often results in pain,
corneal cloudiness, and scleral redness. The dataset includes images showing a range of
Glaucoma severity, from mild to advanced cases where the eyeball is visibly enlarged.
These images challenge the models to recognize subtle differences in redness intensity
and cloudiness levels.

• Uveitis: This inflammatory condition affects the uveal tract and often presents with sclera
redness, pain, and sensitivity to light. In some cases, corneal cloudiness is also observed.
The Uveitis cases in the dataset emphasize the need for precise segmentation of redness
and cloudiness, ensuring that the models can distinguish between inflammatory condi-
tions and other ocular issues.

• Corneal Ulceration: This condition is typically the result of trauma or infection and is
marked by corneal erosion or scratches. The test images highlight the symptoms of ex-
cessive tearing and sclera redness, along with visible cloudiness in some cases. These
images require the models to focus on small, localized areas of damage, a challenge in
real-world clinical scenarios where the ulcers may be difficult to detect without special-
ized equipment.

• Bacterial Keratitis: Bacterial infection of the cornea leads to symptoms such as corneal
cloudiness and tearing and can progress rapidly if untreated. The dataset provides exam-
ples of varying severity, allowing the models to learn how to segment the infected areas
accurately and distinguish them from less severe conditions like Corneal Ulceration.

Each disease class in the test set is represented with diverse images, ensuring that the models
are exposed to a broad spectrum of cases. This enables the models to generalize better and
handle real-world variations in symptom presentation, breed anatomy, and disease progression.
These images, along with their corresponding annotated masks, form the foundation for the
final model evaluation. A sample of the test dataset can be observed in Figure 4.2.

This test dataset is not only a tool for evaluating the U-Net segmentation model but also serves
as a benchmark for comparing the performance of the GPT-4 and Grounding SAM models. By
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Figure 4.2: The test dataset contains 25 samples, evenly distributed across five different diseases. Symp-
tom 1 represents a colored mass protruding in the corner of the eye, Symptom 2 refers to cloudiness or
haziness in the cornea, Symptom 3 signifies redness of the sclera, and Symptom 4 denotes excessive
tearing.

utilizing the same dataset across all models, the results can be compared directly. The models
will be assessed based on their ability to accurately segment and interpret the symptoms asso-
ciated with each disease, with particular focus on their precision in identifying small, nuanced
differences between similar ocular diseases.

4.2 Metrics

The evaluation of the experiment is centered around two primary aspects: the segmentation
of symptoms and the interpretation of input images. The results from both stages of the
experiment will be quantitatively assessed using standard metrics for segmentation accuracy and
text similarity, comparing the model outputs to ground truth data. The following subsections
provide detailed explanations of the metrics and procedures employed for evaluating model
performance.

4.2.1 Segmentation Metrics

To assess the effectiveness of the segmentation models, several well-established metrics are
applied. These metrics offer a robust evaluation of how accurately the models segment the key
symptoms in canine ocular images.

1. Jaccard Index (Intersection-over-Union, IoU): The Jaccard Index measures the overlap
between the predicted segmentation and the ground truth, reflecting how well the model
can identify the same regions, which are the connected component of pixels, as the ground
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truth segmentation. It is calculated as:

IoU =
T P

T P+FP+FN
, (4.1)

where T P represents true positives (correctly identified regions), FP represents false pos-
itives (incorrectly identified regions), and FN represents false negatives (missed regions),
as described in Figure 4.3.

2. Dice Index: A measure similar to the Jaccard Index but with greater sensitivity to over-
lap, the Dice Index evaluates the degree of similarity between the predicted and actual
segmentations. It is calculated using the following formula:

Dice Index =
2×T P

2×T P+FP+FN
. (4.2)

The Dice Index is particularly useful in medical imaging as it penalizes small discrepan-
cies between the predicted and actual segmentation more strongly than IoU, thus provid-
ing a more stringent assessment of segmentation performance.

3. Pixel Accuracy: This metric calculates the proportion of correctly classified pixels across
the entire image, both for foreground and background classes. The formula is:

Pixel Accuracy =
T P+T N

T P+T N +FP+FN
, (4.3)

where T N refers to true negatives. While Pixel Accuracy offers a broad overview of the
model’s ability to classify pixels, it may be less sensitive to rare conditions when most of
the image consists of healthy tissue.

4. Sensitivity (Recall): Sensitivity, also known as the true positive rate, measures the pro-
portion of actual positives (symptomatic regions) that the model correctly identifies. It is
a critical metric in medical diagnostics because it indicates the model’s ability to detect
all possible symptomatic areas. The formula is:

Sensitivity =
T P

T P+FN
. (4.4)

A high sensitivity score is crucial for ensuring that no symptomatic regions are missed.
5. Specificity: Specificity, or the true negative rate, evaluates how well the model identifies

negative regions, which are areas of the image that are free from symptoms. The formula
is:

Specificity =
T N

T N +FP
. (4.5)

Specificity is important for minimizing false positives, ensuring that the model does not
incorrectly classify healthy regions as symptomatic.

Both Sensitivity and Specificity work together to provide a comprehensive evaluation, ensuring
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Figure 4.3: Representation of confusion matrix with horizontal argument as Ground Truth (GT) and
vertical as Prediction showing correctly identified regions as TP, incorrectly identified regions as FP,
missed regions as FN and correctly identified negative regions as TN.

that the model not only identifies symptomatic regions but also avoids misclassifying healthy
areas.

For all these metrics, a score closer to 1 indicates better performance, signifying near-perfect
alignment between the predicted segmentation and the ground truth mask. These metrics will
be used to compare the performance of U-Net with other models, providing a detailed analysis
of how well the models generalize across different cases.

4.2.2 Text Similarity Metrics

In the second part of the experiment, the models’ ability to interpret images and generate ac-
curate textual diagnoses is evaluated. This is particularly important for models like GPT-4 and
GPT-4o, which generate text-based interpretations of the symptoms seen in the images. A suite
of metrics commonly used in natural language processing (NLP) is employed to compare the
generated text with the ocular diseases (Cherry Eye, Glaucoma, Uveitis, Corneal Ulceration,
and Bacterial Keratitis) described in the Test dataset.

1. BERTScore:[54] BERTScore is a sophisticated metric that uses BERT embeddings to
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evaluate the semantic similarity between the generated text and the ground truth. Embed-
dings are vector representations of words or tokens, capturing their meanings based on
context. In BERTScore, embeddings represent the meaning of each token within its spe-
cific sentence, allowing the model to understand nuances in meaning. Each embedding,
denoted as emb(x) for a token x, is obtained by passing x through the BERT model’s lay-
ers. This process produces a contextualized vector for each token, where each dimension
of the vector captures aspects of its meaning in relation to surrounding words.
The similarity is measured by calculating the cosine similarity between the tokens of the
predicted and reference sentences using Precision, Recall and F1 score:
The formulas for Precision (PB) and Recall (RB) are:

PB =
1
|C| ∑

t∈C
max
t ′∈R

cos(emb(t),emb(t ′)), (4.6)

RB =
1
|R| ∑

t ′∈R
max
t∈C

cos(emb(t ′),emb(t)), (4.7)

where C represents the set of tokens in the candidate sentence and R the set of tokens in
the reference sentence, and cos(emb(t),emb(t ′)) denotes the cosine similarity between
the embeddings of tokens t and t ′. The F1 Score (FB) is computed as:

FB =
2PBRB

PB +RB
. (4.8)

2. CLIPScore [55]: Leveraging the multimodal CLIP model [106], CLIPScore measures
the similarity between the vector representations of the generated text and the reference
text. It is calculated using the cosine similarity between the two vectors:

CLIPScore =
Vcandidate ·Vreference

∥Vcandidate∥∥Vreference∥
, (4.9)

where Vcandidate and Vreference represent the vector embeddings of the candidate and refer-
ence texts.

3. BLEU [56]: This metric evaluates the overlap of n-grams (sequences of words) between
the candidate and reference texts, penalizing shorter sentences to ensure that full descrip-
tions are considered. The formula is:

BLEU = BP · exp

(
N

∑
n=1

wn log pn

)
, (4.10)

where BP is the brevity penalty, wn is the weight for n-gram precision at n-th order, and
pn is the modified n-gram precision.

4. METEOR [57]: This metric computes the harmonic mean of unigram precision and
recall, leveraging linguistic resources such as stemmers and synonyms. The formula is:
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METEOR = FMETEOR =
10PR

9P+R
, (4.11)

where P represents unigram precision, and R represents unigram recall. In this context:
• Unigram Precision (P) is the ratio of unigrams (single words) in the candidate text

that match unigrams in the reference text to the total number of unigrams in the
candidate. This precision measure reflects how many of the candidate’s words are
relevant compared to the reference.

• Unigram Recall (R) is the ratio of matched unigrams in the candidate text to the to-
tal number of unigrams in the reference text, capturing how many of the reference’s
words are covered by the candidate.

5. ROUGE[58]: ROUGE measures the overlap between the longest common subsequences
in the candidate and reference texts, without requiring consecutive matching words. ROUGE-
L is a common variant used:

ROUGEL =
(1+β 2)RP

R+β 2P
, (4.12)

where:
• R is recall, calculated as the length of the longest common subsequence divided by

the total length of the reference text. It reflects how much of the reference content
is covered by the candidate.

• P is precision, calculated as the length of the longest common subsequence divided
by the total length of the candidate text, indicating how accurately the candidate
matches the reference.

• β is a weighting factor that controls the balance between precision and recall. Set-
ting β = 1 treats precision and recall equally, while higher values of β place more
emphasis on recall, which may be desirable when capturing the completeness of the
candidate text relative to the reference.

6. SPICE[59]: SPICE compares the scene graphs of the candidate and reference sentences,
focusing on the semantic content. Scene graphs represent the semantic structure of a
sentence as a graph of objects (nodes), attributes, and relationships (edges). It evaluates
the propositional meaning of the sentences rather than just surface-level n-gram matches:

SPICE = FSPICE =
2PR

P+R
. (4.13)

where:

• P (Precision) is calculated as the ratio of correctly matched semantic propositions in the
candidate scene graph to the total propositions in the candidate graph, reflecting how
accurately the candidate captures the reference content.

• R (Recall) is calculated as the ratio of correctly matched semantic propositions in the
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candidate scene graph to the total propositions in the reference graph, showing the com-
pleteness of the candidate in covering the reference’s key meanings.

4.3 Performance Evaluation

In this section, we explore a series of experiments designed to determine the most effective
approach to the workflow of canine ocular disease diagnosis, as depicted in Figure 4.4. Through
these experiments, we aim to identify the optimal solution that integrates both advanced image
segmentation and precise diagnostic interpretation.

Figure 4.4: The workflow diagram for analyzing canine ophthalmic conditions demonstrates the process
of evaluating an image of a dog’s eye. This involves utilizing model for segmentation, followed by the use
of LLM (Large Language Model) for interpreting the medical symptoms. The outcome is a segmented
image alongside a comprehensive diagnostic report.

4.3.1 Experiment 1: Ocular symptom segmentation with U-Net

The first experiment focuses on the training and initial evaluation of models based on the U-Net
architecture for segmenting ocular symptoms from canine eye images. This foundational stage
assesses U-Net’s ability to accurately delineate areas of interest within the images, which are
crucial for subsequent diagnostic processes.

To improve the segmentation performance, several backbone networks were tested in use with
the U-Net model was tested with several backbone networks. Four different backbones were
chosen based on their popularity and proven efficiency in medical imaging:

• ResNet34,
• Inception V3,
• VGG16, and
• EfficientNet B3.

The integration of these backbones into the U-Net model helps capture both low-level and
high-level features from the images, allowing for more accurate segmentation of ocular symp-
toms [26]. These specific backbones were selected due to their availability with pre-trained
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weights, which allowed for faster and more accurate convergence during training. Each back-
bone was evaluated through a series of preliminary experiments, taking into consideration the
balance between processing speed and segmentation accuracy.

The training of the U-Net model, including its variations with different backbones, was con-
ducted with a learning rate of 0.0001 and a fixed batch size of 16 images. The Adam optimizer
was employed, as it efficiently handles sparse gradients, which is essential for accurate segmen-
tation in medical imaging. Three loss functions were tested across 100 epochs:

• Categorical Cross-Entropy (CCE),
• Dice Loss (DL), and
• Focal Loss (FL).

These loss functions were applied individually and also summed together to assess their influ-
ence on segmentation accuracy. The models’ performance was monitored through metrics like
loss values and Intersection-over-Union (IoU) during training, and the best-performing models
were preserved for further evaluation.

For this initial experiment, the DogEyeSeg4 dataset was divided into a 90:10 split, where 90%
of the images were used for training, and 10% for testing, ensuring that the models had enough
diverse data for robust learning. Images were preprocessed to standardize their resolution and
quality, ensuring consistency across all training and evaluation procedures. Additionally, data
augmentation techniques, such as flipping, rotation, and brightness adjustment, were employed
to increase the diversity of the training data.

The experiment was conducted using a NVIDIA GeForce RTX 2060 GPU with 12GB of mem-
ory for the training phase, while the testing phase was run on an Intel Xeon E5-1603 v4 CPU.
The use of this hardware enabled efficient training of the models, ensuring timely completion
of the experiments. The models were sequentially trained on the same hardware using identical
datasets to ensure the fairness of the evaluation process. The performance metrics observed
during training were the loss and IoU values, with progress detailed in Figure 4.5 [62]. This
figure illustrates the average training loss and IoU across epochs, showcasing the development
and refinement of each model’s segmentation ability over time.

The evaluation of the models focused on their segmentation capabilities, utilizing a balanced
metric approach that incorporated Intersection over Union (IoU). Models that exhibited the
highest scores during the 100 training epochs were selected for further evaluation.

As illustrated in Table 4.1, the experiment categorized the models into the base U-Net model
and four groups differentiated by the backbone utilized. Each group was further divided based
on the loss function employed during training, including Categorical Cross Entropy (CCE),
Dice Loss (DL), Focal Loss (FL), and a combined Dice and Focal Loss (DL+FL).

The results clearly demonstrate that incorporating U-Net with various backbone models signif-
icantly improved segmentation and classification performance compared to the original U-Net.
This improvement is seen across all symptom classes, with the exception of S4 (A colored mass
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Figure 4.5: Average training loss (upper) and IOU (lower) values for 100 epochs showing expecting
curve of well performing model training [62].

in the corner of the eye). The challenges in this class likely stem from an insufficient amount of
data, which hindered EfficientNet’s parameter tuning, and the relatively simplistic VGG back-
bone compared to other backbones, which was unable to extract the necessary discriminative
features for this condition.
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Table 4.1: Segmentation models evaluation results in terms of Jaccard coefficient (IoU) percentages.
Training time (t∗) needed for training on full dataset using NVIDIA GeForce RTX 2060 GPU with
12GB RAM and average test time per image (t∗∗) on Intel(R) Xeon(R) CPU E5-1603 v4 @ 2.80GHz.

Architecture Loss Func. S1 S2 S3 S4 Mean IoU t∗/t∗∗

U-Net

CCE 38.7 37.5 0 47.9 31

4.5h / 0.5s
DL 36.2 35.1 0.1 58.9 32.6

FL 41.1 37.7 0 56.8 33.9

DL+FL 38.5 44 0.3 55.8 34.7

U-Net+ResNet34

CCE 62.3 63.9 20 37.2 45.9

6h / 1s
DL 70.8 62.1 64.6 32.8 57.6

FL 68.5 78.2 59.9 53.2 65

DL+FL 73.9 80.6 38 73.9 66.6

U-Net+InceptionV3

CCE 64.1 62.9 0.9 36.2 41

8h / 2s
DL 71.2 68 31.6 61.1 58

FL 62.1 65.6 18.2 21.4 41.8

DL+FL 78.3 78.3 37.9 54.2 62.2

U-Net+VGG16

CCE 63.1 66.6 1.3 33.8 41.2

6h / 0.5s
DL 67.1 60.4 31.4 27.4 46.6

FL 66.1 63.8 29.3 41 50.1

DL+FL 75.1 75.7 27.2 54.1 58

U-Net+EfficientNetB3

CCE 66.4 64.5 2.9 37 42.7

7h / 3s
DL 67.6 63.7 31.9 31.9 48.8

FL 67.3 70.1 28.7 38 51

DL+FL 69.7 79.2 36.1 67.5 63.1

S1- Cloudiness or haziness of the cornea, S2 - Redness of the sclera, S3 - Excessive tearing
and S4 - A colored mass in the corner of the eye.

The U-Net+ResNet34 model trained with the DL+FL loss function showed the highest overall
performance, achieving the top IoU scores for two out of the four symptom classes. In particu-
lar, this model displayed significant accuracy in segmenting S2 (Redness of the sclera) and S3
(Excessive tearing), indicating its effectiveness in detecting subtle symptoms involving redness
and tear production.

For S3 (Excessive tearing), using Dice Loss alone within the U-Net+ResNet34 model resulted
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in a marked improvement in segmentation accuracy, outperforming other models for this class.
This highlights the advantage of tailored loss functions for improving performance in detecting
less prominent or infrequent symptoms.

The U-Net+InceptionV3 model achieved the highest Jaccard score for S1 (Cloudiness or hazi-
ness of the cornea), with a Jaccard index of 78.3%. This indicates that Inception V3’s archi-
tectural design is particularly adept at handling more diffuse symptoms, where cloudiness and
haziness affect larger areas of the image and require precise boundary detection.

When the background class is excluded, the difference between the best and worst-performing
models reaches 27%, both of which utilize the same backbone architecture. This underscores
the significant impact of loss function selection on segmentation performance. In particular,
the combined DL+FL loss function led to the greatest improvement, especially in cases where
symptom boundaries are less distinct.

Excluding the least detectable symptom class, S3 (Excessive tearing), from the evaluation re-
sulted in an average improvement of over 13% across all models, further emphasizing the diffi-
culty in segmenting this class. Nonetheless, U-Net+VGG16 models demonstrated the quickest
segmentation times, making them highly efficient for real-time applications, despite not being
the top performers in terms of accuracy.

These findings support the proposition that incorporating advanced backbones into the U-Net
architecture, coupled with appropriately chosen loss functions, can significantly enhance seg-
mentation accuracy, particularly for more challenging symptoms in canine ocular disease diag-
nostics.

Figure 4.6: Flowchart describing the results of the first experiment where U-Net with ResNet34 back-
bone and combination of Dice and Focal loss provide best performance model when accuracy and time
is taken into consideration for further research.
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The in-depth evaluation of our models employed 5-fold cross-validation, focusing on those us-
ing the combined Dice Loss (DL) and Focal Loss (FL) due to their superior initial performance,
as seen in Figure 4.6. Cross-validation helps demonstrate the robustness of the models and the
reliability of the dataset across various training and validation scenarios. This method ensures
that every data point is used both for training and validation, thus providing a comprehensive
assessment of model stability and performance consistency.

In this detailed phase of evaluation, the DogEyeSeg4 dataset was divided into five folds, fol-
lowing an 80:20 ratio for training to validation, which allowed for the rigorous testing of model
reliability across different subsets of data. As depicted in Figure 4.7 [62], each fold was se-
quentially used as the validation set, with the remaining parts used for training. This rotational
approach not only maximizes the use of available data but also tests the model’s ability to adapt
to new, unseen data, thereby reinforcing the robustness of both the model architecture and the
training process.

Figure 4.7: Visual representation of 5-fold cross-validation where the dataset folds in ratio 80:20 pro-
viding 5 different models which are validated on unseen part of the dataset [62].

The primary goal of employing cross-validation in this experiment was to validate the quality
of the dataset and the consistency of the model performance. By rotating the validation set
across different subsets of the data, the process mitigates any potential biases or anomalies that
could affect the model’s efficacy, providing a more accurate and generalizable assessment of
its capabilities. This is particularly important in medical imaging applications , where high
precision and reliability are crucial.

The results of the cross-validation are summarized in Table 4.2, which uses the IoU metric to
quantify the performance across different folds. The inclusion of the background as a class dur-
ing this phase of the experiment substantially improved the segmentation accuracy, as evidenced
by the higher average IoU scores.

U-Net Base Model and U-Net with Inception V3, VGG16, and EfficientNet B3 Backbones pre-
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Table 4.2: 5-fold cross-validation results using mean IoU in percentage with background class included.

Architecture Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

U-Net 53.0 54.2 50.1 52.0 52.2

U-Net+ResNet34 73.2 72.6 72.3 71.2 76.0

U-Net+InceptionV3 69.5 68.6 69.7 67.5 69.7

U-Net+VGG16 65.3 69.5 65.2 64.3 65.5

U-Net+EfficientNetB3 67.2 69.3 73.4 70.6 68.0

sented strengths in various aspects of ocular disease segmentation, showing promise for differ-
ent symptom characteristics and image features. However, the U-Net with ResNet34 backbone
consistently delivered the best performance across all folds, including those with higher vari-
ability in symptom presentation and image conditions. This performance stability across diverse
folds suggests that the ResNet34 backbone generalizes effectively, making it particularly suited
for complex segmentation tasks where image features can vary significantly.

In the absence of reference results for the models trained on our image database for segmen-
tation and classification of eye diseases, we turned to statistical tests—ANOVA [107] and the
Tukey HSD [108]—to validate the effectiveness of our models. These tests used to assess
whether the differences in performance across various model configurations are statistically
significant and not due to random variation.

First, we assessed the normality of the model performance metrics (IoU scores across differ-
ent architectures) distribution through a QQ-Plot. This plot is used for validating the assump-
tion of normality required by ANOVA and Tukey HSD tests. The QQ-Plot in our study (Fig-
ure 4.8 [62]) indicated that the standardized residuals of our models closely align with a theo-
retical normal distribution, suggesting that the assumptions of normality are satisfactorily met.
This alignment supports the subsequent application of ANOVA and Tukey HSD tests to our
dataset.

To assess the statistical significance of the differences observed between the various U-Net
configurations, a one-way Analysis of Variance (ANOVA) was conducted [109, 110]. This
statistical method helps determine whether there are any statistically significant differences be-
tween the means of three or more independent groups. In our study, these groups were defined
by different network architectures.

Step-by-step ANOVA Procedure:

1. Calculation of Group Means: The first step involved calculating the mean Jaccard index
coefficient for each group (U-Net, U-Net+ResNet34, U-Net+InceptionV3, U-Net+VGG16
, and U-Net+EfficientNetB3) based on their performance across all folds. This provides
a baseline from which to measure deviations among the groups.
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Figure 4.8: Display of a QQ-plot which evaluates the standardized residuals of a model against a the-
oretical normal distribution. The data points closely follow the expected normal line, exhibiting only
slight deviations at the ends, suggesting that the residuals generally adhere to a normal distribution [62].

2. Between-Group Variance: This metric was computed to quantify how much the group
means deviate from the overall mean of all combined samples. This variance is indicative
of the effect that changing the network architecture has on segmentation performance.

3. Within-Group Variance: This step measured the variability of segmentation perfor-
mance within each group around their respective mean. This variance is critical as it
shows how consistent a model’s performance is across different folds, reflecting the in-
herent variability in model predictions.

4. Calculation of the F-value: The F-value was calculated by dividing the between-group
variance by the within-group variance. An F-value higher than the critical value from F-
distribution tables, considering the degrees of freedom associated with the between- and
within-group variances, indicates that the group means are not all equal.

5. Deriving the P-value: The p-value is derived from the calculated F-value and the degrees
of freedom for the test. It represents the probability of observing the calculated level of
variation among group means under the null hypothesis, which posits that all group means
are equal.

In our analysis, a p-value of 5.294× 10−13 was derived, which is significantly lower than the
typical threshold of 0.05. This extraordinarily low p-value suggests that there is a statistically
significant difference between the group means being compared. This result leads us to reject
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the null hypothesis and confirms that the modifications in network architecture significantly
affect the models’ segmentation performance.

To further investigate these differences, the Tukey Honest Significant Difference (HSD) test
was employed [108]. This test facilitates multiple pairwise comparisons between the model
architectures while controlling the family-wise error rate. It adjusts p-values to account for
multiple testing, thus reducing the likelihood of type I errors (false positives).

The results of the Tukey HSD test are detailed in Table 4.3. These results show significant
differences in performance between the base U-Net model and its enhanced versions incorpo-
rating the ResNet34, Inception V3, VGG16, and EfficientNet B3 backbones, with all p-values
being notably low (≤ 0.001 for most comparisons). The enhancements clearly outperformed
the base model, affirming the effectiveness of integrating advanced architectures into the U-Net
framework.

Table 4.3: Comparison of models based on the Jaccard Index using the Tukey HSD test. P-values are
provided for each pairwise comparison.

Architecture 1 Architecture 2 p-value

U-Net U-Net+ResNet34 0.001

U-Net U-Net+InceptionV3 0.001

U-Net U-Net+VGG16 0.001

U-Net U-Net+EfficientNetB3 0.001

U-Net+ResNet34 U-Net+InceptionV3 0.013

U-Net+ResNet34 U-Net+VGG16 0.001

U-Net+ResNet34 U-Net+EfficientNetB3 0.046

U-Net+InceptionV3 U-Net+VGG16 0.09

U-Net+InceptionV3 U-Net+EfficientNetB3 0.9

U-Net+VGG16 U-Net+EfficientNetB3 0.028

The pairwise comparisons within the enhanced models revealed varying levels of impact on
performance. Notably:

• Base U-Net vs. U-Net + different backbone: A p-value well below 0.001 indicates a
highly significant difference between the base U-Net model and the backbone-enhanced
versions.

• U-Net+ResNet34 vs. U-Net+InceptionV3: A p-value of 0.013 indicates a statistically
significant difference in performance between these two models, showing that they do not
perform equivalently.

• U-Net+ResNet34 vs. U-Net+EfficientNetB3: With a p-value of 0.046, suggesting a
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modest but still significant difference.
• U-Net+ResNet34 vs. U-Net+VGG16 : The p-value of 0.001 shows a statistically signif-

icant difference between these two models, confirming that they do not yield equivalent
results.

• U-Net+InceptionV3 vs. U-Net+VGG16 : A p-value of 0.09 suggests that the difference
in performance between these models is not statistically significant, indicating compara-
ble results.

• U-Net+EfficientNetB3 vs. U-Net+VGG16 : The p-value of 0.028 shows a statistically
significant difference between these two models, confirming that they do not yield equiv-
alent results.

• U-Net+InceptionV3 vs. U-Net+EfficientNetB3: A p-value of 0.9 suggests no statisti-
cally significant difference between these models, implying similar performance levels.

These findings indicate that certain architectural enhancements significantly improve model
performance, with U-Net+ResNet34 consistently showing superior results and also significantly
differing from other models. The cross-validation results for the U-Net+ResNet34 models, as
illustrated in Table 4.4, show a detailed performance breakdown across IoU, DSC, Sensitivity,
and Pixel Accuracy metrics.

Table 4.4: 5-fold cross-validation results of U-Net+ResNet34 models based on IoU, Dice Index (DSC),
Sensitivity, and Pixel Accuracy. The best results are marked in bold, and average in italic.

Model IoU (mean ± std) DSC (mean ± std) Sensitivity (mean ± std) Pixel Accuracy

1 0.732±0.142 0.838±0.092 0.868±0.101 0.966

2 0.726±0.172 0.830±0.117 0.814±0.172 0.981

3 0.723±0.159 0.829±0.110 0.876±0.103 0.959

4 0.712±0.188 0.817±0.135 0.849±0.212 0.982

5 0.760±0.108 0.860±0.066 0.913±0.086 0.963

Average 0.740±0.158 0.834±0.097 0.863±0.117 0.972

The IoU values for these models range from 71.2% to 76.0%, with a mean of 74.0% and a stan-
dard deviation of 0.158. The Dice Similarity Coefficient (DSC) ranges from 81.7% to 86.0%,
with an average of 83.4% and a standard deviation of 0.097. These metrics reflect a relatively
tight performance band, indicating consistent model effectiveness across different folds with
minimal fluctuation, demonstrating a maximum performance deviation of approximately 4%.
Sensitivity values, which measure the true positive rate, range from 81.4% to 91.3%, with an
average of 86.3%, suggesting that the model reliably identifies relevant features across different
test scenarios. Pixel accuracy across the models remains high, averaging 97.2%, highlighting
the model’s overall accuracy in classifying each pixel correctly, whether as a part of the lesion
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or background.

The confusion matrix for U-Net+ResNet34 Cross-Validation Model 2, shown in Table 4.5, pro-
vides a granular view of the model’s classification accuracy across different classes against the
ground truth. It helps in understanding how well the model discriminates between different
ocular conditions.

Table 4.5: Confusion matrix for U-Net+ResNet34 Cross-Validation Model 2 (pixels presented in %).

Prediction

BCK S1 S2 S3 S4

BCK 99 1 0 0 0

S1 15 85 0 0 0

Ground Truth S2 16 0 84 0 0

S3 3 0 0 97 0

S4 30 0 0 0 70

• Background (BCK): Shows an exceptionally high identification rate of 99% pixels, with
a very low false positive rate, misclassifying only 1% as Cloudiness or haziness of the
cornea (S1).

• S1: Correctly identified 85% pixels, demonstrating strong model performance in recog-
nizing this condition, with 15% misclassified as background but with still some space for
improvement.

• S2: Exhibits an accuracy of 84% pixels, indicating effective recognition, though 16% of
cases are mistaken as background, suggesting room for sensitivity improvement.

• S3: Achieves the highest-class accuracy among disease conditions at 97% pixels, with
minimal misclassification.

• S4: Shows lower correct classification at 70% pixels, with a significant 30% pixels of
instances misclassified as background, indicating specific challenges in distinguishing
this condition due to its visual similarity to background features.

It is worth mentioning that in this particular model no misclassification was made between
symptoms but only between symptoms and background. These observations collectively high-
light the U-Net+ResNet34 model’s strengths in accurately segmenting and classifying ocular
conditions with high reliability and minimal variation across different validation folds. The de-
tailed metrics and confusion matrix analysis provide a comprehensive view of where the model
excels and where improvements could be targeted.

In Figures 4.9 and 4.10, the segmentation results are displayed alongside the corresponding
ground truth and predictions made by the U-Net+ResNet34 model utilizing the combined Dice
and Focal Loss approach. Different colors are employed to distinguish various classes: dark
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blue indicates the background, light blue represents cloudiness or haziness of the cornea (S1),
green denotes redness of the sclera (S2), orange signifies excessive tearing (S3), and red indi-
cates a colored mass in the corner of the eye (S4).

Figure 4.9: Examples of the segmentation analysis of close-up eye images with diagnostic labels. The
original images are shown in the left column, the middle column represents the ground truth (GT), and
the predictions are displayed in the right column. In the segmentation results, the top row correctly
identifies two classes according to the ground truth, the middle row misses the detection of the excessive
tearing class, and the bottom row incorrectly identifies an additional instance of redness of the sclera.

Now that the in-depth evaluation of the preferred U-Net based model is performed, we can
conclude that the U-Net+ResNet34 model trained with combined Dice and Focal loss is the
optimal segmentation solution in correlation to the DogEyeSeg4 dataset for further research.
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Figure 4.10: Segmentation of test images featuring whole head figures with diagnoses is depicted. The
left column shows the original images, the center column displays the ground truth (GT), and the right
column illustrates the predictions. In the top row, a colored mass in the corner of the eye is correctly
predicted while redness of the sclera is mistakenly identified. The middle row incorrectly detects cloudi-
ness or haziness of the cornea but successfully segments a colored mass in the corner of the eye. The
bottom row falsely identifies a combination of redness of the sclera and cloudiness or haziness of the
cornea where only a colored mass in the corner of the eye is actually present.

4.3.2 Experiment 2: Segmentation Comparative Study

In the second experiment, we conduct a comparative analysis of the segmentation capabilities
of the U-Net models against Grounding SAM and GPT 4 segmentation models based on Large
Language Models (LLMs). We use the best performing U-Net model (U-Net+ResNet34) de-
scribed in Experiment 1.

Considering the limited number of images in the DogEyeSeg4 dataset used for training the U-

57



Experiments and Results

Net+ResNet34 model, an additional model based on it is trained using DogEyeSeg4 dataset and
synthetized images by Stable Diffusion [68]. We refer to the model trained solely on DogEye-
Seg4 as U-Net+ResNet34(R), and the model trained on DogEyeSeg4 and synthesized images
as U-Net+ResNet34(RSD) with ResNet34 backbone and Focal and Dice loss. For training the
enhanced U-Net+ResNet34(RSD) model, the original DogEyeSeg4 dataset was expanded with
an additional 400 synthetized images, 100 for each class, as seen in Figure 4.11.

For this and succeeding experiments the test dataset described in Section 4.1. will be used, that
was not used in the k-fold cross validation training of the U-Net+ResNet34(R) model. By doing
so we are avoiding bias towards trained U-Net models compared to others.

The test set encompasses a total of 25 images, categorically divided into five distinct disease
groups. This study highlights the relative strengths and weaknesses of each model and evaluates
their performance on a standardized test dataset comprising various stages of ocular disease
progression.

Figure 4.11: The training dataset used to develop the U-Net+ResNet34(R) model consists exclusively
of real images, while the U-Net+ResNet34(RSD) model incorporates a combination of both real and
synthetic images along with their corresponding masks.

The results of the U-Net models are compared with results from Grounding SAM [7] and GPT-
4o [111]. Grounding SAM, which initiates segmentation by processing predefined bounding
boxes determined by most favorable custom prompt for each case, where, for example, term
"red mass protrusion" is used for S4 symptom instead of "A colored mass in the corner of the
eye" as described in 3.16, allowing for a direct comparison with the U-Net outputs. The prompt
used in GPT-4o is the one described in 3.14. For a better response prompt is divided into:

• Task (act as veterinary consultant),
• Instruction (Analyze image and return segmented medical symptoms) and
• Expected response (color the symptoms and make the background black).

Results from this evaluation are presented in Table 4.6, where U-Net+ResNet34(RSD) consis-
tently shows superior performance across the metrics of Pixel Accuracy, Intersection over Union
(IoU), and Dice Index (DSC). This suggests that the synthetic dataset contributed to improved
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segmentation accuracy on real images, enhancing the model’s ability to handle complex fea-
tures in real-world images. Additionally, results for GPT-4o and Grounding SAM indicate that
these pre-trained, general-purpose models are inadequate for this specialized task, underscoring
the need for task-specific adaptations in ocular disease segmentation.

Table 4.6: Segmentation evaluation of U-Net+ResNet34(R), U-Net+ResNet34(RSD), GPT-4o, and
Grounding SAM methods using IoU, Dice Index (DSC), and Pixel Accuracy.

Method IoU DSC Pixel Accuracy

U-Net+ResNet34(R) 0.74 0.83 0.94

U-Net+ResNet34(RSD) 0.81 0.88 0.97

GPT-4o 0.16 0.20 0.72

Grounding SAM 0.14 0.16 0.67

Further assessments of the U-Net (RSD) modelfocusing on specific diagnostic categories are
documented in Table 4.7. Here, the symptom characterized as S4 — "colored mass protru-
sion in the corner of the eye" — demonstrates the highest measures of Specificity, IoU, and
Dice Index, highlighting the accuracy of U-Net+ResNet34(RSD) in segmenting this particular
pathology. Conversely, the challenge is most evident with S3 — "excessive tearing" — which
proves difficult to segment accurately due to its more dispersed and irregular manifestation.

Table 4.7: Evaluation of U-Net+ResNet34(RSD) using IoU and Dice Index with standard deviation,
along with Pixel Accuracy, Sensitivity, and Specificity on individual symptoms.

IoU DSC Pixel Accuracy Sensitivity Specificity

S1 0.84±0.08 0.91±0.04 0.991 0.944 0.972

S2 0.74±0.20 0.83±0.15 0.976 0.928 0.973

S3 0.74±0.26 0.82±0.20 0.972 0.851 0.983

S4 0.90±0.22 0.92±0.20 0.984 0.932 0.991

These findings are visually summarized in Figure 4.12, illustrating the Dice Index for each
symptom across the evaluated segmentation methods. U-Net+ResNet34(RSD) records the high-
est indices for three of the four symptoms tested, while U-Net+ResNet34(R) excels specifically
in segmenting the "colored mass protrusion in the corner of the eye". This indicates that the ad-
vanced U-Net+ResNet34(RSD) typically provides enhanced performance. In contrast, GPT-4o,
compared to Grounding SAM, performs better with symptoms that are irregularly shaped and
scattered, but both GPT-4o and Grounding SAM are not suitable for segmentation purposes.
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Figure 4.12: Dice Index of four different segmentation methods for individual classes. The
U-Net+ResNet34(RSD) shows best results in three classes and closely follows result of U-
Net+ResNet34(R) when forth class is observed.

4.3.3 Experiment 3: Binary vs. Multiclass Segmentation

The primary goal of this experiment is to assess whether training individual models for binary
segmentation of each symptom class can outperform a multiclass segmentation approach in the
context of canine ocular diseases. Given that a single model usually does not perform optimally
across all symptoms, this experiment seeks to explore the potential benefits and limitations
of specialized binary models compared to a generalized multiclass model. The experiment is
divided into two phases:

1. Binary Models Training: Each class (S1, S2, S3, S4) was individually trained using a
U-Net+ResNet34(R) architecture, designed to segment specific symptoms without con-
sideration for overlapping conditions. The results can be observed in Table 4.8.

2. Enhanced Binary Models with Heatmaps: To refine the focus on the eye region and re-
duce false positives (FP), binary models were re-trained using U-Net+ResNet34(R) with
an added heatmap channel. This channel includes three specific white spots: one centered
in the eye and two at the lower corners of the bounding box around the eye. The bounding
boxes were generated using a Single Shot Detector (SSD) object detection model trained
on a set of 99 images that depict various canine ocular conditions. This SSD model helps
localize the eye area accurately by identifying bounding boxes around the eyes, thus en-
hancing the precision of the segmentation by narrowing the model’s focus to the regions
most relevant for detecting ocular conditions. The results can be observed in Table 4.9.

Training individual binary models for each class offers the benefit of specialized focus, poten-
tially improving model accuracy for each symptom. Binary models are computationally more
efficient because each class is treated independently, meaning each model only needs to dis-
tinguish between the presence or absence of a specific symptom. This makes it easier to scale

60



Experiments and Results

Table 4.8: Evaluation of binary U-Net+ResNet34(R) models not considering class overlapping. Results
are generally lower compared to multiclass U-Net+ResNet34(R) with significant decrease in sensitivity.

IoU DSC Pixel Accuracy Sensitivity Specificity

S1b 0.87±0.41 0.90±0.41 0.985 0.717 0.989

S2b 0.59±0.46 0.61±0.46 0.980 0.395 0.994

S3b 0.38±0.37 0.38±0.37 0.970 0.190 0.972

S4b 0.70±0.45 0.72±0.47 0.980 0.563 0.981

Table 4.9: Evaluation of binary U-Net+ResNet34(R) models with Heatmaps. Heatmap includes three
specific white spots: one centered in the eye and two at the lower corners of the bounding box around
the eye, identified using an SSD object detector.

IoU DSC Pixel Accuracy Sensitivity Specificity

S1b+h 0.60±0.43 0.63±0.46 0.987 0.457 0.990

S2b+h 0.64±0.47 0.66±0.46 0.980 0.440 0.999

S3b+h 0.64±0.50 0.64±0.50 0.995 0.440 0.999

S4b+h 0.86±0.39 0.90±0.40 0.992 0.680 0.993

and manage the models, especially when introducing new classes, as no dataset rebalancing is
required. Each model can be trained separately, simplifying the integration of new symptoms
without revisiting the previous dataset.

However, using binary models requires multiple models to be deployed to cover the full range
of symptoms, which increases the overall complexity. Additionally, binary models face chal-
lenges when symptoms overlap. These models need extra mechanisms to handle such overlaps
effectively, making the approach more complicated. Another drawback of binary models is
their lack of contextual information. Since each model is focused on a single symptom, it may
misclassify symptoms because it lacks information about the absence of other classes, which
can lead to higher misclassification rates.

Figures 4.13 and 4.14 demonstrate the advantages and limitations of using heatmaps to reduce
false positives outside the eye region. Figure 4.13 shows a close-up of an eye where the heatmap
discards many false positives, and Figure 4.14 illustrates even more pronounced improvements
in a whole-head image. However, focusing too narrowly on the eye region can result in false
negatives, as seen in Figure 4.15, where excessive tearing remains unsegmented. Furthermore,
despite the high IoU rate of the SSD object detector, it occasionally fails to detect eyes, as
shown in Figure 4.16, which directly impacts subsequent segmentation results.

Despite the promising results from binary models, including a reduction in false positives when
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Figure 4.13: Example of binary segmentation without (2nd row) and with (3rd row) heatmap as 4
channel input.

Figure 4.14: Example of binary segmentation on whole head without (2nd row) and with (3rd row)
heatmap as 4 channel input
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Figure 4.15: Binary segmentation example showing that focusing too narrowly on the eye region can
result in false negatives (3rd row) compared to partly segmented excessive tearing (2nd row).

Figure 4.16: Example where lack of detection reflects in absence of segmentation of a right eye (3rd
row) but increases FPs if not applied at all (2nd row).

using heatmaps, the complexity involved in managing overlapping symptoms and the increased
operational demands of maintaining multiple models led to the decision to pursue multiclass
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segmentation. Multiclass models can handle overlapping conditions more naturally, avoiding
the need for multiple models, and offer a more streamlined and effective approach for diag-
nosing canine ocular diseases. This makes multiclass segmentation the preferred approach for
practical deployment in veterinary ophthalmology.

4.3.4 Experiment 4: Diagnostic Interpretation

In the fourth experiment, we compare the performance of various Large Language Models
(LLMs)—including GPT-4, Gemini, Mistral, Claude, and Llama-3—in analyzing and interpret-
ing combinations of four ocular symptoms that U-Net+ResNet34(RSD) successfully classifies
and segments. This study aims to assess each model’s ability to understand complex medical
data and generate accurate diagnostic insights, thereby identifying the most effective LLM for
supporting ophthalmological diagnostics.

To assess the diagnostic capabilities of large language models (LLMs) in interpreting and pro-
viding preliminary diagnoses for canine eye diseases, this experiment utilized 15 distinct medi-
cal cases selected from the Medical Atlas of Canine and Feline Eye Diseases [61]. Each "med-
ical case" in this context includes:

• An image sourced from the atlas, displaying specific ocular symptoms associated with a
disease.

• A validated diagnosis, with up to three words (for example: Blocked Tear Duct, Ocular
Trauma Glaucoma), for each image, as specified in the atlas.

Each image underwent segmentation using a U-Net+ResNet34(RSD) model with four symp-
tom classes (S1 to S4). If U-Net+ResNet34(RSD) successfully segmented only the symptoms
present in the atlas-defined diagnosis, with no extra or missing symptoms, that image was used
as a reference. This approach yielded 15 images, each corresponding to a unique symptom
combination (e.g., S1, S2, S3, S4, S1+S2, etc., up to S1+S2+S3+S4).

In the LLM testing phase, only the segmented symptom combinations, not the images them-
selves, were provided as input prompts to the LLMs, as some models cannot process images.
Each LLM output was then compared to the diagnosis in the atlas to determine diagnostic align-
ment. Scoring was based on the following criteria:

• A score of "1" was assigned if the LLM’s diagnosis matched the atlas diagnosis.
• A score of "-1" if the LLM’s response differed.
• A score of "0" if the LLM did not specify a diagnosis or could not reach a conclusion.

This scoring system allowed for an evaluation of the LLMs’ diagnostic reliability based solely
on the symptom prompts identified through U-Net segmentation.

The experimental design incorporated several stages to evaluate the LLMs. Initially, we gen-
erated queries mimicking questions posed by dog owners lacking medical expertise, and these
were compared with symptom-based queries derived from U-Net image segmentation intended
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for use by veterinary specialists. An illustrative example from this stage, represented by the
Mistral LLM’s performance, is documented in Table 4.10.

Table 4.10: An illustrative example comparing the results generated by the Mistral LLM when prompted
by a dog owner without specifying any symptoms with the outputs from U-Net image segmentation that
utilized symptom information akin to that provided by a veterinarian. Glaucoma is the correct diagnosis.

Prompt by Diagnosis generated by the Mistral LLM Score

Owner I’m sorry to hear that your dog is having eye issues.
Blurry and pink eyes in dogs can be caused by a va-
riety of factors, such as allergies, eye injuries, infec-
tions (bacterial, viral, or fungal). It’s important to get
a proper diagnosis from a veterinarian as soon as pos-
sible, as some eye conditions can progress rapidly and
potentially lead to vision loss.

0

U-Net symp-
toms

The symptoms of ocular opacity, sclera redness, and
excessive tearing in a dog could be associated with
conditions such as anterior uveitis, lens luxation, or
glaucoma, and a professional veterinarian’s examina-
tion is necessary for an accurate diagnosis and appro-
priate treatment.

1

Owner Prompt1: "I’ve noticed something odd with my dog’s eye, and I’m
really worried. It has blurry and pink eye. Should I be worried?"
U-Net symptoms Prompt2: "Dog has next symptoms: ocular opacity, sclera
redness, and excessive tearing. Give me possible diagnosis."

In the next stage, the evaluation focused on understanding the diagnostic effectiveness of LLMs
when utilizing structured, symptom-specific prompts. Each of the 15 medical cases selected
from the Medical Atlas of Canine and Feline Eye Diseases was assigned a “veterinary-style”
prompt. These prompts included only the symptoms that U-Net had accurately segmented,
which corresponded directly to the conditions documented in the atlas.

These symptom-based prompts, identified from U-Net segmentation, aimed to provide precise
symptom descriptions that would closely align with those a veterinary specialist might use.
Structured prompts consisted of a brief contextual background, a direct query, and a list of
symptoms. For example, the prompt format was: “Make a short pinpoint diagnosis based

on the combination of these dog eye symptoms to assist a vet in preliminary decision-making

for diagnosis: 1. <class returned by U-Net>, 2. <class returned by U-Net>.” This approach
allowed the experiment to test the accuracy of LLM diagnoses based on symptom-specific input.

In example where two symptoms were presented to LLMs as described in Table 4.11, to evaluate
the responses, scoring rules were applied consistently across cases: a score of “1” indicated
a diagnosis matching the Cherry Eye diagnosis, “-1” for mismatches, and “0” for responses
without a specific diagnosis or inconclusive results. These scoring criteria were used to quantify
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the diagnostic reliability of the LLMs.

The role of U-Net segmentation in this experiment was to ensure that each prompt accurately
reflected the relevant symptoms present in each case, as identified from the atlas images. U-Net
was responsible for identifying specific symptoms (S1-S4) in the atlas images and only cases
where U-Net accurately segmented symptoms matching the ground truth (100% alignment with
atlas-documented symptoms) were used.

Table 4.11: Example of prompts given to five LLM models, along with their responses and associated
score values. The correct diagnosis in this case is Cherry Eye.

LLM Response to Prompt* Score

Llama-3 Redness of the sclera + Colored Mass Protrusion in
the Eye Corner Diagnosis: Allergic Reaction

-1

Mistral Sclera redness + Colored Swelling in the Eye Edge:
Although less commonly seen together, coexisting
watery eyes and colored swelling may warrant refer-
ral to a specialized veterinarian for proper evaluation
and management of suspected immune-mediated dis-
orders affecting multiple organs.

0

GPT-4 Redness of the sclera + Protrusion of a Red or Pink
Mass - Diagnosis: Cherry Eye with secondary tear
duct irritation.

1

Claude Based on the symptoms you described, I do not have
enough information to make a definitive diagnosis.
The redness and protruding mass indicate an abnor-
mality affecting the eye and surrounding structures.
But the specific diagnosis cannot be made based on
these limited symptoms alone. Further veterinary ex-
amination of the eye would be recommended.

0

Gemini The combination of red sclera and a red/pink mass
protruding from the eye corner strongly suggests
glaucoma. This condition usually requires veterinary
examination and potentially surgery.

-1

Prompt: "Make a short pinpoint diagnosis based on the combination of these
dog eye symptoms to assist a vet in preliminary decision-making for diagnosis:

1. Redness of the sclera
2. Protrusion of a Red or Pink Mass in the Eye Corner"

The scores for all 15 cases are presented in Table 4.12.

GPT-4 demonstrates effectiveness in straightforward cases but has limitations in identifying
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Table 4.12: Comparison of LLMs for Diagnostic Evaluation of a Specific Disease Using Symptom
Criteria individually and in combination.

Sym. Disease
Medical Condition

GPT-4 Gemini Mistral Claude Llama-3

S1 Nuclear Sclerosis 1 0 1 -1 -1

S2 Blocked Tear Duct 1 -1 -1 0 -1

S3 Conjunctivitis 1 -1 -1 -1 -1

S4 Cherry Eye 1 -1 -1 1 -1

S12 Corneal Ulcer 1 -1 0 1 -1

S13 Uveitis 1 1 1 1 -1

S14 Corneal Ulcer -1 -1 0 0 -1

S23 Conjunctivitis 1 1 1 1 -1

S24 Cherry Eye 1 -1 0 0 -1

S34 Conjunctivitis -1 -1 0 1 1

S123 Glaucoma -1 -1 1 1 -1

S124 Bacterial Infection -1 -1 0 -1 -1

S134 Ocular Trauma -1 1 0 0 -1

S234 Blocked Tear Duct 1 -1 0 -1 -1

S1234 Ocular Trauma -1 0 0 0 0

Sym.: Symptom combinations, where S1-S4 are individual symptoms, and
combinations represent multiple symptoms.

more complex conditions, particularly when symptoms overlap, as evidenced by its failure to
diagnose Corneal Ulcer. Mistral approaches diagnoses with caution, giving undefined answers
more often than other LLMs. It is less prone to overconfidence and therefore has fewer halluci-
nations. Claude performs well but has difficulties with multisymptomatic diseases, as indicated
by its variable scores in conditions like Blocked Tear Duct and Ocular Trauma. In comparison,
Llama-3 and Gemini struggle across various scenarios. Notably, Llama-3 doesn’t recognize
excessive tearing as a symptom at all, resulting in a diagnosis that describes a healthy eye. The
most successful LLMs are GPT-4 and Claude.

In order to provide a more generalized diagnosis, a dual diagnosis prompt is tested to accom-
modate the fact that a combination of symptoms does not necessarily point to a unique disease.
This approach sacrifices precision for a broader range of possible medical conditions, which is
often desired in medical settings. A Table 4.13 shows combinations of symptoms and first and
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second most probable diagnoses from LLMs. In case when resulting diagnosis are inconclusive
word "None" is used.

Table 4.13: Comparison of LLM Responses for Dual Diagnostic Evaluation

Symptom Diagnosis GPT-4 Gemini Mistral Claude Llama-3

S1 1st Nuclear Sclerosis, None, Nuclear Sclerosis, Cataract, Cataract,

2nd Cataract None Cataract Lens luxation None

S2 1st Blocked Tear Duct, Uveitis, Epiphora, None, Dry Eye Syndrome,

2nd Cherry Eye None Entropion None, None

S3 1st Conjunctivitis, Scleritis, Scleritis, Scleritis, Scleritis,

2nd Uveitis None Uveitis Uveitis None

S4 1st Cherry Eye, Proptosis, Glaucoma, Cherry Eye, Glaucoma,

2nd Orbital Neoplasia Glaucoma Cherry Eye Proptosis Cherry Eye

S12 1st Ulcer, Scleritis, None, Corneal Ulcer, Cataract,

2nd Nuclear Sclerosis None None Cataract Dry Eye

S13 1st Uveitis, Uveitis, Uveitis, Uveitis, Cataract,

2nd Nuclear Sclerosis Scleritis Lens Luxation Glaucoma Scleritis

S14 1st Nuclear Sclerosis, Cataract, None, None, Cataract,

2nd Cherry Eye Proptosis None None, Cherry Eye

S23 1st Conjunctivitis, Conjunctivitis, Conjunctivitis, Conjunctivitis, Dry Eye,

2nd Uveitis Blocked Tear Duct Uveitis Epiphora Conjunctivitis

S24 1st Cherry Eye, Proptosis, None, None, Dry Eye,

2nd Blocked Tear Duct Cherry Eye None None, None

S34 1st Uveitis, Scleritis, None, Conjunctivitis, Conjunctivitis,

2nd Cherry Eye Proptosis None Epiphora Dry Eye

S123 1st Nuclear Sclerosis, Ocular Trauma, Glaucoma, Glaucoma, Cataract,

2nd Uveitis None Cataract Cataract Dry Eye

S124 1st Nuclear Sclerosis, Cataract, None, Cataract, Cataract,

2nd Cherry Eye Proptosis None Glaucoma Dry Eye

S134 1st Nuclear Sclerosis, Ocular Trauma, None, None, Cataract,

2nd Cherry Eye Cataract None None, Scleritis

S234 1st Blocked Tear Duct, Proptosis, None, Cataract, Dry Eye,

2nd Conjunctivitis Glaucoma None Glaucoma Scleritis

S1234 1st Nuclear Sclerosis, Glaucoma, None, None, None,

2nd Trauma Eye Trauma None None None

The performance metrics of LLMs in diagnosing diseases based on clinical symptoms are de-
tailed in Table 4.14. This evaluation covers both single and dual-case scenarios, assessing the
most probable medical condition in single-case diagnosis, and comparing the two most probable
conditions to the reference standard in dual-case diagnosis.
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Table 4.14: Evaluation of Large Language Models (LLMs) using various text similarity metrics.

LLM BERTScore CLIPScore BLEU METEOR ROUGE SPICE

Single Diagnosis

GPT-4 0.80 0.91 0.52 0.42 0.56 0.56

Gemini 0.77 0.85 0.20 0.13 0.20 0.20

Mistral 0.75 0.86 0.27 0.19 0.27 0.27

Claude 0.76 0.87 0.40 0.26 0.40 0.40

Llama-3 0.69 0.85 0.07 0.06 0.07 0.07

Dual Diagnosis

GPT-4 0.69 0.86 0.22 0.25 0.27 0.43

Gemini 0.68 0.85 0.15 0.20 0.19 0.23

Mistral 0.66 0.85 0.10 0.11 0.12 0.20

Claude 0.66 0.84 0.19 0.21 0.24 0.28

Llama-3 0.69 0.87 0.07 0.07 0.09 0.15

GPT-4 demonstrated superior performance across all assessed metrics in single diagnostic sce-
narios, followed by Claude, Mistral, Gemini, and Llama-3. Notably, BERTScore and CLIP-
Score, in contrast to other metrics, showed minimal variation among LLMs. The disparity
between the highest and lowest scores was most pronounced when using ROUGE and SPICE
metrics, compared to a narrower range observed in CLIPScore.

Computational metrics as shown in Table 4.14, largely correspond with human evaluations,
where terms with slight variations (such as ’Ocular Trauma’ being synonymous with ’Eye
Trauma’ and ’Ulcer’ broadly matching ’Corneal Ulcer’) were considered correct interpretations
in context. These results, illustrated in Figure 4.17, provide further validation of the LLMs’
diagnostic accuracy, even when exact terminology may differ.

The evaluation noted that GPT-4 yielded the most accurate diagnoses, outperforming other
LLMs in both single and dual diagnosis scenarios. The dual diagnosis analysis across all LLMs
using BERTScore illustrated in Figure 4.18 reveal that the diagnosis of Cherry Eye when ac-
companied by the symptom of Colored Ocular Protrusion and Redness of the sclera was most
challenging while combination of Redness of the sclera and Ocular Tearing seems to be easier
to diagnose. In Figure 4.19, the differences between single and dual diagnosis evaluations using
CLIPScore on GPT-4 are presented.

Single diagnosis scenarios, despite being less successful in pinpointing the correct diagnosis,
showed higher certainty in predictions—a reflection of the strategic inclusion of error as a result
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Figure 4.17: True positive diagnoses by each LLM across 15 cases, comparing single and dual diag-
noses.

Figure 4.18: Mean dual diagnosis BERTScore across all LLMs evaluated for each symptom combina-
tion.

of an additional text in a form of second diagnosis. Both single and dual diagnosis perform
better when single symptoms are present with exception of combination of Redness of the
sclera and excessive tearing and colored mass in the corner of the eye. Cloudiness or haziness
of the cornea symptom gets better recognized in dual disease diagnosis.

This evaluation underscores the diagnostic capabilities of LLMs in interpreting symptom data
processed by U-Net, with GPT-4 demonstrating the strongest performance across multiple
cases. Semantic and linguistic metrics such as BERTScore, CLIPScore, BLEU, METEOR,
ROUGE, and SPICE support the reliability of GPT-4’s outputs in a medical context. In con-
trast, Llama-3 showed limited accuracy, successfully diagnosing only a small number of cases,
indicating that not all evaluated models currently meet the threshold for practical utility.
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Figure 4.19: An analysis of the differences between results provided using single and dual diagnoses,
using CLIPScore metric, evaluated on GPT-4 across various symptom combinations.

4.3.5 Experiment 5: Combined Approach for Complete Diagnosis

The final experiment considers the interpretative capabilities of GPT-4 and its successor GPT-
4o[111], where non-segmented images and the images segmented by U-Net+ResNet34(RSD)
are analyzed to generate comprehensive diagnostic reports. The goal is to test the ability of
these language models to synthesize visual data into accurate, actionable medical advice.

The experiment uses the test set from the 4.1. Test Dataset section, consisting of 25 images
representing five distinct canine eye diseases. These images are used as inputs for both GPT-4
and GPT-4o, with and without segmentation masks generated by U-Net+ResNet34(RSD). The
mask and input image are supplied separately using two PNG files where the mask is similar
to one presented in 4.2. The objective is to evaluate the models’ diagnostic capabilities across
single and dual diagnosis scenarios, specifically examining whether the additional segmentation
masks enhance diagnostic accuracy for the large language models.

Results from Table 4.15 provide a detailed comparison of single and dual medical diagnoses
generated by GPT-4 and GPT-4o, with and without the aid of segmentation masks. Across
all evaluated metrics—BERTScore, CLIPScore, BLEU, METEOR, ROUGE, and SPICE—the
performance generally improves when GPT-4o is supplemented with segmentation masks, high-
lighting the model’s enhanced capability in interpreting the structured visual data.

The comparative analysis of disease diagnosis by GPT-4 and GPT-4o, as illustrated in Fig-
ure 4.20, where 20 cases of true positives corresponds to 5 disease in single and dual diagnosis
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Table 4.15: Evaluation of GPT-4 and GPT-4o in single and dual medical diagnoses, with and without
masks generated by U-Net+ResNet34(RSD) segmentation.

Model BERTScore CLIPScore BLEU METEOR ROUGE SPICE

Single Diagnosis

GPT-4o image 0.83 0.90 0.48 0.31 0.48 0.48

GPT-4o with mask 0.84 0.91 0.49 0.32 0.51 0.51

GPT-4 image 0.63 0.84 0.08 0.06 0.08 0.08

GPT-4 with mask 0.65 0.86 0.15 0.08 0.16 0.15

Dual Diagnosis

GPT-4o image 0.62 0.90 0.14 0.13 0.17 0.45

GPT-4o with mask 0.64 0.91 0.16 0.14 0.19 0.49

GPT-4 image 0.59 0.85 0.07 0.05 0.08 0.11

GPT-4 with mask 0.59 0.85 0.03 0.03 0.04 0.06

scenarios with and without segmentation mask, underscores the superior diagnostic accuracy of
GPT-4o across multiple eye diseases. This model excels particularly in the diagnosis of Uveitis
and Cherry Eye, in cases of single/dual diagnosis and with/without segmentation masks, indi-
cating a robust capability to interpret complex visual patterns associated with these conditions.
However, an divergence is noted in the diagnosis of Corneal Ulcer, where GPT-4 outperforms
GPT-4o, suggesting potential limitations in GPT-4o’s processing of the visual cues specific to
this condition.

Further insights are gleaned from the distribution of BERT Scores across different diseases
based on results of GPT-4o in Figure 4.21, which charts the results on a logarithmic scale for
both single and dual diagnoses. The radial plot illustrates that while GPT-4o generally achieves
higher scores in single diagnosis scenarios—particularly for Cherry Eye—the model also shows
slight advantages in dual diagnosis contexts for more complex diseases like Bacterial Keratitis
and Corneal Ulcer.

This analysis demonstrates that the integration of advanced language processing models with
image segmentation technologies like U-Net+ResNet34(RSD) enables consistent diagnostic ac-
curacy based on visual data. It also highlights the critical role of model selection and the con-
figuration of input data, which consists of engineered prompt requesting two most probable
diagnosis using only input image and using input image and segmented mask generated by
U-Net+ResNet34(RSD) in optimizing diagnostic outcomes in medical AI applications.
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Figure 4.20: An Evaluation of the Diagnostic Differences Between GPT-4 and GPT-4o in five Canine
Eye Diseases showing performance in favor of GPT-4o in four out of five diseases. Uveitis was diagnosed
by GPT-4o with 100% prediction rate in single and dual diagnosis and with and without provided U-
Net+ResNet34(RSD) segmentation masks.

Figure 4.21: BERTScore results for each medical case, categorized into four disease groups, are pre-
sented based on GPT-4o when both single and dual diagnosis approaches are applied.
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Discussion

This study was guided by two primary hypotheses:

1. Hypothesis 1: A computer vision model can recognize certain canine ocular conditions
in still images taken in an unconstrained environment.

2. Hypothesis 2: Modification of the input and architecture of the U-Net network con-
tributes to a better segmentation of canine eye conditions.

In the Experiments and Results section, we provided strong evidence supporting both hypothe-
ses. We developed and evaluated a series of models for detection, segmentation, and interpreta-
tion tasks to diagnose canine ocular diseases from images captured in real-world, unconstrained
environments.

One of the contributions of this research was the development and publication of the DogEye-

Seg4 dataset. The published custom-made DogEyeSeg4 dataset was important in training the
models. It provided a diverse set of images reflecting real-world clinical conditions, including
variations in lighting, breed, and image quality. The dataset consists of 320x320 pixel annotated
images using ground truth masks in PNG file format where particular class is determined by spe-
cific pixel value. It covers four classes of canine ocular symptoms including background, with
annotations for both symptom types and regions. It incorporates a variety of breeds and clinical
conditions, ensuring diversity in terms of lighting, breed differences, and image quality. This
diversity was enhanced further by additional 400 synthetic images, on top of the DogEyeSeg4
dataset allowing the models to learn from a broader range of symptom presentations.

Given the lack of pre-existing models for detecting canine eyes, we trained a custom Single
Shot Multibox Detector (SSD) model. This SSD model was trained on 99 images encom-
passing various breeds and medical conditions, including healthy eyes. The model achieved the
following scores: IoU 92%, Dice Score 96%, Precision 97%, Recall 84%, and F1 Score of 90%.
These metrics indicate high accuracy in localizing the eye region within unconstrained images,
confirming that a computer vision model can effectively detect canine eyes in real-world con-
ditions, which is needed for the experiment with the custom attention mechanism used by the
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U-Net segmentation.

For symptom segmentation, we initially implemented the standard U-Net architecture and then
enhanced it with four different backbone networks: ResNet34, Inception V3, VGG16, and
EfficientNet B3. These models were trained using the following loss functions: Categorical
Cross-Entropy (CCE), Dice Loss (DL), Focal Loss (FL), and Combined Dice and Focal Loss
(DL+FL). The best performing model is the U-Net model with a ResNet34 backbone trained
using the combined Dice and Focal Loss (U-Net + ResNet34 with DL+FL).

In 5-fold cross-validation, it achieved:

• Mean IoU: 74%
• Dice Similarity Coefficient (DSC): 83.4%
• Sensitivity: 86.3%
• Pixel Accuracy: 97.2%

The U-Net + ResNet34 with DL+FL outperformed other configurations in three out of four
classes and demonstrated robust performance in accurately segmenting key ocular symptoms:

S1 Cloudiness or haziness of the cornea,
S2 Redness of the sclera,
S3 Excessive tearing, and
S4 A colored mass in the corner of the eye.

Further enhancements to the segmentation model were made by training on a combined dataset
of real images from DogEyeSeg4 and 400 synthetic images generated using Stable Diffusion, re-
ferred to as U-Net+ResNet34(RSD). The synthetic dataset was designed to ensure high quality,
resembling real-world symptom presentations. These quality standards enabled synthetic im-
ages to complement real images effectively, improving model performance. The U-Net+ResNet34(RSD)
model achieved IoU 81%, DSC 88%, and Pixel Accuracy 97%. These improvements under-
score the effectiveness of augmenting training data with synthetic images to enhance model
generalization and performance.

The U-Net+ResNet34(RSD) model was compared with other segmentation approaches:

• GPT-4o: IoU 16%, DSC 20%, and Pixel Accuracy 72%.
• Grounding SAM: IoU 14%, DSC 16%, and Pixel Accuracy 67%.

The U-Net+ResNet34(RSD) model outperformed these models across all metrics, highlighting
its superior capability in segmenting canine ocular symptoms in unconstrained environments.

We explored training individual binary segmentation models for each symptom versus a sin-
gle multiclass model. Binary models were trained using heatmaps as a fourth channel in the
RGB input image, generated using information from SSD eye detection. While binary models
with heatmaps reduced false positives compared to binary models trained without the custom
attention mechanism, they faced challenges with overlapping symptoms and increased com-
plexity. The multiclass U-Net+ResNet34(RSD) model provided better overall performance and
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operational efficiency, supporting its use for practical applications.

For diagnostic interpretation, several Large Language Models (LLMs) were evaluated: GPT-4,
Gemini, Mistral, Claude, and Llama-3. GPT-4 consistently provided the most accurate diag-
noses based on the segmented symptoms. For single-diagnosis scenarios, GPT-4 achieved:

• BERTScore: 0.80
• CLIPScore: 0.91
• BLEU: 0.52
• METEOR: 0.42
• ROUGE: 0.56
• SPICE: 0.56

When integrating segmentation masks from U-Net+ResNet34(RSD), the succeeding model
GPT-4o demonstrated enhanced performance:

• BERTScore: 0.84
• CLIPScore: 0.91
• BLEU: 0.49
• METEOR: 0.32
• ROUGE: 0.51
• SPICE: 0.51

These results indicate that combining precise segmentation with advanced LLMs like GPT-4o
improves diagnostic interpretation. The proposed pipeline is illustrated in Figure 5.1.

Figure 5.1: The depicted diagnostic pipeline for canine ophthalmic conditions demonstrates im-
proved performance when both the original images and their corresponding segmented masks from U-
Net+ResNet34(RSD) are utilized as inputs for GPT-4o, enhancing the accuracy of the medical diagnoses
derived from visual symptoms.

The limitations identified in this study include:
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• Model’s Sensitivity to Image Quality: The diagnostic accuracy is highly dependent on
the quality of input images and segmentation masks. Poor image quality or inaccurate
segmentation can negatively impact model performance.

• Difficulty with Certain Conditions: Models occasionally struggled with conditions like
Corneal Ulcer, suggesting the need for further refinement in handling less visually distinct
symptoms.

• Variability in LLM Capabilities: Some LLMs, like Llama-3, underperformed in di-
agnostic interpretation, indicating variability in model capabilities and the necessity for
continuous evaluation and improvement of these models.

Future research should focus on:

• Extending the Dataset: Incorporating more diverse images and medical symptoms, in-
cluding rare conditions and different breeds, to improve model generalization.

• Advanced Model Architectures: Exploring the use of transformer-based models for
segmentation to capture global contextual information, which could be beneficial for de-
tecting subtle symptoms.

• Multimodal Data Integration: Combining image data with clinical history and other
modalities to provide a more holistic diagnostic approach.

• Clinical Testing: Testing the diagnostic pipeline in clinical settings to validate and refine
the models based on practical use, which should provide valuable feedback for further
development.

The experimental results confirm both hypotheses:

• Hypothesis 1 is supported by the successful development of the computer vision U-
Net+ResNet34(RSD) model for segmentation and implementation of GPT-4o for inter-
pretation, which accurately recognize canine ocular conditions in images taken in uncon-
strained environments.

• Hypothesis 2 is confirmed by demonstrating that modifications to the U-Net network’s
input and architecture—by using a combination of real and synthetic images, custom
attention mechanisms in the form of heatmaps, integrating advanced backbones, and em-
ploying combined loss functions—lead to better segmentation of canine eye conditions.

This study demonstrates the potential of integrating advanced computer vision and language
models to assist in the diagnosis of canine ocular diseases. The findings lay the groundwork for
developing robust, AI-driven diagnostic tools that can operate effectively in real-world veteri-
nary settings, ultimately contributing to improved animal healthcare outcomes.
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Chapter 6

Conclusion

This research has confirmed both initial hypotheses:

1. Hypothesis 1: By developing the computer vision U-Net+ResNet34(RSD) model for
segmentation and implementing GPT-4/GPT-4o for interpretation, we demonstrated that
certain canine ocular conditions can be accurately recognized in still images taken in
unconstrained environments.

2. Hypothesis 2: Modifying the U-Net network’s input and architecture by using a custom
attention mechanism (heatmaps), integrating advanced backbones, and employing com-
bined loss functions resulted in improved segmentation of canine eye conditions.

These confirmations highlight the effectiveness of advanced deep learning techniques in diag-
nosing canine eye diseases from images captured in real-world settings. The key contributions
of this research are:

1. An image dataset for machine learning of canine eye diseases: We developed and
published the DogEyeSeg4 dataset, which includes a diverse set of real-world clinical
images of canine eyes. This dataset reflects variations in lighting, breed, and image qual-
ity, providing a robust foundation for training and evaluating machine learning models in
unconstrained environments.

2. Deep convolutional neural network model for recognition of canine eye clinical symp-
toms and diseases from still images in unconstrained environments: We successfully
implemented and tested convolutional neural network models that accurately detect and
recognize canine ocular symptoms and diseases in images captured under real-world con-
ditions. The models demonstrated high accuracy in localizing the eye region and identi-
fying key ocular symptoms, even in instances such as variable lighting and patient move-
ment.

3. Deep neural network based on U-Net for segmentation of canine eye clinical symp-
toms from still images in unconstrained environments: By enhancing the standard
U-Net architecture with advanced backbone networks like ResNet34 and employing com-
bined loss functions (Dice and Focal Loss), along with augmented input, we developed
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the U-Net+ResNet34(RSD) model. This model achieved superior performance in seg-
menting key ocular symptoms, providing precise delineation necessary for accurate diag-
nosis.

4. An improved method for segmentation of canine eye conditions based on U-Net:
We introduced modifications to the U-Net network’s input and architecture, including
synthesized images and the use of a custom attention mechanism in the form of heatmaps
generated from SSD eye detection. These enhancements led to improved segmentation
accuracy and reduced false positives.

Along with these major contributions, an additional achieved contribution is:

• The development of a comprehensive diagnostic pipeline integrating image segmen-
tation and diagnostic interpretation. We developed a diagnostic pipeline that com-
bines image segmentation using U-Net+ResNet34(RSD) with diagnostic interpretation
by GPT-4o. This pipeline effectively merges computer vision and natural language pro-
cessing techniques, demonstrating the potential of AI-driven tools to enhance veterinary
ophthalmology. The integration of precise segmentation with advanced language models
improved diagnostic accuracy, laying the groundwork for robust models that can operate
effectively in real-world veterinary settings

In summary, this research demonstrates the potential of integrating advanced computer vision
techniques with deep learning models to enhance the diagnosis of canine ocular diseases. The
development of the DogEyeSeg4 dataset and the improved U-Net-based segmentation methods
contribute valuable resources and methodologies for future research in veterinary ophthalmol-
ogy. The successful application of models like U-Net+ResNet34(RSD) and GPT-4o showcases
the feasibility of deploying such technologies in real-world clinical settings, ultimately aiming
to improve diagnostic accuracy and patient outcomes in veterinary medicine.

Despite these advancements, the research identified limitations such as the models’ sensitivity
to image quality and difficulties in diagnosing subtle conditions like corneal ulcers. Address-
ing these challenges is significant for developing more accessible and reliable diagnostic tools.
Future research should focus on expanding the dataset, refining model architectures, and inte-
grating multimodal data to further enhance automated veterinary diagnostics and develop more
comprehensive approaches to animal health care.
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pasa i mačaka. Beograd: Oculus Vet, 2020.

[62] M. Buric, S. Grozdanic, and M. Ivasic-Kos, “Diagnosis of ophthalmologic diseases in
canines based on images using neural networks for image segmentation,” Heliyon, p.
e38287, 9 2024.

[63] The EU’s General Data Protection Regulation (GDPR) in a Research Context. Cham:
Springer International Publishing, 2019, pp. 55–71, dOI: 10.1007/978-3-319-99713-1_5.
[Online]. Available: http://link.springer.com/10.1007/978-3-319-99713-1_5

[64] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative Adversarial Networks,” 2014, version: 1.
[Online]. Available: https://arxiv.org/abs/1406.2661

[65] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” 2013, version: 11.
[Online]. Available: https://arxiv.org/abs/1312.6114

[66] J. Ho, A. Jain, and P. Abbeel, “Denoising Diffusion Probabilistic Models,” 2020,
version: 2. [Online]. Available: https://arxiv.org/abs/2006.11239

[67] G. Paulin and M. IvasicKos, “Review and analysis of synthetic dataset generation meth-
ods and techniques for application in computer vision,” Artificial Intelligence Review,
vol. 56, no. 9, pp. 9221–9265, 9 2023.

[68] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-
Resolution Image Synthesis with Latent Diffusion Models,” in 2022 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans,
LA, USA: IEEE, 6 2022, [Online; accessed 2024-09-17]. [Online]. Available:
https://ieeexplore.ieee.org/document/9878449/

[69] J. Thompson, H. Dong, K. Liu, F. He, M. Popescu, and D. Xu, A Rule-

Based Approach for Generating Synthetic Biological Pathways. Cham: Springer
International Publishing, 2022, vol. 13483, pp. 105–116, collection-title: Lecture
Notes in Computer Science DOI: 10.1007/978-3-031-20837-9_9. [Online]. Available:
https://link.springer.com/10.1007/978-3-031-20837-9_9

[70] S. Lee, B. Hoover, H. Strobelt, Z. J. Wang, S. Peng, A. Wright, K. Li, H. Park,
H. Yang, and D. H. Chau, “Diffusion explainer: Visual explanation for text-to-image
stable diffusion,” 2024. [Online]. Available: https://arxiv.org/abs/2305.03509

[71] M. Fries1111, “Wildlifex animals model,” 2024, accessed: 2024-10-28. [Online].
Available: https://civitai.com/models/262239/wildlifex-animals

86

https://arxiv.org/abs/1607.08822
https://urn.nsk.hr/urn:nbn:hr:195:405214
http://link.springer.com/10.1007/978-3-319-99713-1_5
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2006.11239
https://ieeexplore.ieee.org/document/9878449/
https://link.springer.com/10.1007/978-3-031-20837-9_9
https://arxiv.org/abs/2305.03509
https://civitai.com/models/262239/wildlifex-animals


Bibliography

[72] S. 161222, “Realistic vision v6.0 b1 hypervae model,” 2024, accessed: 2024-10-28.
[Online]. Available: https://civitai.com/models/4201/realistic-vision-v60-b1

[73] Civitai Community, “Civitai generative ai,” 2024, accessed: 2024-10-28. [Online].
Available: https://civitai.com

[74] M. Buric and M. Ivasic-Kos, “Next-Generation Computer Vision in Veterinary
Medicine: A Study on Canine Ophthalmology,” jul 22 2024, [Online; accessed
2024-09-27]. [Online]. Available: https://www.techrxiv.org/users/802988/articles/
1188856-next-generation-computer-vision-in-veterinary-medicine-a-study-on-canine-ophthalmology?
commit=f4bdfc66ea37f9905cc12704c501b3c4848289f1

[75] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora:
Low-Rank Adaptation of Large Language Models,” arXiv preprint arXiv:2106.09685,
2023. [Online]. Available: https://openreview.net/forum?id=nZeVKeeFYf9

[76] F. Zhang and M. Pilanci, “Riemannian Preconditioned LoRA for Fine-Tuning
Foundation Models,” arXiv preprint arXiv:2403.19776, 2024. [Online]. Available:
https://arxiv.org/abs/2403.19776

[77] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpainting,” in
Proceedings of the 27th annual conference on Computer graphics and interactive

techniques - SIGGRAPH ’00. Not Known: ACM Press, 2000, pp. 417–424, [Online;
accessed 2024-09-17]. [Online]. Available: http://portal.acm.org/citation.cfm?doid=
344779.344972

[78] J. Song, C. Meng, and S. Ermon, “Denoising Diffusion Implicit Models,” in
International Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=St1giarCHLP

[79] B. L. Kidder, “Advanced image generation for cancer using diffusion models,” Biology

Methods and Protocols, vol. 9, no. 1, p. bpae062, 08 2024. [Online]. Available:
https://doi.org/10.1093/biomethods/bpae062
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