
UNIVERSITY OF RIJEKA
FACULTY OF INFORMATICS AND DIGITAL

TECHNOLOGIES

Karlo Babić

THE PYRAMIDAL RECURSIVE
NEURAL NETWORK FOR

MULTILEVEL TEXT REPRESENTATION

DOCTORAL THESIS

Rijeka, year 2025.

UNIVERSITY OF RIJEKA
FACULTY OF INFORMATICS AND DIGITAL

TECHNOLOGIES

Karlo Babić

THE PYRAMIDAL RECURSIVE
NEURAL NETWORK FOR

MULTILEVEL TEXT REPRESENTATION

DOCTORAL THESIS

Supervisor: prof. dr. sc. Ana Meštrović

Rijeka, year 2025.

SVEUČILIŠTE U RIJECI
FAKULTET INFORMATIKE I DIGITALNIH TEHNOLOGIJA

Karlo Babić

PIRAMIDALNO REKURZIVNA
NEURONSKA MREŽA ZA

VIŠERAZINSKO REPREZENTIRANJE
TEKSTA

DOKTORSKI RAD

Mentorica: prof. dr. sc. Ana Meštrović

Rijeka, godina 2025.

Supervisor: prof. dr. sc. Ana Meštrović

The doctoral dissertation was defended on
at/in ,
before a committee consisting of:

1.
2.
3.
4.
5.

Zahvale

Hvala mojoj obitelji, prijateljima i mentorima što su me podržavali na ovom putu.
Svemir je golem i hladan, a naš značaj postoji samo u onome što značimo jedni drugima.

Abstract

Natural Language Processing (NLP) has long relied on effective text representation to advance a
range of applications, from sentiment analysis to machine translation. However, traditional text
representation techniques often fail to fully capture the hierarchical and compositional nature
of language, leading to a loss of critical semantic and syntactic information. This challenge is
amplified by the unique hierarchical and symbolic structure of text, distinguishing it from other
data modalities such as images or audio.

This thesis proposes a novel text representation learning approach, Pyramidal Recursive learn-
ing (PyRv), which employs the Pyramidal Recursive Neural Network (PyRvNN) architecture.
PyRv addresses the limitations of existing methods by leveraging pyramidal recursion to model
text hierarchically, progressing from subwords to sentences. The model is designed with four
desired properties: hierarchical representation, representation compositionality, representation
decodability, and self-supervised learning.

PyRv captures hierarchical relationships and compositional structures within text, ensuring ro-
bust representation decodability without reliance on labeled data. Experiments demonstrate its
capability to produce multi-level, interpretable, and efficient representations. Evaluation in-
cludes intrinsic tasks, such as autoencoder decodability and representation compositionality, as
well as downstream applications like plagiarism detection, memorization, and readability as-
sessment. Results highlight strong performance in decoding accuracy and effective combining
of lower-level embeddings.

The findings presented in this thesis establish PyRvNN as a step forward in text representation
learning, providing a scalable, interpretable, and efficient framework for capturing the complex
hierarchical structures inherent in natural language.

Keywords: compositionality, decodability, hierarchical representation, multi-level representa-
tion, neural networks, self-supervised learning, text representation

Sažetak

Obrada prirodnog jezika (NLP) uvelike se oslanja na učinkovitu reprezentaciju teksta kako bi
unaprijedila različite primjene, od analize sentimenta do strojnog prevod̄enja. Med̄utim, tradi-
cionalne tehnike reprezentacije teksta često ne uspijevaju u potpunosti obuhvatiti hijerarhijsku i
kompozicijsku prirodu jezika, što rezultira gubitkom bitnih semantičkih i sintaktičkih informa-
cija. Ovaj izazov dodatno je naglašen jedinstvenom hijerarhijskom i simboličkom strukturom
teksta, koja ga razlikuje od drugih modaliteta podataka poput slika ili zvuka.

Ova disertacija predlaže novi pristup učenju reprezentacije teksta, Pyramidal Recursive learn-
ing (PyRv), koji koristi arhitekturu Pyramidal Recursive Neural Network (PyRvNN). PyRv
rješava ograničenja postojećih metoda koristeći piramidalnu rekurziju za hijerarhijsko modeli-
ranje teksta, napredujući od podriječi do rečenica. Model je dizajniran s četiri željena svojstva:
hijerarhijska reprezentacija, kompozicionalnost reprezentacije, dekodabilnost reprezentacije i
samonadzirano učenje.

PyRv reprezentira hijerarhijske odnose i kompozicijske strukture unutar teksta, osiguravajući
robusnu dekodabilnost reprezentacije bez oslanjanja na označene podatke. Eksperimentalni
rezultati potvrd̄uju sposobnost generiranja višerazinskih, interpretabilnih i učinkovitih reprezentacija.
Evaluacija obuhvaća intrinzične zadatke, uključujući dekodabilnost autoenkodera i kompozi-
cionalnost reprezentacije, kao i primjene u detekciji plagijata, memorijalizaciji i procjeni čitljivosti.
Rezultati ističu visoku točnost dekodiranja i učinkovito kombiniranje nižerazinskih reprezentacija.

Rezultati predstavljeni u ovoj disertaciji uspostavljaju PyRvNN kao korak naprijed u učenju
reprezentacije teksta, pružajući skalabilan, interpretabilan i učinkovit okvir za obuhvaćanje
složenih hijerarhijskih struktura svojstvenih prirodnom jeziku.

Ključne riječi: kompozicionalnost, dekodabilnost, hijerarhijska reprezentacija, višerazinska
reprezentacija, neuronske mreže, samonadzirano učenje, reprezentacija teksta

Prošireni sažetak

Obrada prirodnog jezika (NLP) kontinuirano napreduje kroz razvoj novih metoda reprezentacije
teksta, omogućujući strojevima bolje razumijevanje, interpretaciju i generiranje ljudskog jezika.
Ključni izazov u ovom području leži u učinkovitom modeliranju semantičkih i sintaktičkih
struktura jezika, koje su intrinzično hijerarhijske i kompozicijske. Tradicionalne metode za
reprezentiranje teksta, poput one-hot vektora, bag-of-words i TF-IDF, unatoč svojoj jednos-
tavnosti i primjenjivosti, ne uspijevaju adekvatno obuhvatiti hijerarhijsku prirodu jezika, gubeći
bitne informacije o kontekstu i med̄usobnim odnosima med̄u riječima.

S pojavom neuronskih mreža, metode poput Word2Vec, FastText i GloVe omogućile su bolju
semantičku reprezentaciju teksta kroz gusto kodirane vektore. Ipak, ove metode i dalje ne us-
pijevaju eksplicitno modelirati hijerarhijske odnose med̄u jezičnim jedinicama. Transformerski
modeli poput BERT-a, T5 i GPT-a donijeli su značajna poboljšanja u dinamičkoj reprezentaciji
teksta, ali i dalje postoje izazovi vezani uz računalne zahtjeve, interpretabilnost i sposobnost
rekonstrukcije originalnog teksta iz naučenih reprezentacija.

Ovaj doktorski rad predlaže novi pristup učenju reprezentacije teksta pod nazivom Pyrami-
dal Recursive learning (PyRv), koji koristi arhitekturu Pyramidal Recursive Neural Network
(PyRvNN). PyRv je dizajniran s četiri temeljna svojstva: hijerarhijska reprezentacija, kompozi-
cionalnost reprezentacije, dekodabilnost i samonadzirano učenje.

Hijerarhijska reprezentacija omogućuje modelu da obuhvati različite razine jezičnih jedinica, od
znakova do cijelih rečenica, čime osigurava preciznije i kontekstualno bogatije reprezentacije.
Kompozicionalnost reprezentacije osigurava da se složeniji jezični izrazi mogu formirati kom-
biniranjem jednostavnijih komponenti, čime se poboljšava sposobnost modela u razumijevanju
i generiranju teksta. Dekodabilnost omogućuje rekonstrukciju izvornog teksta iz naučenih
reprezentacija, čime se povećava interpretabilnost modela i omogućuje dublje razumijevanje
njegovog funkcioniranja. Samonadzirano učenje omogućuje modelu da uči iz neoznačenih
podataka, čime se smanjuje potreba za velikim količinama označenih podataka te poboljšava
generalizacija na različite jezične domene.

Eksperimentalni rezultati potvrd̄uju da PyRv osigurava učinkovitu dekodabilnost, interpretabil-
nost i preciznu kompozicionalnost naučenih reprezentacija. Evaluacija PyRv metode kroz
PyRvNN model uključuje intrinzične zadatke, poput dekodabilnosti autoenkodera i sposobnosti
kombiniranja nižih razina reprezentacije, kao i primjene u detekciji plagijata, memorijalizaciji
i procjeni čitljivosti teksta. Dobiveni rezultati ističu visoku točnost dekodiranja te sposobnost
modela da učinkovito kombinira nižerazinske reprezentacije u složenije tekstualne jedinice.

Primarni znanstveni doprinosi ovog doktorskog rada su:

• Razvoj nove metode za učenje reprezentacije teksta temeljenog na piramidalnoj rekurzivnoj
neuronskoj mreži.

• Opsežna evaluacija stabilnosti treniranja, kvalitete naučenih reprezentacija i performansi

na NLP zadacima.
• Poboljšanje prethodno naučenih reprezentacija za morfološki bogate jezike, poput hrvatskog,

omogućujući bolje rezultate uz manje podataka prilikom prilagodbe na nove domene.

Formulirane su hipoteze koje usmjeravaju istraživanje:

• H1: Trening piramidalne rekurzivne neuronske mreže za reprezentaciju teksta može biti
stabilan i učinkovit.

• H2: Piramidalna rekurzija omogućuje istovremeno generiranje reprezentacija za različite
razine jezičnih jedinica.

• H3: Predložena metoda nadmašuje postojeće metode na odabranim zadacima i dome-
nama.

Doktorski rad pokriva različite aspekte predložene metode, uključujući teorijsku osnovu, imple-
mentaciju modela, eksperimentalnu analizu te potencijalne primjene u području obrade prirodnog
jezika. Ova istraživanja predstavljaju korak naprijed u razvoju skalabilnih i interpretabilnih
metoda za modeliranje složenih hijerarhijskih struktura koje su svojstvene prirodnom jeziku.

v

Contents

1. Introduction . 1
1.1. Problem Statement . 2

1.1.1. Limitations of Current Text Embedding Techniques 2
1.1.2. Novel Text Representation Method 3

1.2. Objectives and Scope . 3
1.2.1. Hypotheses . 3
1.2.2. Contributions . 3
1.2.3. Scope of the Study . 4

1.3. Overview of Proposed Method . 4
1.4. Thesis Structure . 5

2. Literature Review . 6
2.1. Comparative Analysis . 6

2.1.1. Model Categorization . 9
2.1.2. Shallow Models . 12
2.1.3. Recurrent Models . 15
2.1.4. Recursive Models . 19
2.1.5. Convolutional Models . 23
2.1.6. Attention Models . 25
2.1.7. Analysis Conclusions . 31

2.2. Desirable Model Properties . 33
2.2.1. Representation Compositionality . 33
2.2.2. Hierarchical Representation . 35
2.2.3. Representation Decodability . 37
2.2.4. Self-supervised Learning . 38

2.3. Identified Gaps and Challenges . 39

3. Theoretical Background . 41
3.1. Neural Network Representations . 41

3.1.1. The Role of Representations in Machine Learning 42

3.1.2. Representations in Text . 42
3.2. Autoencoders and Autoregressive Learning 44

3.2.1. Autoencoders . 44
3.2.2. Autoregressive Learning . 45
3.2.3. Integration of Autoencoding and Autoregression 46

3.3. Recursive Neural Networks . 47
3.3.1. Backpropagation Through Structure 48

3.4. Pyramidal Recursive Learning . 49
3.4.1. Training Challenges and Solutions . 50

4. Methodology . 51
4.1. Pyramidal Recursive Learning Method . 52

4.1.1. Complexity . 54
4.2. Pyramidal Recursive Neural Network Architecture 54

4.2.1. Input Representations . 56
4.2.2. Embedding Dimension . 56

4.3. Training Procedure . 59
4.3.1. Training Data . 61
4.3.2. Pyramidal Training . 63
4.3.3. Loss Computation . 63
4.3.4. Training Setup . 67

4.4. Evaluations . 69
4.5. Model Limitations and Constraints . 71

5. Experiments and Results . 73
5.1. Representation Decodability Property . 74

5.1.1. Results . 74
5.2. Representation Compositionality Property . 77

5.2.1. Embedding method . 79
5.2.2. Evaluation . 80
5.2.3. Summary and Conclusions . 87

5.3. Memorization Task . 93
5.3.1. Results . 93

5.4. Plagiarism Task . 94
5.4.1. Results . 95

5.5. Readability Task . 95
5.5.1. Results . 96

6. Discussion . 98
6.1. Contributions . 98

6.2. Hypotheses . 100

7. Conclusion . 102

Bibliography . 105

8. Abbreviations . 119

A. A: Implementation . 126
A.1. Module main.py . 127
A.2. Module modelarch.py . 128
A.3. Module trainalg.py . 129

A.3.1. Function pyrv_train() . 129
A.3.2. Function train_init() . 129
A.3.3. Function pyramidal_recursion() 129
A.3.4. Function loss() . 131

A.4. Module dataprep.py . 131
A.4.1. Function generate_arrays_from_data() 131
A.4.2. Function text_to_onehots_by_words() 131

A.5. Module datamanip.py . 132
A.5.1. Function token_pairs_prep() 132
A.5.2. Function subwordlvl_pairs_prep() 132
A.5.3. Function phraselvl_pairs_prep() 133

B. B: Additional Results . 135

Chapter 1

Introduction

Natural language processing (NLP) is a rapidly evolving field dedicated to enabling machines to
understand, interpret, and generate human language. Its significance spans various applications,
including machine translation, sentiment analysis, and information retrieval, transforming how
humans interact with technology. Central to the success of these applications is the effective
representation of text.

Text representation serves as the foundation for most NLP tasks, providing a means for
machines to process linguistic data. Over time, text representation techniques have evolved sig-
nificantly. Traditional methods such as one-hot encoding, bag-of-words, and Term Frequency-
Inverse Document Frequency (TFIDF) were widely used but were limited in their ability to cap-
ture semantic or syntactic relationships. These methods provided sparse and high-dimensional
representations, often failing to preserve word order or contextual meaning.

With the advent of neural networks, dense embeddings like Word2Vec [1], FastText [2],
and GloVe [3] brought a paradigm shift by encoding semantic information into low-dimensional
continuous vector spaces. These embeddings positioned similar words close to each other,
enabling improved performance in downstream tasks. More recently, transformer-based models
such as BERT [4] have set new benchmarks in text representation by leveraging contextualized
embeddings that adapt dynamically to the surrounding text.

The rapid evolution of Large Language Models (LLMs) has further shaped the landscape.
Early foundational models like GPT-1 [5] showcased the potential of large-scale generative
pre-training. Subsequent developments included instruction-following models, with Google’s
FLAN [6] enhancing few-shot learning via instruction tuning, and OpenAI’s InstructGPT se-
ries [7] using Reinforcement Learning from Human Feedback (RLHF) to improve instruction
adherence, as seen in models like ChatGPT. More recently, techniques like Chain-of-Thought
(CoT) prompting [8, 9], initially prominent with Google’s PaLM [10], and models such as o1
[11] exploring extended deliberation, have pushed the boundaries of complex task performance.
While large-scale models, often designed for text generation, have shown significant success,
further research into alternative approaches is still important. Specifically, there is a need to

1

Introduction

explore dedicated text embedding models that are smaller, simpler, more interpretable, or com-
putationally efficient.

In comparison to other modalities like images and audio, text representation presents
unique challenges. While images and audio are often continuous and signal-based, text is in-
herently sequential and symbolic, composed of discrete units such as characters, words, and
sentences. This symbolic nature introduces a hierarchical structure that requires specialized
approaches for effective representation.

The importance of robust text representation cannot be overstated, as it directly influences
the performance of NLP tasks such as sentiment analysis, machine translation, question an-
swering, and text summarization. Better representations lead to models that are more accurate,
interpretable, and capable of generalizing across diverse contexts and languages. This under-
scores the need for innovative methods to represent text in a way that captures its hierarchical
and compositional nature while preserving crucial semantic and syntactic information.

1.1 Problem Statement

The rapid advancements in text representation have revolutionized NLP, yet there remains a
critical need to explore novel learning methods that better capture the hierarchical and composi-
tional nature of language. A significant challenge lies in developing representations and models
that not only improve the quality of embeddings but also exhibit desirable properties such as
hierarchical representation, compositionality, decodability, and self-supervised learning.

1.1.1 Limitations of Current Text Embedding Techniques

Integrating Multiple Representational Properties. Current text embedding methods often
struggle to concurrently provide compositionality, hierarchical representations, decodability,
and self-supervised learning. Achieving all these desired features, particularly a clear, multi-
level decodable hierarchy through purely self-supervised means, remains an active area of re-
search and a notable limitation in existing techniques.

Loss of Information in Averaging Methods. Simple word embedding composition tech-
niques, such as those that compute the element-wise mean of multiple word vectors to produce
a single phrase or sentence representation, often result in the loss of critical information. These
methods fail to capture word order and syntactic structures, leading to representations that lack
the richness and precision required for complex NLP tasks. This limitation becomes particu-
larly apparent in tasks that depend on subtle linguistic nuances, such as paraphrase detection or
dependency relation classification.

2

Introduction

Computational Demands and Memory Constraints. Recursive models, particularly those
trained on large-scale datasets, often encounter significant computational and memory chal-
lenges. The sequential and hierarchical nature of these models increases training time and
complexity, limiting their feasibility for real-world applications requiring efficiency and scala-
bility.

1.1.2 Novel Text Representation Method

To address these limitations, this research aims to develop a novel text representation learning
method that integrates the following desirable properties:

• Representation Compositionality: The ability to combine representations from subcom-
ponents in a meaningful and structured way, capturing the semantics of complex texts.

• Hierarchical Representation: The capability to encode text at multiple levels of granular-
ity, from characters and subwords to phrases and sentences.

• Representation Decodability: The ability to reconstruct the original text from its learned
representation, ensuring interpretability and evaluation of the model’s learning.

• Self-Supervised Learning: Leveraging large-scale unlabeled data to learn effective text
representations without requiring annotated datasets or external parsing tools.

This research contributes to the domains of NLP, deep learning, and representation learn-
ing by introducing a method that overcomes the existing barriers in text representation. A model
with the aforementioned properties could enhance performance in various NLP applications, in-
cluding sentiment analysis, machine translation, and plagiarism detection, while also providing
insights into the development of hierarchical, compositional, and decodable embeddings.

1.2 Objectives and Scope

1.2.1 Hypotheses

The following hypotheses are formulated to guide the research:

• H1: The training of pyramidal recursive neural network for text representation can be
stable and efficient.

• H2: Pyramidal recursive training can simultaneously generate text representations for
different levels of linguistic units.

• H3: The proposed method has better performance compared to other competing methods
on selected tasks and domains.

1.2.2 Contributions

The primary contributions of this research are:

3

Introduction

• A novel method for learning text representations with pyramid-structured recursive neural
networks.

• Extensive evaluation of the proposed method in terms of training stability, quality of
learned embeddings, and predictive performance on downstream tasks.

• Improved pre-trained representations for morphologically rich languages (e.g. Croatian)
in terms of less training material when adapting to new domains.

1.2.3 Scope of the Study

This research situates itself at the intersection of NLP, deep learning, and representation learn-
ing. By addressing the limitations of existing methods and integrating hierarchical, composi-
tional, and decodable representations into a single model, it introduces a novel approach to text
representation learning.

The scope of this study is defined as follows:

• Data: The primary dataset consists of English Wikipedia articles, providing a diverse and
extensive source of text data.

• Model: The proposed model employs a pyramidal recursive architecture with a limited
number of layers and parameters to ensure computational feasibility while maintaining
effectiveness.

• Learning Paradigm: The model is trained in a self-supervised manner, eliminating the
need for labeled data or parse trees, which enhances scalability and applicability to diverse
datasets.

1.3 Overview of Proposed Method

The Pyramidal Recursive Learning (PyRv) method introduces an innovative approach to rep-
resentation learning, addressing important limitations of existing text representation methods.
By employing a recursive and pyramidal architecture, PyRv captures hierarchical relationships
within text, spanning granular linguistic units such as subwords, words, phrases, and sentences.
This method ensures the creation of multi-level representations while maintaining interpretabil-
ity and efficiency.

At the core of this method lies the PyRvNN, a model that differentiates itself from tra-
ditional recursive and sequential architectures in several key aspects. PyRvNN organizes text
representations hierarchically, where pairs of representations are recursively combined at each
level. Unlike methods dependent on predefined parsing trees, PyRvNN dynamically builds its
hierarchy during training.

The PyRvNN model integrates two primary learning objectives that enhance its represen-
tational power. First, the autoencoding head reconstructs paired representations back into their

4

Introduction

original components, ensuring that the learned representations remain decodable and semanti-
cally consistent. Second, the autoregressive head predicts neighboring representations within
the pyramid, enabling the model to effectively capture and leverage contextual relationships.
These dual objectives are trained in a self-supervised manner, which allows PyRvNN to utilize
large-scale, unlabeled datasets without requiring costly annotation.

1.4 Thesis Structure

This thesis is organized into seven chapters:

• Chapter 1: Introduction - provides an overview of the research motivation, problem
statement, objectives, and a summary of the proposed method.

• Chapter 2: Literature Review - surveys existing approaches in text representation learn-
ing. It highlights the limitations of current recursive models and identifies gaps addressed
by the proposed approach.

• Chapter 3: Theoretical Background - establishes the theoretical foundation for the
PyRvNN model, including key concepts such as autoencoding, autoregressive learning,
and recursive neural networks.

• Chapter 4: Methodology - details the design and theoretical underpinnings of PyRvNN,
covering the pyramidal recursive learning method, model architecture, training proce-
dures, and evaluation metrics.

• Chapter 5: Experiments and Results - presents the results of experiments designed to
evaluate the performance of PyRvNN on intrinsic tasks (representation decodability and
compositionality) and extrinsic tasks (plagiarism detection, readability, and memoriza-
tion).

• Chapter 6: Discussion - summarizes the thesis contributions and revisits the hypotheses.
• Chapter 7: Conclusion - summarizes the thesis, and outlines potential directions for

future research.

5

Chapter 2

Literature Review

This chapter presents a comprehensive review of neural network models for text representation
learning. The focus is on architectures that generate text representations, regardless of whether
this is their primary objective. Part of this chapter is based on our previously published survey
([12]).

The chapter begins with a comparative analysis (2.1) of various neural network archi-
tectures. This section systematically categorizes models and examines their characteristics,
covering Shallow Models, Recurrent Models, Recursive Models, Convolutional Models, and
Attention Models.

Following this, the chapter explores the desirable properties (2.2) that we want our method
to have, including:

• Representation Compositionality: The ability to compose representations from subcom-
ponents.

• Hierarchical Representation: The capability to capture multilevel text structures.
• Representation Decodability: The potential to decode original data from learned repre-

sentations.
• Self-supervised Learning: Leveraging unlabeled data to learn effective representations.

The chapter concludes by identifying gaps and challenges (2.3) in existing approaches,
emphasizing the need for innovative solutions. This sets the stage for the introduction of PyRv,
a novel recursive neural network framework designed to address these challenges and enable
efficient multilevel text representation.

2.1 Comparative Analysis

In this section we systematically compare neural models that learn text representations, iden-
tify their advantages and drawbacks, and subsequently identify the promising directions for the
construction of neural text representation models. More specifically, we aim to identify neural

6

Literature Review

text representation research directions that are feasible for research teams with limited compu-
tational resources. To do so, we analyze around 50 models published in research papers and at
natural language processing (NLP) conferences in the last decade.

Papers are selected following three major criteria. First, we consider papers with a reason-
able number of citations. Second, we prefer models with novel ideas or with improvements in
any aspect over the previous models. Third, we opt for task-independent (general) representa-
tion models. Task-independent representation models perform well on a variety of downstream
tasks. Still, to ensure the integrity of this review, we include some task-dependent models that
have largely influenced the field. The representation models included are mainly limited to
English texts, except for models trained on machine translation tasks.

Compared to works reviewing deep learning models for NLP (e.g., [13]), this review
focuses on text representation learning and, as such, reviews models from that perspective.
Among similar surveys that analyzed neural network models for text representation are: a sur-
vey of neural language models [14], a survey of vector representation of meaning [15], a survey
of cross-lingual word embedding models [16], and a comparability study of pre-trained lan-
guage models [17]. The authors in [14] elaborate upon different architectures of the classic
neural network language models and their improvements, but it lacks a deep survey and is fo-
cused on a narrower set of language models. The survey of vector representation of meaning in
[15] presents a comprehensive survey of the wide range of techniques for sense representation;
however, it is focused on sense representation models exclusively. The survey of cross-lingual
word embedding models in [16] provides a comprehensive typology of models; however, it is
framed with cross-lingual word embedding models. The work about language models in [17]
proposes starting points for defining reporting standards which are applied when it comes to
comparing pre-trained language models (the model architecture, number of parameters, hyper-
parameter tuning method and tuning time, experimental time, computational resources, training
time, lexical resource information and availability, the benchmark performance on un-tuned
and tuned single model); however, its survey is focused on several large pre-trained language
models.

This review goes a step further, categorizing and summarizing the most prominent models
created in the last decade. Additionally, we did not limit the scope to a specific architecture,
task, or the representation level, instead, we opted for multi-categorization indicating the subtle
differences among models, emphasizing their advantages and drawbacks.

Below, we list the datasets used for the evaluation of the representation models we cited the
results for. From the extensive list of datasets, we have omitted a few that lack the comparative
and systematic evaluation and are of limited interest for this study.

• WordSim-353 [18] contains pairs of words with their similarity and relatedness scores.
• SICK (Sentences Involving Compositional Knowledge) [19] consists of English sentence

pairs that were annotated for relatedness and entailment.

7

Literature Review

• SNLI (Stanford Natural Language Inference) [20] contains sentence pairs manually la-
beled for entailment classification.

• MultiNLI (Multi-Genre Natural Language Inference) [21] dataset consists of sentence
pairs annotated with textual entailment information.

• MRPC (Microsoft Research Paraphrase Corpus) [22] has pairs of sentences along with
human labels indicating if the pairs share paraphrase/semantic equivalence relationship.

• STS (Semantic Text Similarity) [23] consists of pairs of sentences with labels annotating
their semantic similarity.

• SSWR (Semantic-Syntactic Word Relationship) [1] contains semantic and syntactic word
relations (e.g., "Einstein: scientist", "Mozart: violinist", "think: thinks", "say: says").

• MSR (Measuring Semantic Relatedness) [24] is similar to the SSWR dataset.
• SST (Stanford Sentiment Treebank) [25] has parsing trees with a sentiment classification

label for each node.
• IMDB (Internet Movie Database) [26] contains reviews of movies and their sentiment

polarity.
• MR (Movie Reviews) [27] is similar to the IMDB dataset, hence contains opinions on

movies.
• CR (Customer Reviews) [28] consists of customer reviews about products and their rating.
• SemEval’17 [29] is a dataset from the International Workshop on Semantic Evaluation.

It consists of posts from Twitter with sentiment labels.
• TREC (Text REtrieval Conference) [30] is a dataset for question classification with ques-

tions divided into semantic categories.
• SQuAD (Stanford Question Answering Dataset) [31] consists of questions posed by hu-

mans on a set of Wikipedia articles, where the answer to every question is a segment of
text.

• MPQA (Multi-Perspective Question Answering) [32] contains news articles annotated for
opinions, beliefs, emotions, sentiments, speculations, and other private states.

• NQ (NaturalQuestions-Open) [33] contains Google queries and their answers.
• WQ (WebQuestions) [34] is a collection of questions found through Google Suggest API,

which are manually answered.
• WSJ (Wall Street Journal) consists of Wall Street Journal stories from Penn Treebank

[35].
• AG News [36] contains news categorized into four classes (business, sci/tech, world,

and entertainment). This version of the dataset contains only titles and disregards the rest
of the articles.

• GLUE (General Language Understanding Evaluation) [37] is a collection of datasets for
natural language understanding systems.

• RACE (ReAding Comprehension dataset from Examinations) [38] is a dataset for the
evaluation of methods in the reading comprehension task, consisting of English exams

8

Literature Review

for Chinese students.
• SUBJ (SUBJectivity classification) [39] contains labeled subjective and objective phrases.
• WMT (Workshop on statistical Machine Translation) [40, 41] is a dataset used for ma-

chine translation tasks in WMT workshops.
• PTB (Penn Treebank) [35] is a large annotated corpus of English text, widely used for

training and evaluating parsers and language models. (Note: WSJ is part of PTB).
• BLLIP-LG [42] refers to the Brown Laboratory for Linguistic Information Processing

corpus, specifically the portion containing Wall Street Journal text from the Penn Tree-
bank, often used for large-scale language modeling experiments.

• SuperGLUE [43] is a benchmark styled after GLUE with a new set of more difficult
language understanding tasks.

• BIG-bench (The Beyond the Imitation Game Benchmark) [44] is a collaborative bench-
mark intended to probe large language models and extrapolate their future capabilities. It
contains over 200 tasks.

• MTEB (Massive Text Embedding Benchmark) [45] spans 8 embedding tasks covering a
total of 58 datasets and 112 languages.

• Croatian word embedding analogy and similarity datasets [46] includes a word analogy
dataset (based on the original English Word2vec dataset, augmented with specific Croat-
ian linguistic aspects), and the Croatian WordSim353 and RG65 datasets for basic evalu-
ation of word similarities.

2.1.1 Model Categorization

To compare and contrast the models, we used five categorization criteria: (1) the representation
level shows the level of linguistic units for which representations are learned; (2) the input
level shows the granularity of data a model receives upon input; (3) the model type elaborates
the strategy for representation learning; (4) the model supervision shows how much labeling is
needed in training data; (5) the model architecture covers the main neural network architecture
of the model. Each of these categorizations is described in the rest of this section. For recursive
models, we used one more categorization, the parsing tree source (which we describe in Section
2.1.4).

Representation Level. Text can be represented on multiple levels. Models can learn repre-
sentations for subwords, words, phrases, sentences, paragraphs, or documents, in general for
any unit of text.

Subword elements include bytes, characters, and character n-grams. Downstream tasks
in languages with rich morphology perform better with subword representations, and out-of-
vocabulary words are easily represented [47]. Please note, subword representations only serve
as the basis for the derivation of word-level representations.

9

Literature Review

Word representations are easier to implement, as generated representations are ready for
use. Hence, they can be used as word models or combined into representations of larger units
of text.

Sentence+ category includes representations for any larger units of text, like phrases, sen-
tences, paragraphs, and documents. Whereas word representations can be combined to form
a sentence+ representation, neural network models that are specialized for learning sentence+
representations usually produce better representations.

Input Level. Whereas the representation level describes granularity of the representations that
are learned in a model, the input level describes granularity of text upon input. The granularity
of text units upon input can be classified as subword-level (bytes, characters, character n-grams),
or word-level. Models with subword-level input are flexible and can easily work with rare or
never seen words, whereas models with word-level input are easier to implement.

Earlier models mainly used words as input (e.g., Word2Vec [1, 48]), but some (especially
convolutional, and later recurrent) models used characters (e.g., CharCNN [49] and ELMo [50],
and later FastText [2] used character n-grams). Recent models still use these forms of input, but
when working with subword input, subword tokenization techniques improved the effectiveness
of the input data.

The subword tokenization algorithm that inspired newer methods (most noticeably Sen-
tencePiece and WordPiece) is an algorithm for data compression by Gage [51] called byte pair
encoding (BPE), which is used by many attention models (e.g., Transformer [52]). BPE re-
places the most common pairs of consecutive bytes of data with bytes that do not occur within
that data. SentencePiece (SP) [53] and WP (WordPiece) [54] are used for attention models as
well (e.g., XLNet [55] and BERT [4]).

Model Type. The next criterion for differentiation of representation models considers three
high-level strategies for neural network learning: autoencoding, autoregressive, and classifica-
tion.

Autoencoding models learn efficient data representations in an unsupervised manner. In
the strict definition of autoencoders, they learn how to compress input data into a representation,
which is then decompressed back into data that should be similar to the input data. In this survey,
we generalize the autoencoding definition to encompass models that learn by predicting missing
input data or neighboring tokens of the input tokens.

Autoregressive models are time series models. They predict the following tokens by us-
ing previously predicted tokens as additional input. While learning to predict, autoregressive
models learn text representations as well.

Classification models predict which of a set of categories a new observation belongs to. In
order to correctly classify textual data, the model has to learn a representation space in which it

10

Literature Review

is easy to separate textual inputs that belong to different categories.

Model Supervision. The supervision of a model dictates how it is learned and what kind
of training data it requires. The models in this review are unsupervised, supervised, semi-
supervised, and un/supervised.

Unsupervised learning is the easiest one to implement from the perspective of data prepara-
tion. In the case of text representation, models need only raw text without labels. Occasionally,
self-supervised models are referred to as unsupervised and vice versa.

Supervised learning requires labeled data. Data labeling is different for each task: text
translation needs pairs of texts in the source and target languages, text summarization requires
full texts and their summaries, classification task needs class labels, etc.

Semi-supervised learning uses both unsupervised and supervised learning. Usually, text
representation models initially learn representations in an unsupervised way from a dataset con-
taining only the raw text with no labels. Subsequently, unsupervisedly learned representations
are fine-tuned through supervised learning on a specific task.

Un/supervised learning is the category we used in this survey for models that have been
tested on both unsupervised and supervised tasks.

Model Architecture. Neural network models that learn text representation most frequently
use shallow, recurrent, recursive, convolutional, attentive, or a combination of mentioned ar-
chitectures [56]. Here we briefly introduce the architectures, whereas details are elaborated in
the subsequent sections. Each model is placed in a section that corresponds with the model’s
general architecture. Within sections, models are ordered by shared base architecture or general
principle and by publishing date.

Shallow neural network architectures in our categorization include feed-forward neural
networks that have one hidden layer. Such models are capable of learning only a very shallow
representation of text.

Recurrent neural network (RNN) architectures are appropriate for sequential data. Text
input can be treated sequentially by reading input token by token while updating network recur-
rent states.

Recursive neural network (RvNN) architectures read texts recursively following the struc-
ture of parsing trees. Parsing trees can be provided with the text upon input or latently generated
by the neural network. Because of that, recursive models are capable of creating high-quality
sentence representations.

Convolutional neural network (CNN) architectures are well-suited for learning local pat-
terns in text. Pooling layers learn to detect important tokens or features for a specific task it is
trained on [56].

Attentive neural network architectures in this categorization include models that use at-

11

Literature Review

tention mechanisms. An attention mechanism learns dependence between input and output, or
within the input elements (self-attention). For instance, it can learn which parts of the input are
relevant to the task at hand or can capture long-range dependencies in text.

2.1.2 Shallow Models

Shallow models use shallow architectures (usually one hidden layer), which can learn simple
representations (Word2Vec architecture is shown in Figure 2.1). In this category, we include two
non-neural models that are frequently used for the same purpose as the rest of the models and are
shown to be comparable [57, 58]. As a result of their simplicity, shallow models are fast to train
and generalize well. Learned shallow representations can be used as input for deeper models
that can learn better representations. While performing very well on simple tasks (e.g., word
similarity), shallow models do not perform well on complex tasks (tasks that require a deeper
understanding, e.g., question answering and summarization). To generate a phrase, sentence,
or document representation, shallow representations are combined, resulting in a bag-of-words
representation. The most prominent shallow models are systematized in Table 2.1 according to
the input and representation level. The majority of shallow models for text representation learn
word-level representations. Usually, they are autoencoding models learned by predicting the
missing information upon input.

Language models, and more specifically shallow models described in this subsection, fol-
low the distributional hypothesis, which states that the words with similar meanings occur in
similar contexts [59, 60]. To learn representations that reflect the distributional hypothesis, shal-
low models are trained to predict neighboring words (i.e., context) around the target word and
vice versa, to predict the target word from neighboring words. Shallow models mostly con-
tain only one hidden layer in which text representations are learned. The representation being
learned dictates how the input vector transforms into the output vector. The input vector is a
one-hot representation of the target word or the neighboring words. In contrast, the output vec-
tor is a probability distribution that describes which words are most probably the target or the
neighboring words. In the learned vector space, representations are closer together for similar
words. Relationships between the words are preserved (i.e., king and man are positioned in
the same way as queen and woman, and the positions of countries and their capitals preserve
meaningful information).

The unsupervised model presented by Huang et al. [61] uses both local and global context
via a joint training objective. It learns multiple representations per word, which is effective
for homonyms and polysemous words. The meaning of a word can be ambiguous given only
local context. By using a global context, the meaning of a word can be disambiguated more
precisely. On the task of measuring similarity and relatedness, it achieves a Spearman corre-
lation of 0.713 on the WordSim-353 dataset, which outperforms C&W (convolutional model
described in Subsection 2.1.5) by 0.16.

12

Literature Review

Figure 2.1: Word2Vec architecture. In addition to an input layer and an output layer, shallow architec-
tures have a small number of hidden layers (one in this case).

Table 2.1: The categorization of shallow models by input and representation level. All listed models
are unsupervised.

Model Input Representation

Huang et al. [61] word word

Word2Vec [1, 48] word word

Deps [62] word word

GloVe [3] word word

Doc2Vec [63] word sentence+

FastText [2] n-grams word

13

Literature Review

Word2Vec [1, 48] popularized shallow word representation using neural networks. Word2Vec
has two separate autoencoding models: continuous bag-of-words (CBOW) and skip-gram. Both
learn word representations through unsupervised learning. The CBOW model scans over the
text with a context window and learns to predict the target word. The context window contains
n preceding and n succeeding words around the target word. The skip-gram model conversely
predicts the words in the context from the target word. Word2Vec neural network has only one
hidden layer, and word representations are extracted from that layer. The accuracies for the
skip-gram model on the SSWR dataset for semantics and syntax are 50% and 55.9%, respec-
tively, outperforming the model by Huang et al. by 36.7% and 44.3%. The accuracy on the
MSR dataset for the skip-gram model is 56%.

Whereas Word2Vec uses local neighboring words as context, its extension Deps [62] uses
neighboring words in dependency parse trees to learn word representations. Deps generalizes
skip-gram to include arbitrary contexts and uses dependency-based contexts derived from parse
trees.

GloVe [3] directly captures global corpus statistics through unsupervised learning. It is
inspired by neural models but is not a neural model itself. GloVe combines global matrix fac-
torization and local context window methods through a bilinear regression model. By doing
so, it trains by using the co-occurrence matrix and learns word representations in a way that
it can predict co-occurrence probability ratios. An example was given in [3]. Let i = ice and
j = steam, if k = solid, we expect the ratio Pik/Pjk to be large (Pxy is probability of words x and
y occurring together). If k = gas, the ratio should be small. For words that are related to both ice

and steam, or to neither, the ratio should be closer to 1. This is used instead of raw probabilities
because ratios distinguish relevant words from irrelevant words better. It is shown, that math-
ematically GloVe is similar to Word2Vec [57, 58]. GloVe slightly outperforms Word2Vec on
multiple tasks. On the SSWR dataset, GloVe has 75% total accuracy (81.9% semantics and
69.3% syntax), which is an improvement of 9.4% over Word2Vec. GloVe is evaluated on five
word similarity tasks (including WordSim-353 where it achieves a 0.759 Spearman correlation),
and in each evaluation, GloVe outperforms Word2Vec.

The shallow models above can learn representations for words. Doc2Vec [63] is an ex-
tension of Word2Vec that can learn representations for documents (or parts of texts). While
predicting context words of a target word, Doc2Vec receives the target word and the document
ID upon input. Through learning, as it learns useful relations between documents and words,
it learns not only representations for words but documents as well. The accuracy on the SST
dataset is 87.8% for binary classification, and 48.7% for fine-grained classification, outperform-
ing the recursive model by Socher et al. [25] by 2.4% and 3%, respectively. Accuracy on the
IMDB dataset is 92.58%.

All models described above use word-level input, but subword-level input can be benefi-
cial. FastText [2] is an unsupervised non-neural model inspired by neural models. Similarly

14

Literature Review

to Word2Vec, it has two separate models, CBOW and skip-gram. It learns representations
for character n-grams, and each word is represented as a bag-of-character n-grams. Previous
models were limited to assigning a distinct vector to each word. Representations on the sub-
word level are shown to perform better for morphologically rich languages and rare words. On
the WordSim-353 dataset, FastText has a Spearman correlation of 0.71 (similar to Word2Vec’s
0.72). On the SSWR dataset, it achieves 77.8% semantic and 74.9% syntactic accuracy, per-
forming on the semantic task similarly as Word2Vec and outperforming it on the syntactic task
by 4.8%.

2.1.3 Recurrent Models

Models like Word2Vec are insensitive to word order, they only capture the relations between
words—if a word is in the context of another word. The ordering of words in a text is meaning-
ful, since different orderings of words can denote different meanings. RNNs process input as
a sequence and learn ordered representations from a text, hence they are well suited for learn-
ing representations of longer linguistic units like phrases, sentences, paragraphs, or documents.
While tokens from the input sequence are processed, the history of all the previous tokens is
preserved as a state in the neurons (Figure 2.2). The most influential RNN models are listed in
Table 2.2 according to their input level, representation level, and model supervision. The ma-
jority of RNNs for text representation are autoregressive models. Output tokens are generated
by taking previous output tokens as an additional input (together with the representation of the
encoded sequence, currently being learned).

Figure 2.2: Recurrent architecture and the unfolding in time. Recurrent nodes have connections which
lead to the next node, and connections which loop back to the same node. The unfolding in time shows
the same node in three consecutive iterations.

In shallow feedforward models, the hidden layer and ultimately the output is affected only
by the current input. In recurrent models, the hidden layer (or layers) and the output are af-
fected not only by the current input but also by the previous inputs. That is achieved by using
recurrence, where the recurrent layers propagate information not only to the next layer but back
to their input as well. To train neural networks, gradients are calculated and used to update
parameters in a direction that depends on the loss function. With longer texts, RNNs have a
vanishing (and exploding) gradient problem as the gradient is calculated through a long chain

15

Literature Review

of recurrence. That problem is reduced by long short-term memory (LSTM) unit and its vari-
ants like gated recurrent unit (GRU), which have gates that learn what information is important
and, as such, has to be propagated more strongly. LSTM’s architecture is shown in Figure 2.3.
It has a cell state (horizontal line on the top), which is used for memory. Gates below control
information flow by selectively forgetting old and memorizing new information relevant for the
current task.

Figure 2.3: The LSTM cell. Variables xt and ht are input and output, respectively, at time t. Squares with
"σ" or "tanh" represent layers, whereas ovals with "X", "+", or "tanh" represent pointwise operations.

A supervised encoder–decoder model introduced by Cho et al. [64] uses two RNNs. One
RNN encodes a sequence of symbols into a representation vector, and the other decodes the
representation into another sequence of symbols. The sequence of symbols can be a phrase,
part of a sentence, a sentence, or a longer linguistic unit. The model is trained on a machine
translation task. The model achieves a 34.54 BLEU score on the English–French translation task
from the WMT’14 dataset, which is an improvement of 1.24 points over the baseline method
(Moses).

With the addition of LSTM units, the Seq2Seq [65] model improves performance on longer
sequences over basic RNN models. It is learned in a supervised way on a machine translation
task. Seq2Seq uses LSTM units in recurrent layers. This model can produce representations
for phrases and sentences. Seq2Seq scores 34.81 BLEU on the English–French translation task
from the WMT’14 dataset, outperforming the recurrent model by Bahdanau et al. [74] by 6.36
points.

Whereas most recurrent models learn text representations by sequentially predicting words
(autoregressive models), Skip-Thoughts [66] is an unsupervised encoder–decoder model that
learns to reconstruct the surrounding sentences of an encoded sentence, and in that aspect, it is
similar to other autoencoding models. It uses encoder with GRU activations and an RNN de-
coder with a conditional GRU. Skip-Thoughts learns representations for sentences and performs
just as well as the LSTM approach. On the SICK semantic relatedness subtask, Skip-Thoughts

16

Literature Review

Table 2.2: The categorization of recurrent models by input level, representation level, and supervision.

Model Input Repres. Supervision

Cho et al. [64] word sentence+ supervised

Seq2Seq [65] word sentence+ supervised

Skip-Thoughts [66] word sentence+ unsupervised

RCNN [67] word sentence+ supervised

Li et al. [68] word sentence+ unsupervised

FastSent [69] word sentence+ unsupervised

CoVe [70] word word supervised

Akbik et al. [71] character word unsupervised

ELMo [50] character word unsupervised

Subramanian et al. [72] word sentence+ semi-supervised

LASER [73] BPE sentence+ supervised

performs with the Pearson correlation 0.8655 and the Spearman correlation 0.7995, which is
similar to Tree-LSTM (recursive model described in Subsection 2.1.4). Accuracy on the MRPC
dataset is 75.8% and the F1 score is 83.

RCNN [67] (recurrent convolutional neural network) is a supervised bidirectional RNN
(BiRNN) with a pooling layer after the BiRNN layer. Sentence representations are learned
through the BiRNN, which scans over texts upon input in both directions (forward and back-
ward), whereas normal RNNs scan texts only in the forward direction. The pooling layer learns
to select the most important words for a text classification task. Fine-grained classification
accuracy on the SST dataset is 47.21%, similar to the accuracy achieved by Doc2Vec.

The LSTM autoencoder introduced by Li et al. ([68]) hierarchically builds embeddings for
paragraphs. It is trained to hierarchically encode an embedding for a paragraph from embed-
dings for sentences and words and then decode this embedding back into the original paragraph
text.

A simple variant of the Skip-Thoughts model FastSent [69] is an unsupervised model with
GRUs. FastSent receives a bag-of-words representation of a sentence upon input and predicts
adjacent sentences, which are also represented as bag-of-words representations. FastSent out-
performs Skip-Thoughts on unsupervised tasks: the Spearman correlation for the SICK dataset
is 0.61, which is an improvement of 0.04 over Skip-Thoughts, whereas for STS tasks the Spear-
man correlation is 0.63, which is an improvement of 0.36 over Skip-Thoughts. FastSent under-
performs Skip-Thoughts on six supervised sentence classification tasks (on MRPC, MR, CR,
SUBJ, MPQA, and TREC dataset). Overall, FastSent has an average accuracy of 77.92% on

17

Literature Review

the supervised tasks, under-performing Skip-Thoughts by 5.83%.

CoVe [70] (Context Vectors) is a supervised bidirectional LSTM (BiLSTM) encoder with
an attentive LSTM decoder trained for machine translation. Word representations are extracted
from the BiLSTM encoder. The attentive LSTM decoder first uses the LSTM to produce a
hidden state, after which the attention mechanism computes the relevance between each encod-
ing time-step and the current state. CoVe is evaluated on seven classification tasks (on SST-2,
SST-5, IMDB, TREC-6, TREC-50, SNLI, and SQuAD dataset). Overall, its average accuracy
is 84.8%, which outperforms GloVe by 1.8% and Skip-Thoughts by 2.2%.

Models mentioned previously produced one vector for each subword, word, or sentence,
which cannot account for polysemy (multiple meanings of the same word). ELMo [50] (Em-
beddings from Language Models) is an unsupervised model that uses BiLSTM and can learn
polysemy. ELMo’s word representations are learned functions of the internal states of the BiL-
STM. In different contexts, the same word has different representation vectors, which can ac-
count for different word meanings. ELMo achieves 54.7% fine-grained classification accuracy
on the SST dataset, outperforming CoVe by 1.8%.

The model introduced by Akbik et al. [71] is an unsupervised character-level language
model. The word representations are extracted from BiLSTM hidden states. As word represen-
tations are contextualized by their surrounding text, the same word can have different meanings
depending on its context, which can model polysemy. Word representations are concatenations
of hidden states of the forward pass through a sentence until the last character in the word,
and the backward pass through a sentence until the first character in the word. This model has
93.09% accuracy on the CoNLL’03 dataset, outperforming ELMo by 0.87%.

A semi-supervised model introduced by Subramanian et al. [72] uses bidirectional GRU
(BiGRU) for sentence representation multi-task learning. The tasks that the model is trained
on are skip-thought, machine translation, constituency parsing, and natural language inference.
The authors demonstrate that multi-task learning leads to consistent improvements over previ-
ous single-task methods (some of which are FastSent, Skip-Thoughts, and CNN-LSTM, which
is described in Subsection 2.1.5).

LASER [73] (Language-Agnostic SEntence Representations) learns joint multilingual sen-
tence representations for 93 languages through a supervised machine translation task. The
learned representations are general with respect to the input language and the task. It uses the
BiLSTM encoder to generate a sentence representation, and the LSTM decoder to generate a
sentence in a target language. The encoder receives no information about what the input lan-
guage is, due to which it learns language-independent representations. The model is trained by
translating all 91 languages to both English and Spanish languages. On the XNLI (cross-lingual
natural language inference) dataset [75], with 70.19% average accuracy on 15 languages, this
model archives similar results as BERT (attention model described in Subsection 2.1.6).

18

Literature Review

2.1.4 Recursive Models

Recurrent models learn representations with ordered information; however, recursive neural
networks go one step further and learn deeply structured information like trees. Recursive
neural networks process inputs in a recursive fashion through a tree structure (example given
in Figure 2.4). Each node in a tree for a subword, word, phrase, sentence, or a larger unit
of text is associated with a respective representation. The most influential RvNN models are
shown in Table 2.3 with their input level, model supervision, and tree source (given, learned, or
latent). Most of the RvNNs for text representation are autoencoding or classification models.
The representation for each node can be learned either by an autoencoding method similar to
the shallow models or through a classification task.

Figure 2.4: A parsing tree of a recursive neural network predicting word sentiment classes. The leaf
nodes are input tokens, all the other nodes are representations of the combination of the child nodes. The
root node is representation of the entire input text.

Recursive neural networks are generalized recurrent neural networks. Whereas recurrent
neural networks read input in a linear chain, recursive neural networks read input in any hier-
archical structure. Representations are merged recursively throughout the tree structure, where
merging combines two or more representations from the lower level into one higher-level rep-
resentation. Hence, learning of the recursive neural representations enables combining repre-
sentations of more granular linguistic units into larger linguistic units (e.g., from characters to
sentences, or from words to documents). The merging process is repeated recursively until the
root node is reached. The root node represents the whole input sequence (Figure 2.4) and leaf
nodes are input tokens. The tree structure can be given upon input, learned from labeled texts
(texts paired with their parse trees), or implicitly generated by a neural network with no direct
supervision (latent trees).

RAE [76] (Recursive AutoEncoders) introduced an architecture based on recursive au-

19

Literature Review

Table 2.3: The categorization of recursive models by input level, supervision, and parsing tree source.
All the listed models learn sentence+ representations. Un/supervised supervision represents both unsu-
pervised and supervised learning.

Model Input Supervision Tree

RAE [76] word un/supervised latent

MV-RNN [77] word un/supervised given

morphoRNN [78] morpheme unsupervised given

RNTN [25] word unsupervised given

AdaSent [79] word supervised latent

Tree-LSTM [80] word supervised given

RL-SPINN [81] word reinforcement latent

ST-Gumbel [82] word unsupervised latent

DIORA [83] word unsupervised latent

CRvNN [84] token supervised latent

Unified TREE-LSTM [85] word supervised latent

TGs [86] WP un/supervised learned

Fast-R2D2 [87] WP un/supervised latent

ReCAT [88] WP un/supervised latent

20

Literature Review

toencoders for sentence-level prediction of sentiment label polarity. An autoencoder is a type
of neural network that learns representations of input data in an unsupervised manner. The en-
coder part of the network encodes the input into a dense representation, while the decoder part
of the network decodes that representation into output (that should be as close as possible to
the input). While RAE can learn text representation through supervised learning of sentiment
distribution, it can learn text representation through unsupervised learning as well. An impor-
tant RAE feature is the ability to learn latent parsing trees, meaning that they are not learned
or given upon input, but generated by concatenating neighboring pairs of words or phrases and
combining the ones with the lowest reconstruction error (in the autoencoder) into parent nodes.
On sentiment classification, RAE achieves an accuracy of 77.7% on the MR dataset and 86.4%
on the MPQA opinion dataset, which is a slight improvement over Tree-CRF [89].

MV-RNN [77] (Matrix-Vector recursive neural network) learns vector and matrix repre-
sentations for every node in the tree (phrases and sentences). The vector captures the meaning
of the node, whereas the matrix captures how it changes the meaning of neighboring words or
phrases. Supervised training for each of the tasks is done by adding a softmax classifier on top
of each parent node. The model receives parse trees from a parser. It achieves 79% accuracy on
the MR dataset, which is an 1.3% improvement over RAE.

Model introduced in [78], morphoRNN, focuses on constructing representations for mor-
phologically complex words by recursively building morphological trees from the main mor-
pheme and appended affixes in a predetermined order. Notably, morphoRNN excels in repre-
sentation of rare and complex words, outperforming many contemporary models.

Another significant recursive model in this era was the Recursive Neural Tensor Network
(RNTN) [25]. RNTN adopts a supervised training approach, where the representation in each
node of the tree serves as a feature for a sentiment classifier. During this time, RNTN stood out
as the sole model capable of effectively capturing the nuanced effects of negation across various
tree levels.

Whereas other RvNNs process inputs as trees, AdaSent [79] process inputs in a hierar-
chical fashion (pyramid structure) which does not require parse trees upon input. The pyramid
structure forms a hierarchy of representations from words to sentences. The model is trained
on supervised classification tasks. Classification uses the hierarchy of representations as input.
The hierarchy of representations is first summed on each level of the hierarchy, and then a gat-
ing network calculates a weight for each of the levels. AdaSent has 83.1% accuracy on the MR
dataset, outperforming RAE by 5.4%. Its accuracy on the MPQA opinion dataset is 93.3%,
outperforming RAE by 6.9%. It outperforms MV-RNN as well on the MR dataset by 6.9% with
a 93.3% accuracy.

Tree-LSTM [80] introduced a generalization of LSTM to tree-structured network topolo-
gies. The model is trained on a supervised sentiment task and it requires parse trees upon input.
LSTM architectures can process only sequential information, Tree-LSTM extends LSTM in a

21

Literature Review

way which can process structured information. Tree-LSTM performs better than an RvNN with
basic RNNs because of the same reasons LSTM outperforms RNN. It has 51% fine-grained
classification accuracy on the SST dataset, outperforming RAE, and MV-RNN by 7.8% and
6.6%, respectively.

RL-SPINN [81] (Reinforcement Learning SPINN) uses reinforcement learning to learn
sentence representations. RL-SPINN’s architecture is based on the SPINN model (Stack-augmented
Parser-Interpreter Neural Network) [90]. Parse trees are latent, meaning that the tree structures
are not learned from labeled data or given upon input, but are unsupervisedly optimized for
the downstream task. RL-SPINN performs similarly as Tree-LSTM and DCNN (the convolu-
tional model described in a later subsection) on the SST dataset with an 86.5% accuracy for
binary classification. It has a 0.359 mean squared error on the SICK dataset, under-performing
Tree-LSTM by 0.067.

ST-Gumbel [82] (Straight-Through Gumbel-softmax estimator) is a Tree-LSTM modifica-
tion as well. ST-Gumbel uses latent trees that are computed with a composition query vector
that measures the validity of a composition. Text representation is learned through unsuper-
vised training. On the SST dataset, it achieves 53.7% accuracy for fine-grained classification,
and 90.7% accuracy for binary classification, outperforming Tree-LSTM by 2.7% in both fine-
grained and binary classification.

DIORA [83] (Deep Inside–Outside Recursive Autoencoders) is an unsupervised model
that learns to predict each word in a sentence while being conditioned on the rest of the sentence.
It considers all possible trees over the input sentence. The CYK (Cocke–Younger–Kasami)
parsing algorithm extracts the highest-scoring parse tree (latent trees). The architecture con-
sists of recursive autoencoders. The training is done through inside–outside passes, where the
inside representations of each node are encoded by using the children of the nodes, and outside
representations of each node are encoded using only the context of the node subtree. On WSJ
dataset, DIORA has a 55.7 F1 score, which is an increase of 32.9 with respect to ST-Gumbel,
and an increase of 42.5 with respect to RL-SPINN.

More recent advancements have focused on improving the differentiability, scalability, and
integration of recursive principles with Transformer architectures. The Continuous Recursive
Neural Network (CRvNN) [84] addresses limitations of traditional RvNNs by incorporating a
continuous relaxation to the induced latent tree structure, making it backpropagation-friendly.
CRvNN demonstrated strong performance on tasks like sentiment analysis (SST2 binary accu-
racy: 88.36%) and natural language inference (SNLI accuracy: 85.12%), performing compara-
bly to or better than prior latent structure models like ST-Gumbel on SNLI.

Simoulin and Crabbé [85] proposed a Unified TREE-LSTM that jointly learns its com-
position function and its structure using a Biaffine dependency parser to induce trees. This
model achieved a Pearson correlation of 87.0 on the SICK-R dataset, comparable to a BERT
base model (87.3), and 85.0% accuracy on SNLI. These results highlight the potential of jointly

22

Literature Review

learned parsing and composition.

Transformer Grammars (TGs) [86] augment Transformer language models with recursive
syntactic compositions via special attention masks based on linearized phrase-structure trees.
TGs achieved a F1 score of 93.7 on PTB, slightly outperforming an RNNG (93.3), and demon-
strated strong syntactic generalization (SG score of 82.5 on BLLIP sentence-level).

The Fast-R2D2 model [87] introduced a pretrained recursive neural network using a pruned
CKY algorithm and a fast top-down unsupervised parser. It showed strong results in unsuper-
vised grammar induction, achieving an F1 of 53.88 on PTB WSJ (word-piece level), outper-
forming DIORA (51.4 at word-level). On the GLUE SST-2 task, Fast-R2D2* (using the parser’s
tree) achieved 90.71% accuracy, comparable to ST-Gumbel (90.7%).

ReCAT [88] is a recursive composition augmented Transformer that uses Contextual Inside-
Outside layers to learn multi-grained span representations without gold parses. For unsuper-
vised grammar induction on PTB, ReCAT achieved an F1 of 65.00, surpassing Fast-R2D2*
(53.88) and DIORA (55.7). On the GLUE SST-2 task, ReCAT achieved 88.65% accuracy.

2.1.5 Convolutional Models

Recurrent and recursive neural networks are a good fit for textual modality (as they are appro-
priate for sequential data), whereas convolutional neural networks (CNN) are originally used
for 2-D data, and as such had to be modified to fit textual modality. CNNs proved successful
with visual data (images and videos); however, they can also be used for text representation
learning (the architecture is shown in Figure 2.5). CNNs by their nature learn to abstract in-
put data through multiple convolutional levels and detect specific patterns on each level (e.g.,
textures or borders of objects in images, syllables, or word n-grams in text). The most repre-
sentative CNN models used for learning text representations are shown in Table 2.4 with their
input level, representation level, and model supervision. CNNs for text representation were in
the beginning mostly classification models, but later CNN models were combined with other
architectures, typically with autoencoding or autoregressive models.

Convolutional models for images learn to recognize patterns from the lowest level (e.g.,
edges, corners) to the highest level (e.g., cat, dog, house). Similarly, convolutional models for
text learn patterns like syllables, syntax, and phrases. The notable difference between convolu-
tions for images and text is the dimensionality of the convolutions. Convolutions for images are
two-dimensional, and convolutions for text are mostly one-dimensional. In Figure 2.5, input
is connected to the convolution layer. The convolution layer in this example has four filters.
Each filter has a kernel (a matrix of weights) trained to detect patterns that are of importance to
the task at hand. Kernel slides over the values from the previous layer (in this example, input
values) and outputs an activation that corresponds to how much that region of image or text
fits the pattern. Next, the convolution layer is connected to the fully connected layer. Whereas
recurrent and recursive models can easily read inputs of undefined length, convolutional models

23

Literature Review

Figure 2.5: Convolutional architecture. A convolution has multiple filters, and each filter has a kernel
(a matrix of weights) that is being trained. The kernel slides over the values from the previous layer,
producing values that are sent to the next layer. Each filter learns to recognize a different pattern.

need pooling layers to process inputs of different sizes. The pooling layer lowers the previous
layer’s dimensionality by forwarding (pooling) the maximum or average of each region.

The model introduced by C&W [91] (Collobert and Weston) uses a single convolutional
neural network architecture that, given a sentence upon input, outputs part-of-speech tags,
chunks, named entity tags, semantic roles, semantically similar words, and the likelihood that
the sentence makes sense. All of these tasks are trained jointly, resulting in an implicitly trained
language model. While the language model is learned unsupervisedly, downstream tasks are
learned supervisedly. During learning, all the tasks share weights, resulting in better language
representation. Note that individual word representations can be extracted from the trained
network.

Table 2.4: The categorization of convolutional models by input level, representation level, and supervi-
sion. Un/supervised supervision represents both unsupervised and supervised learning.

Model Input Repres. Supervision

C&W [91] word word semi-supervised

DCNN [92] word sentence+ supervised

CharCNN [49] character word unsupervised

ByteNet [93] character sentence+ un/supervised

CNN-LSTM [94] word sentence+ unsupervised

CDWE [95] word word supervised

DCNN [92] (dynamic convolutional neural network) is a convolutional model supervised
for each downstream task separately. The architecture consists of multiple one-dimensional
convolutional layers and dynamic k-max pooling layers, which induce a latent tree over the
input sentence. The last layer, which is fully connected, contains the representation of the

24

Literature Review

input sentence. This model achieves an 48.5% and 86.8% accuracy for fine-grained and binary
classification on the SST dataset, outperforming the baseline method (Naive Bayes) by 7.5%
and 5%, respectively. On the SST dataset, its performance is similar to the recursive model
RL-SPINN described in Subsection 2.1.4.

CNNs are a good fit for character-level input, which is why CharCNN [49] (character-
level convolutional neural network) is an unsupervised model that relies only on character-level
inputs to learn word representations. In CharCNN architecture, single-layer character-level
CNN reads the input, and LSTM generates the output. Each of the filters in the CNN detects
a single character n-gram. The perplexity of this model on the English Penn Treebank test set
[35] is 78.9, which is similar to the perplexity of the recurrent model by Zaremba et al. [96] that
contains a double number of parameters.

Similarly to CharCNN, ByteNet [93] relies only on character-level inputs. It is unsuper-
vised for the language modeling task and supervised for the machine translation task. ByteNet
implements two mechanisms: the first mechanism allows the preservation of the temporal res-
olution of the sequences, and the second mechanism allows the network to process source and
target sequences of different lengths. The model runs in a time that is linear to the length of the
sequence. On the WMT’14 and WMT’15 dataset, it achieves a 23.75 and 26.26 BLEU score,
respectively, outperforming the recurrent model by Chung et al. [97] by 2.42 and 2.81 points,
respectively.

CNN-LSTM [94] is an unsupervised encoder–decoder architecture with a CNN encoder
and LSTM decoder. It has two modes of training: autoencoder and future predictor. The
autoencoder reconstructs the input sentence, whereas the future predictor predicts the rest of
the sentence. The average accuracy for five-sentence classification tasks (on MR, CR, SUBJ,
MPQA, and TREC dataset) is 87.1%, which is an improvement of 8% over FastSent.

By using deconvolution (transposed convolution) CDWE [95] (Convolution–Deconvolution
Word Embedding) can learn multiple vectors for each word. CDWE is supervised for each
downstream task. It generates multiple prototypes in the deconvolution layer for each word,
which can model polysemy. After that, according to the context, a proper prototype for a word
is selected. The average accuracy for three sentence classification tasks (on TREC, AG News,
and MR dataset) is 90.9%, which is an improvement of 13% over CharCNN.

2.1.6 Attention Models

The architectures from the previous subsections (shallow, recurrent, recursive, and convolu-
tional) are either very general or are originally developed for a different modality of input data.
The neural attention mechanism was created to capture long-range dependencies and was in-
spired by how humans read and understand longer texts [98]. Long-range dependencies exceed
the dependencies captured within the limited boundaries of context windows as used in shallow
models. RNNs are better at capturing long-range dependencies but are not as good as attention

25

Literature Review

models since they are focused equally on every word in the input. Conversely, neural networks
with attention can focus on parts of a text that are more important for a current task, and thus
perform better with long texts (an example is shown in Figure 2.6). The most influential atten-
tion models are shown in Table 2.5 with their input level and model supervision. As attention
mechanisms can be implemented in a wide range of architectures, the models using them can
be autoencoding, autoregressive, or classification models. Models that greatly gain upon the
attention mechanism (e.g., Transformer, which is described later) are mostly autoencoding or
autoregressive models.

Figure 2.6: A visualization of a learned self-attention head on a sentence. The visualization shows
learned relations between the words this self-attention head has learned. Each head learns a different
kind of relations between the words.

Attention mechanism learns which parts of the input vector are important for each part
of the output vector (e.g., while translating a sentence from one language to another, each
output word depends more on some parts of the input than the other parts, so it makes sense
to pay more attention to those parts when deciding what the next word in the output is). Self-
attention is similar, and it learns dependency as well, but between words in the input rather than
between the input and output (e.g., when predicting the next word of the sentence "I am eating
a green", it makes sense to pay more attention to words "eating" and "green" to predict the
next word "apple"). The attention mechanism has multiple heads, which are similar to filters in
convolutions. Each head learns to pay attention in different ways. One head can learn to attend
to words that help decide the tense of the next word, whereas another head can learn to attend
to entity names.

HAN [99] (Hierarchical Attention Network) is a supervised hierarchical attention network
for a document classification task. HAN architecture is based on BiGRUs and attention mech-
anisms on the word and sentence level. First HAN learns sentence representations and then

26

Literature Review

aggregates those representations into a document representation. The attention mechanism en-
ables it to attend to different words when building sentence representations, and to different sen-
tences when building document representations. On the IMDB dataset, HAN achieves 49.4%
accuracy, outperforming Doc2Vec by 15.3%.

Table 2.5: The categorization of attention models by input level and supervision. All listed models
learn sentence+ representations. Un/supervised supervision represents both unsupervised and supervised
learning.

Model Input Supervision

HAN [99] word supervised

Kim et al. [100] word unsupervised

Lin et al. [101] word supervised

Transformer [52] BPE semi-supervised

GPT [5] BPE semi-supervised

DiSAN [102] word supervised

Bi-BloSAN [103] word supervised

ReSAN [104] word supervised

BERT [4] WP unsupervised

Liu et al. [105] word supervised

GPT-2 [106] BPE unsupervised

XLM [107] BPE un/supervised

Star-Transformer [108] word supervised

Transformer-XL [109] char. or word unsupervised

MASS [110] BPE unsupervised

SBERT [111] word un/supervised

XLNet [55] SP unsupervised

ALBERT [112] WP unsupervised

SpanBERT [113] WP, word, span unsupervised

REALM [114] WP semi-supervised

ELECTRA [115] WP unsupervised

Authors Kim et al. [100] introduce structured attention networks (a generalization of the
basic attention procedure), which can attend to partial segments or subtrees while learning rep-
resentations. This approach does not consider non-projective dependency structures and its

27

Literature Review

inside–outside algorithm is difficult to parallelize. To overcome the parallelization problem,
Liu et al. [105] implicitly consider non-projective dependency trees and make each step of
the learning process differentiable. Evaluated on the SNLI dataset, this model achieves 86.5%
accuracy, which outperforms the recursive model SPINN [90] by 3.3%.

The supervised model introduced by Lin et al. [101] instead of a vector to represent text
uses a 2-D matrix. Each row in that matrix representation is attending to a different part of the
sentence. The model has two parts, the first part is a BiLSTM, and the second part is a self-
attention mechanism. Each LSTM hidden state provides only a short-term context information
around each word, whereas self-attention captures longer-range dependencies by summing the
weighted LSTM hidden states. Evaluated on the SNLI dataset, this model achieves 84.4%
accuracy slightly under-performing the model by Kim et al.

Most of the sequence translation models use recurrent or convolutional neural networks
with an encoder and a decoder. Some also connect the encoder and decoder through an atten-
tion mechanism. Transformer [52] is a sequence translation model that is used by many models
created subsequently. Transformer is a neural network architecture based exclusively on atten-
tion mechanisms, dispensing recurrent or convolutional layers. Self-attention mechanisms in
Transformer show the ability to correctly resolve anaphora. The goal of some of the convolu-
tional neural network models is to reduce sequential computation by relating signals between
two positions in a sequence. Hence, in CNN models the number of computations grows lin-
early or logarithmically with the distance between those positions. In Transformer architecture,
the number of computations is constant, which makes it easier to learn dependencies between
distant positions. On the WMT’14 dataset (English–German translation task), Transformer
achieves a 28.4 BLEU score, outperforming ByteNet by 4.65 points.

Similarly to Transformer, DiSAN [102] (Directional Self-Attention Network) and ReSAN
[104] (Reinforced Self-Attention Network) are based only on attention mechanisms without
any RNN or CNN structure. DiSAN is composed of a directional self-attention, followed by a
multi-dimensional attention that creates a vector representation. It achieves 85.62% accuracy
on the SNLI dataset. It has a 90.8% average accuracy on four-sentence classification datasets
(on CR, MPQA, SUBJ, and TREC dataset), outperforming Skip-Thoughts by 2.2%. ReSAN
integrates both soft and hard attention into one model, outperforming DiSAN on the SNLI
dataset by 0.7%. On the SICK dataset it achieves a Spearman correlation of 0.8163, close
to the DiSAN’s correlation of 0.8139. Star-Transformer [108] is a lightweight alternative to
Transformer which reduces model complexity by sparsification. Sparsification replaces the fully
connected structure with a star-shaped structure, which reduces the number of connections from
n2 to 2n. On the SNLI dataset, it performs with 86% accuracy, outperforming Transformer by
3.8%. Whereas Transformer takes 49.31 ms on test time, Star-Transformer takes 10.94 ms.

BERT [4] (Bidirectional Encoder Representations from Transformers) is a deep bidirec-
tional Transformer. Deep bidirectional means that it is conditioned on every word in the left

28

Literature Review

and right contexts at the same time. It does so by masking some percentage of the input to-
kens at random and then predicts those masked tokens. BERT is an unsupervised model that
learns sentence representations. It achieves an 82.1% average accuracy on a subset of GLUE
datasets, which is a 7% improvement over GPT (a model mentioned below). ALBERT [112]
(A Lite BERT) optimizes BERT by lowering memory consumption and increasing the training
speed. Evaluated on five datasets (on SquAD1.1, SQuAD2.0, MultiNLI, SST-2, and RACE
dataset), ALBERT performs with an 88.7% average accuracy, outperforming BERT by 3.5%.
SpanBERT [113] extends BERT by masking random spans (sections of text) whereas BERT
is masking random tokens, and by training the representations to predict the entire content of
the masked span. It has an 82.8% average accuracy on a subset of GLUE datasets, which is an
improvement of 2.4% over BERT.

GPT [5] (Generative pre-trained Transformer) is a semi-supervised model based on Trans-
former. Its training is unsupervised for pre-training of the language model and supervised for
fine-tuning to a downstream task. To avoid interventions into the architecture for each of the
downstream tasks, they convert structured inputs into an ordered sequence that GPT can pro-
cess. Largely following GPT architecture, GPT-2 [106] learns byte sequence representations
through unsupervised training. The main task of this model is language modeling. GPT-2 per-
forms well with anaphora. It is the state-of-the-art at the time of the publishing of the GPT-2
paper, outperforming other models in seven out of eight tested language modeling datasets.

Authors in XLM [107] (cross-lingual Language Model) introduced two methods to learn
cross-lingual language models based on Transformer. One method is supervised and uses mono-
lingual data, the other method is unsupervised and uses parallel texts in each of the languages.
XLM has a 0.69 Pearson correlation on the SemEval’17 dataset, outperforming the model by
Conneau et al. [116] by 0.04.

Standard Transformer learns short dependencies, and context becomes fragmented because
of the segmentation of input contexts while training. Transformer-XL [109] is based on Trans-
former architecture with an added segment-level recurrence mechanism. Whereas the basic
Transformer can learn dependencies of length only equal to the segment length, Transformer-
XL can learn long-range dependencies by using its recurrence mechanism. It can learn depen-
dencies that are 80% longer than dependencies in RNNs and 450% longer than dependencies in
basic Transformers. Transformer-XL also solves the problem of context fragmentation, which
appears in Transformer because of its segmentation. Similarly to Transformer-XL, Bi-BloSAN
[103] (Bi-directional Block Self-Attention Network) captures long-range dependency. It does
so with a segment-level self-attention mechanism. When evaluated on datasets CR, MPQA,
SUBJ, TREC, and SST, Bi-BloSAN performs similarly to DiSAN.

MASS [110] (MAsked Sequence to Sequence pre-training) is a semi-supervised model
(unsupervised pre-training and supervised fine-tuning to a specific task) based on Transformer.
The encoder receives a sentence with a randomly masked fragment, while the decoder predicts

29

Literature Review

that masked fragment. MASS is a generalization of GPT and BERT. It has a hyperparameter
that defines the length of the masked fragment, which when set to 1 makes MASS equivalent
to BERT, and when set to the number of tokens in a sentence makes MASS equivalent to GPT.
For the machine translation task evaluated on NewsTest’14 and NewsTest’16 from the WMT
dataset, MASS scores a 34 average BLEU score, which is an improvement of 1.85 points over
XLM.

A modification of BERT, SBERT [111] (Sentence-BERT) is a supervised model trained on
pairs of sentences. SBERT uses Siamese and triplet network structures. The Siamese structure
consists of two BERT networks with tied weights, which are then fed into one layer that calcu-
lates the similarity between the inputs of the two BERTs. The Triplet structure receives upon
input an anchor sentence, a positive sentence, and a negative sentence. The triplet network is
then trained in a way to make the distance between the anchor sentence and the positive sen-
tence smaller while making the distance between the anchor sentence and the negative sentence
bigger. BERT is slow on large-scale tasks like semantic similarity comparison, information
retrieval, and clustering. It takes BERT 65 hours to find the most similar sentence pair in a
collection of 10,000 sentences, whereas SBERT takes 5 seconds to compute 10,000 sentence
representations and 0.01 seconds to compute cosine similarity.

Generally, autoencoding models (e.g., BERT) perform better than autoregressive models
(e.g., Transformer-XL), but BERT is not optimal because it neglects the dependency between
the masked positions and suffers from a pre-train/finetune discrepancy [55]. Autoencoding
models perform better because of their ability to model bidirectional contexts. XLNet [55] is
an unsupervised model that combines BERT and Transformer-XL. XLNet integrates ideas from
Transformer-XL while learning bidirectional contexts by maximizing the expected likelihood
over all permutations of the factorization order. As a result of its autoregressive formulation,
XLNet overcomes the limitations of BERT. XLNet is able to model anaphora. It outperforms
BERT on 20 evaluated datasets [55].

Models similar to BERT (that use masked language modeling training methods) corrupt
the input by replacing some tokens with a mask and then train a model to reconstruct those
tokens. ELECTRA [115] (Efficiently Learning an Encoder that Classifies Token Replacements
Accurately) has a more efficient training method. It replaces selected tokens with alternatives
produced by a generator network and then trains a discriminative model to predict for each
token if it was replaced by another plausible token or not. The architecture has two components:
the generator, which is typically a small masked language model, and the discriminator—the
ELECTRA model. The generator and the discriminator are trained jointly: the generator of
the output text with tokens replaced with plausible alternatives, and the discriminator to detect
which tokens are replaced. The ELECTRA model is similar to a generative adversarial network
(GAN), but the generator is not trained to generate text that would deceive the discriminator,
instead it produces tokens that have the highest likelihood. On the GLUE datasets, ELECTRA

30

Literature Review

performs similarly as XLNet with an average accuracy of 89.5%, outperforming BERT by 5.5%.

REALM [114] (Retrieval-Augmented Language Model) is a semi-supervised masked lan-
guage model. Language models typically capture world knowledge implicitly, REALM does
it in a more modular and interpretable way by incorporating knowledge retriever in the learn-
ing procedure. Two main components of REALM are: the neural knowledge retriever, which
finds a document containing the answer to the question, and the knowledge-augmented encoder,
which outputs the answer to the question with the help of the retrieved document. The knowl-
edge retriever uses a BERT-style architecture, and the knowledge-augmented encoder uses a
vanilla Transformer architecture. After fine-tuning on the Open-domain Question Answering
task, REALM outperforms BERT on the NQ and WQ datasets by 13.9% and 23%, achieving
40.4% and 40.7% accuracy, respectively.

Following the initial versions of attention-based models, transformer architectures have
continued to develop. Current leading LLMs often achieve enhanced capabilities primarily
through substantial scaling of parameters and training data. This scaling is frequently accompa-
nied by architectural innovations, such as Mixture-of-Experts (MoE) for managing larger mod-
els, components for multimodal processing, refined attention mechanisms, or explorations into
recurrent structures. Some of the most noteworthy models are Mistral [117], Google’s Gemini
[118], Anthropic’s Claude 3 [119], Meta’s Llama 3 [120], OpenAI’s GPT-4o [121], Alibaba’s
Qwen3 [122], DeepSeek-AI’s DeepSeek-V3 [123], and DeepSeek-AI’s DeepSeek-R1 [124].

2.1.7 Analysis Conclusions

In this review, we have systematized the findings according to the defined criteria: the represen-
tation level (the level of linguistic units for which representations are being learned); the input
level (the granularity of data upon input); the model type (the general strategy for representation
learning); the model architecture (neural network architecture); and the model supervision (an
indication of the need for labeled training data). Still, there are additional insights into the cri-
teria for comparing, selecting, and evaluating the representation models, as well as insights into
which model properties are important to consider when building or choosing an architecture for
a specific downstream task and language.

Comparison. The majority of shallow models are unsupervised, learn word-level represen-
tations, and take word-level input. They perform well on simple tasks like measuring word
similarity and are the easiest architecture to train.

Word-level input was popular among recurrent models, but recently subword-level input
has been more frequently used. In this study, we noticed that recurrent models do not prefer one
type of supervision or representation level more frequently than other types.

The majority of recursive models work with word or subword-level input and learn sen-
tence+ representations for larger chunks of text like phrases, sentences, paragraphs, or entire

31

Literature Review

documents. Recently, recursive models that generate latent trees are preferable due to the low
data preparation requirement. They are a good fit for semantic and sentiment tasks [80] where
the tree structure of a text is important. Recursive models are currently underexplored, and some
of the popular neural network libraries (e.g., TensorFlow) do not support them well (with some
exceptions like DyNet).

Convolutional and attention models mainly use subword or word-level input. Attention
models most frequently learn sentence+ representations. Unsupervised models are preferred
again because of large amounts of data usable without any manual labeling. For tasks that
process long texts with long-range dependencies, attention models outperform all the other
models. Lately, attention models are increasing in size to improve the performance but at the
cost of increased training time and higher memory requirements.

Shallow models are effective when dealing with word-level units, but if the downstream
task depends on higher-level units (e.g., phrases, sentences, etc.), recursive, convolutional, or
attention models are a better choice. Currently, a significant drawback with recursive models is
a complicated training procedure that is hard to implement and leads to slower training times.
Convolutional models can learn local patterns and are a good fit for computer vision tasks. It has
been shown that convolutions can be used for text, but currently, attention models outperform
them on text-related tasks as attention mechanisms can learn long-range dependencies.

Subword input provides the most flexibility, as unseen and rare words are easily dealt with,
and input vectors are not as large. The subword-level facilitates the learning of neural models
for morphologically rich languages. Complex downstream tasks benefit from sentence+ repre-
sentations, but word representations and shallow models still work well for simple downstream
tasks.

Computational Complexity. Model’s computational complexity is an important factor when
deciding which model or architecture to use, or which one is superior. As such, when reporting
results for a model, information about computational complexity should be a priority. Some of
the models in this survey use the number of trainable parameters as a proxy for computational
complexity.

Word2Vec’s skip-gram model has the complexity C× (D+D× log2(V)) (where C is win-
dow size, V is size of the vocabulary, and D is dimensionality of the representations) [1]. If
vocabulary contains 30k words, representations’ dimensionality is 300, and window size is 10,
Word2Vec’s computational complexity would be 47618. If accounting for the number of train-
ing steps, the complexity is equal to 47,618 × E ×T , where E is the number of the training
epochs and T is the number of the words in the training set. On the other end of computational
complexity, GPT-2 has 1.5B trainable parameters [106], which if used as a proxy for complexity
is approximately 3,000,000% higher complexity than Word2Vec.

32

Literature Review

Challenges. Large industry-based research groups are developing extremely large models
with billions of parameters that require powerful hardware and custom systems for training.
Even the inference of test cases becomes problematic with the largest models [125]. For
smoother progress of large text representation models, new solutions that can support large
models’ training on clusters are expected.

Further, to be able to compare representation models, a standardized evaluation strategy
will have to emerge including definitions for standard datasets, tasks, and measures. There
are several obstacles for research teams with limited computational resources when studying
the comparative performance of their models against large models. Namely, contrasting the
models of different magnitudes of parameters and training time will lead to inconsistent and
possibly misleading results. To obtain comparable results, the large models would have to be
evaluated in several versions, ranging from the smallest to the biggest (measured by the number
of trainable parameters). Accordingly, low-resourced research teams would be able to compare
models fairly by evaluating the model of the same magnitude as an adequate version of the large
model.

Evaluating a model on the same downstream task used for training does not assess its
generality. One solution for addressing the generality evaluation is to use cross-validation across
tasks. A model will be trained on one of the tasks and evaluated on the rest, repeating that
process for every task in the benchmark. Hence, there is a need to define a better evaluation
measure that will quantify the quality of the neural text representation model’s generality across
tasks.

2.2 Desirable Model Properties

The main properties we aim for in our text representation model include representation compo-
sitionality, hierarchical representation, representation decodability, and self-supervised learn-
ing.

2.2.1 Representation Compositionality

Composing word embeddings to generate meaningful representations of larger text units re-
mains a critical area of study in NLP (explored in [126], [127], and [128]). Approaches to
this problem span from simple aggregation techniques that compose word embeddings to more
complex neural architectures that embed entire sentences, each offering unique advantages in
different contexts.

A common approach is to average word embeddings to generate a single vector represent-
ing a phrase or sentence. Joulin et al. [129] introduced this idea in the context of fastText,
where word embeddings are averaged and subsequently used for efficient text classification.
This technique, inspired by the CBOW model [1], offers a computationally lightweight solution

33

Literature Review

that performs competitively with deeper models in various NLP tasks.

Building upon this, Arora et al. [130] proposed an enhanced version where word embed-
dings are combined using weighted averages, followed by post-processing through principal
component analysis (PCA) or singular value decomposition (SVD). The weighting scheme they
propose significantly improves performance on textual similarity tasks. This method demon-
strates that simple compositional techniques can rival more complex architectures, especially in
unsupervised settings.

Wieting et al. [131] conducted a comparative study that highlighted the trade-offs between
simple word averaging and more complex models like LSTMs for sentence embedding. Their
findings showed that while LSTMs perform well on in-domain data, simple word averaging
techniques tend to outperform LSTMs in out-of-domain tasks. This suggests that straight-
forward compositional methods, despite their simplicity, are robust and generalizable across
diverse datasets.

Recursive models have also been explored for word compositionality, often by mirroring
linguistic hierarchies. Some recursive models explicitly rely on syntactic parse trees. Socher
et al. [25] proposed a Recursive Neural Tensor Network (RNTN) that captures compositional
semantic effects by recursively computing vectors for higher nodes in a parse tree, using a
tensor-based composition function. Simoulin and Crabbé [85] introduced a model that learns
its composition function, a Tree-LSTM, and its dependency structure, via a biaffine parser,
jointly. The parser’s edge weights then guide the weighted sum of child representations within
the Tree-LSTM during composition.

Other recursive approaches aim for compositionality without strict reliance on predefined
syntax or learn latent syntactic structures. Zhao et al. [79] introduced a Self-Adaptive Hierar-
chical Sentence Model, using recursive structures learned through supervision to capture com-
positional semantics in a non-syntactic hierarchy. The Continuous Recursive Neural Network
(CRvNN) [84] incorporates a continuous relaxation to RvNNs, enabling end-to-end differentia-
bility and automatic, task-specific latent tree induction, with a gated recursive cell performing
the composition.

Transformer [52] architectures use attention mechanism to compose embeddings. Bah-
danau et al. [98] introduced the attention mechanism in neural machine translation, allowing
models to dynamically focus on different parts of the input sequence during decoding. The in-
troduction of attention helped relieve the encoder from compressing all information into a single
fixed-length vector, thus enabling a more flexible and effective composition of representations
over sequential data.

Building on Transformer principles, some recursive models integrate attention or Transformer-
style encoders for composition. Transformer Grammars [86] augment Transformers with syn-
tactic inductive biases, using special attention masks and transformations of linearized trees to
achieve recursive syntactic compositions and create explicit composed representations for each

34

Literature Review

constituent. Hu et al. [87] presented Fast-R2D2, a pretrained recursive neural network based
on a pruned CKY mechanism, where an unsupervised top-down parser guides the pruning of
the CKY chart, and an n-layer Transformer encoder serves as the composition function for
combining cell representations. Similarly, Hu et al. [88] proposed ReCAT, which augments
Transformers with Contextual Inside-Outside (CIO) layers that perform iterative bottom-up
composition and top-down contextualization, with a single-layered Transformer also used as
the core composition function within these layers.

In this work, we build on these approaches by applying the Pyramidal Recursive learning
(PyRv) method to recursively combine word embeddings into more abstract representations.
Unlike the averaging techniques of Joulin et al. [129] and Arora et al. [130], PyRv enables
hierarchical composition, capturing both word-level and higher-level semantic structures in a
more structured way.

PyRv differs from recursive models reliant on explicit syntactic parse trees, such as RNTNs
and the model by Simoulin and Crabbé, as PyRv operates without requiring such predefined
linguistic structures. Its hierarchy is formed by a fixed, symmetric, and exhaustive pairwise
composition strategy. This also distinguishes it from supervised recursive models like that of
Zhao et al., as PyRv is fully unsupervised. Compared to other unsupervised or latent-syntax
recursive models like CRvNN, PyRv does not infer a single optimal tree structure. Instead, its
compositional steps are determined by its inherent pyramidal architecture and guided by local
autoencoding and autoregressive objectives.

Additionally, by recursively merging embeddings in a localized manner, PyRv offers an
alternative to the global attention mechanisms in Transformers [52] and Transformer-based re-
cursive models like Transformer Grammars, Fast-R2D2, and ReCAT. While these models lever-
age the power of Transformer encoders for complex compositional functions or global context
integration, PyRv employs a simpler encoding function recursively.

2.2.2 Hierarchical Representation

The second property, hierarchical representation, enables text to be represented at various levels
of granularity, from individual characters or subwords to complete phrases or sentences. This
property is supported by PyRv through pyramidal recursion, wherein neighboring pairs of em-
beddings are recursively composed into higher-level embeddings. Hierarchical representation
is particularly beneficial for languages with complex morphology, variable-length phrases, and
compound words. Furthermore, it facilitates fine-grained analysis of text by capturing mean-
ingful structures across different abstraction levels.

Deep learning models often demonstrate a general progression of feature complexity, with
lower layers learning basic features and higher layers capturing more abstract patterns. For ex-
ample, CNNs identify simple edges in lower layers and increasingly complex patterns in higher
layers [132]. Recursive neural networks, however, reuse the same layers and weights recursively

35

Literature Review

across abstraction levels, making them inherently well-suited for hierarchical representations.

Recursive models explicitly employ recursive operations to build hierarchical embeddings.
In contrast, many non-recursive language models lack such explicit structural composition.

Recursive Neural Tensor Network (RNTN) [25] captures compositional semantic effects
in text by recursively computing vectors for higher nodes in a parse tree.

Deep Inside-Outside Recursive Autoencoder (DIORA) [83] employs the inside-outside al-
gorithm within a latent tree chart parser to induce syntax trees and learn hierarchical representa-
tions. The inside pass compresses the sentence recursively, while the outside pass incorporates
external context.

Transformer Grammars [86] explicitly model hierarchical syntactic structures by creating
composed representations for each constituent, with the hierarchy being defined by an input
linearized tree.

The model by Simoulin and Crabbé [85] uses a dependency tree, parsed by a biaffine
parser, to dictate the hierarchical structure, with a Tree-LSTM composing embeddings recur-
sively from leaves to the root.

Other recursive models induce latent tree structures to form hierarchies. The Continuous
Recursive Neural Network (CRvNN) [84] induces such a structure, and the depth of recursion,
defining the hierarchy, depends on this induced tree.

Fast-R2D2 [87] uses a CKY-style chart where cells represent constituents at different
spans, forming levels of a hierarchy. A top-down parser then determines the specific tree struc-
ture for recursive composition.

ReCAT [88] employs stacked Contextual Inside-Outside layers to explicitly emulate a hier-
archical composition process, with an inside pass composing lower-level spans into higher-level
ones and an outside pass enabling information flow across these hierarchical levels.

Dynamic Convolutional Neural Network (DCNN) [92] adapts CNN architectures for sen-
tence modeling using one-dimensional convolution operations. Dynamic k-max pooling, a key
feature of DCNNs, enables the network to handle sentences of varying lengths while inducing
hierarchical representations of words and phrases.

Graph Convolutional Neural Network (Graph-CNN) [133] transforms text into a graph-
of-words representation to capture non-consecutive and long-distance semantic relationships.
Convolutional layers operate on this graph to learn hierarchical features, representing varying
levels of semantics.

PyRv achieves hierarchical representation through its systematic pyramidal recursion. This
contrasts with parse-tree-based recursive models like RNTNs, Transformer Grammars, and the
model by Simoulin and Crabbé, because PyRv’s hierarchy is not tied to linguistic syntax (con-
stituency or dependency trees). Its hierarchy is a fixed, layered structure based on systematic
pairwise merging from tokens upwards, providing a different kind of hierarchical abstraction.

36

Literature Review

Compared to latent-tree models such as CRvNN, Fast-R2D2, ReCAT, and DIORA which
infer or operate on an induced tree structure to guide hierarchical composition, PyRv imposes a
consistent pyramidal structure. It does not search for an optimal parse tree, its pyramidal levels
themselves constitute the hierarchical representations, making its hierarchical nature explicit
and deterministic given the input sequence length.

Unlike models such as DCNNs or Graph-CNNs that induce hierarchy through operations
like pooling or graph convolutions, PyRv’s hierarchy is formed by the direct, recursive applica-
tion of the same encoding function to build distinct representations at each level of the pyramid.

A key aspect of PyRv is that it explicitly generates representations at each level of its
pyramid – capturing subword compositions, word compositions, and multi-word phrase com-
positions. This makes these intermediate hierarchical states directly accessible, which can be
contrasted with models where hierarchy might be more implicitly encoded in the network’s
depth or learned attention patterns.

2.2.3 Representation Decodability

Representation decodability refers to the ability of a model to map a learned representation back
to the original input space. This property is fundamental in evaluating and utilizing learned
representations effectively. PyRv achieves this capability through its autoencoder head, which
is explicitly trained to perform input reconstruction.

Autoencoders are a prime example of models that leverage decodability [134, 135]. Au-
toencoders are neural networks designed to encode input data into a compressed latent repre-
sentation and then decode it to reconstruct the original input. The encoding process forces the
hidden representation to capture meaningful features about the data, rather than simply memo-
rizing the input-output mapping. The ability to decode provides several advantages:

• Evaluating representation quality: The fidelity of the reconstructed input compared to
the original can be used to assess the quality of the learned representation. High-quality
reconstructions indicate that the latent representation captures critical information about
the data.

• Data generation: The decoder component of an autoencoder can be used as a genera-
tive model. By sampling points from a prior distribution in the latent space, novel data
samples can be generated.

• Interpretability: Decoding representations can reveal the features learned by the model,
aiding in the interpretation of what aspects of the data are being captured in the latent
space.

The hierarchical LSTM model in [68] extends autoencoder decodability to paragraphs and
documents by creating hierarchical embeddings from words to sentences to paragraphs, en-
abling the reconstruction of coherent long texts. This approach is useful for tasks like summa-

37

Literature Review

rization and text generation.

The variational autoencoder (VAE) in [136] utilizes LSTM-based encoders and decoders
to capture high-level sentence features such as style and syntax. The decoding process allows
for the generation of sentences conditioned on the latent representations, enabling both data
generation and interpolation in the latent space.

Recursive autoencoders (RAEs) from [76] build hierarchical representations for phrases
and sentences using tree structures, with each node holding a "parent" vector for reconstruc-
tion. This method supports interpretability and excels in sentiment prediction without requiring
sentiment lexicons.

BERT [4] indirectly demonstrates decodability via its masked language model (MLM)
objective, predicting masked tokens from context. This approach maps learned representations
back to vocabulary space, achieving state-of-the-art results in NLP tasks.

Similarly, Fast-R2D2 [87] employs a pretraining objective to reconstruct tokens based on
context representations derived from its tree encoder. ReCAT [88] also uses MLM.

An alternative to decoder-based reconstruction is nearest-neighbor search in embedding
spaces. Methods like fastText [2] use vector representations to find the most similar data points
to a given query by searching for the closest vectors in the latent space. This approach does
not rely on explicit decoding but leverages the geometry of the latent space to retrieve similar
items efficiently. Nearest-neighbor search has been widely applied in tasks like word similarity,
image retrieval, and recommendation systems.

Both decodability approaches, explicit reconstruction and nearest-neighbor retrieval, high-
light the utility of well-structured latent representations. These methods demonstrate how de-
codability supports a range of applications, from feature learning and interpretability to practical
deployment in search and generation tasks.

PyRv’s autoencoding head provides explicit reconstruction capabilities at each level of its
pyramidal hierarchy. This offers a direct and granular form of decodability, allowing, for exam-
ple, a phrase-level representation to be decoded back into its constituent word representations,
or a word representation back into its subword components.

This explicit reconstruction of constituent parts distinguishes PyRv from models that pri-
marily rely on MLM for decodability, such as BERT, Fast-R2D2, and ReCAT. While MLM
effectively decodes by predicting missing tokens from context, PyRv’s autoencoder aims to
reconstruct the exact input representations of the combined elements, potentially leading to dif-
ferent learned properties in the embeddings focused on faithfulness to the original components.

2.2.4 Self-supervised Learning

Self-supervised learning has emerged as a powerful paradigm in machine learning, allowing
models to leverage large amounts of unlabeled data for representation learning. In contrast to

38

Literature Review

traditional supervised learning, which requires labeled datasets, self-supervised methods gen-
erate pseudo-labels from the data itself. This approach enables models to learn meaningful
representations that can be transferred to downstream tasks.

One of the strengths of PyRv lies in its support for self-supervised learning, as it does not
rely on labeled data. PyRv features two distinct heads: an autoencoding head and an autoregres-
sive head. The autoencoding head focuses on reconstructing input data, capturing its underlying
structure, while the autoregressive head models sequential dependencies. Both mechanisms fa-
cilitate the learning of robust representations in an unsupervised manner.

An important aspect of many recursive models is their reliance on parse trees, which rep-
resent hierarchical syntactic structures. These models either require explicit parse trees as input
or learn to infer them during training.

PyRv adopts a pyramidal hierarchy, eliminating the need for parse trees. This design
choice simplifies the training process and allows the model to directly exploit the hierarchical
nature of textual data. By utilizing self-supervised learning, PyRv is capable of training on
large-scale unlabeled datasets.

2.3 Identified Gaps and Challenges

Many models fail to capture all four properties essential for robust text representation: hierarchi-
cal representation, compositionality, decodability, and self-supervised learning. Each property
contributes uniquely to the quality and utility of learned embeddings, so it is beneficial for a
text representation model to support all of them.

Many models achieving robust compositionality and explicit hierarchy, such as Recursive
Neural Tensor Networks (RNTNs) [25], Transformer Grammars [86], and the unified parsing
model by Simoulin and Crabbé [85], typically rely on syntactic parse trees. This dependence on
external linguistic annotations or pre-parsed data limits their applicability to richly annotated
languages and domains and hinders their ability to learn purely from raw text.

Conversely, large-scale self-supervised models, particularly those based on the Trans-
former architecture like BERT [4], excel at learning powerful contextual representations from
vast quantities of unlabeled text. However, the hierarchical structures learned by these models
are often implicit within their deep layers, and their summary representations (e.g., the [CLS]
token) may not offer clear decomposability into constituent parts. While their decodability is
evident through objectives like Masked Language Modeling (MLM), this typically involves pre-
dicting missing tokens rather than reconstructing the structured build-up of the representation
itself. Integrating explicit hierarchical processing and granular, multi-level decodability into
these highly effective self-supervised frameworks without sacrificing their training efficiency
or scalability remains a considerable hurdle.

Effectively integrating all four properties presents significant challenges. Some recent self-

39

Literature Review

supervised recursive models like DIORA [83], CRvNN [84], Fast-R2D2 [87], and ReCAT [88]
make major strides by inducing latent tree structures from unlabeled data. However, the induced
hierarchies might be optimized for specific downstream signals or internal objectives, and the
decodability might still primarily be at the token level (e.g., via MLM or token reconstruction
objectives within the induced structure), rather than a systematic decoding of the compositional
steps that formed the hierarchy. Thus, achieving robust compositionality and an explicit, multi-
level decodable hierarchy through purely self-supervised mechanisms remains an active area of
research.

40

Chapter 3

Theoretical Background

The success of modern machine learning, particularly in domains like natural language pro-
cessing (NLP), computer vision, and speech recognition, owes much to advancements in rep-
resentation learning and neural architectures. These fields enable models to capture intricate
patterns and relationships in data, often with minimal reliance on manual feature engineering.
This chapter lays the foundational concepts that underpin the proposed Pyramidal Recursive
learning (PyRv) method. It explores the theoretical pillars of neural network representations,
autoencoding, autoregressive learning, and recursive neural networks, providing a coherent con-
text for PyRv’s design.

We begin by discussing neural network representations (3.1), emphasizing the evolution
from handcrafted features to learned embeddings and hierarchical representations, particularly
in text processing. Next, we delve into the principles of autoencoding and autoregressive learn-
ing (3.2), detailing how these paradigms contribute to robust, self-supervised representation
learning. Following this, recursive neural networks (3.3) are introduced as powerful architec-
tures for handling hierarchical data, setting the stage for PyRv’s recursive embedding approach.
Finally, we explain how these ideas converge in the context of Pyramidal Recursive learning
(3.4).

3.1 Neural Network Representations

Neural networks fundamentally aim to learn representations of data that facilitate the extraction
of meaningful information. This capability is at the heart of representation learning, where the
learned features are optimized for downstream tasks, reducing the reliance on manual feature
engineering.

41

Theoretical Background

3.1.1 The Role of Representations in Machine Learning

The performance of machine learning models is highly sensitive to the choice of data represen-
tation [137, Chapter 15]. Historically, the creation of effective representations relied on feature
engineering, where domain experts manually designed transformations and preprocessing steps.
However, this process is both time-consuming and prone to limitations when dealing with high-
dimensional or complex data. Representation learning automates this process, enabling mod-
els to learn to disentangle the underlying explanatory factors of the data autonomously. This
paradigm shift has significantly accelerated progress in areas such as NLP, computer vision, and
speech recognition.

A representation is considered good if it provides a compact and informative encoding of
the input data that is effective for downstream tasks, typically in a supervised learning context
[138]. Given a dataset D = {(xi,yi)}N

i=1, where xi ∈ Rd are input samples and yi are corre-
sponding outputs, a learned representation z = fθ (x), where fθ : Rd → Rk is a transformation
parameterized by θ , should satisfy:

L (y,g(z))≪L (y,h(x)), (3.1)

where L is a loss function, g : Rk→Rm is a simpler supervised model (e.g., linear regression),
and h is a more complex function relying on raw features. The representation z thus encodes
the essential information from x relevant for predicting y.

Deep learning introduces the concept of deep representations, where data undergoes multi-
ple layers of transformations. Each layer captures progressively more abstract features, enabling
neural networks to model complex relationships and patterns. In a deep network, a sequence of
nonlinear transformations is applied as:

z(l+1) = σ(W (l)z(l)+b(l)), l = 1, . . . ,L, (3.2)

where z(l) represents the activations at layer l, W (l) and b(l) are learnable weights and biases,
and σ is a nonlinearity such as the ReLU or sigmoid function. The final layer z(L) is used as the
output or the representation for downstream tasks.

3.1.2 Representations in Text

In the domain of text, neural networks have played a pivotal role in advancing representation
learning. Early efforts in distributed representations were introduced by Hinton [139], where
symbolic data was encoded into dense, continuous vectors. These efforts were later formalized
in statistical language modeling by Bengio et al. [140], introducing embeddings that capture
semantic and syntactic properties.

For a vocabulary of size V , each word with index i ∈ {1,2, . . . ,V} can be represented as

42

Theoretical Background

a dense vector ewi ∈ Rd , where wi is the word corresponding to index i. A common objective
for learning these embeddings is to maximize the likelihood of context words given a target
word. For example, in the skip-gram model, the optimization objective minimizes the negative
log-likelihood:

L =−
T

∑
t=1

∑
c∈context(t)

logP(wc | wt), (3.3)

where wt is the target word, wc are context words, and P(wc | wt) is modeled using a softmax
over the embeddings.

The effectiveness of these embeddings is illustrated in Figure 3.1, which demonstrates
how Skip-gram embeddings can organize semantic concepts and capture relationships, such as
those between countries and their capitals. Such embeddings serve as input to more complex
neural architectures, which further refine and leverage these representations for tasks like text
classification, machine translation, and sentiment analysis.

Figure 3.1: Two-dimensional principal component analysis (PCA) projection of the 1000-dimensional
Skip-gram vectors of countries and their capital cities [48]. This visualization highlights the ability of
Skip-gram embeddings to organize semantic concepts and capture implicit relationships, such as the
association between countries and their capitals, without explicit supervision.

Deep representations. A hierarchical organization of explanatory factors underpins the ef-
fectiveness of deep representations. In this hierarchy, abstract concepts are defined in terms
of simpler, less abstract ones, enabling a structured understanding of complex relationships.

43

Theoretical Background

Deep representations exploit this assumption to model data with increasing levels of abstrac-
tion, which is particularly relevant in NLP.

In NLP, this hierarchical structure is reflected in the composition of linguistic elements.
Subwords or words can be combined to form phrases, and these phrases can further combine
to represent sentences. Deep neural networks leverage this compositional nature, learning rep-
resentations at multiple levels. For example, an embedding layer might learn dense represen-
tations for individual words, which are then passed through subsequent layers to capture the
semantics of phrases and sentences.

3.2 Autoencoders and Autoregressive Learning

Neural network models often leverage principles of autoencoding and autoregressive learning
to develop representations that capture essential characteristics of the data. In this section,
we explore these two paradigms, emphasizing their formalizations and significance in learning
compact, expressive, and generative representations.

3.2.1 Autoencoders

Figure 3.2: Visualization of an autoencoder architecture, consisting of an encoder that maps the input
(e.g., a picture of a handwritten digit) to a lower-dimensional hidden representation (code), and a decoder
that reconstructs the input from the hidden representation.

An autoencoder is a neural network architecture designed to reconstruct its input as out-
put, learning an efficient representation (code) in the process. An autoencoder consists of two
primary components (visualized in Figure 3.2):

• An encoder function h= fθ (x), which maps the input x∈Rd into a hidden representation
h ∈ Rk, where k < d.

• A decoder function r = gφ (h), which reconstructs the input from the hidden representa-
tion.

The training objective of an autoencoder minimizes a reconstruction loss between the input

44

Theoretical Background

x and its reconstruction r, expressed as:

L (x,r) = L (x,gφ (fθ (x))), (3.4)

where L is often chosen as the mean squared error:

L (x,r) = ∥x− r∥2
2. (3.5)

Autoencoders are deliberately restricted to prevent perfect copying of input data, encour-
aging the network to capture the most salient features of the data [137, Chapter 14]. This
restriction can take various forms, leading to different types of autoencoders:

• Undercomplete Autoencoders: Employ a bottleneck structure where the hidden layer h

has fewer dimensions (k) than the input (d), enforcing a compressed representation. The
compression prioritizes learning essential features, particularly those relevant to the train-
ing data distribution.

• Regularized Autoencoders: Incorporate a regularization term into the loss function to
induce specific properties in the learned representations.

• Sparse Autoencoders: Impose sparsity on the hidden layer h by penalizing activations,
encouraging a representation where few neurons are active.

• Denoising Autoencoders: Train the model to reconstruct clean input x from corrupted
input x̃, enforcing robustness to noise.

• Contractive Autoencoders: Regularize the derivative of the encoder function fθ (x) to
encourage invariance to small input perturbations.

• Variational Autoencoders (VAEs): Learn probabilistic representations by maximizing a
variational lower bound on the data log-likelihood.

• Recursive Autoencoders (RAEs): Extend autoencoders for hierarchical data, such as sen-
tences, using recursive structures to aggregate representations.

3.2.2 Autoregressive Learning

Autoregressive models are generative models that predict the probability of a sequence by
modeling the conditional probability of each element in the sequence given the preceding ele-
ments [137, Chapter 20]. Figure 3.3 shows how such models generate a sentence step by step
by considering a fixed window of preceding elements. For a sequence of observed variables
x = (x1,x2, . . . ,xd), the joint probability is decomposed as:

P(x) =
d

∏
i=1

P(xi | xi−1, . . . ,x1). (3.6)

In this framework, each term P(xi | xi−1, . . . ,x1) represents the probability of xi conditioned

45

Theoretical Background

Figure 3.3: Illustration of the autoregressive modeling process for sentence generation. The model
predicts the next word in a sequence step by step, based on a fixed window of four preceding words.

on all preceding elements, and is typically modeled using a neural network. This approach is
referred to as neural autoregressive modeling.

Neural autoregressive models leverage neural networks to parameterize the conditional
distributions. The graph structure of these models is often a complete directed graph, with each
node corresponding to a variable in the sequence. For instance:

P(xi | xi−1, . . . ,x1) = Softmax(fθ (x<i)), (3.7)

where fθ (x<i) represents a neural network function parameterized by θ , and x<i denotes the set
of preceding variables.

By leveraging the chain rule of probability and neural networks, autoregressive models can
capture intricate dependencies within sequences, making them powerful tools for generative
modeling.

3.2.3 Integration of Autoencoding and Autoregression

The integration of autoencoding and autoregressive learning provides a robust framework for
recursive embedding, combining the strengths of both paradigms to model text representations
effectively. This subsection explores the theoretical unification of these approaches and their
complementary roles in capturing semantic and structural information.

Theoretical Unification. Autoencoding focuses on learning a compact, decodable represen-
tation of the input data, while autoregressive learning emphasizes modeling the sequential de-

46

Theoretical Background

pendencies between elements. In a recursive framework, these principles can be unified by
encoding complex structures into latent embeddings that are both informative and predictive.
The integration involves two objectives:

• Autoencoding objective: Ensure the embedding can decode back into the original struc-
ture.

• Autoregressive objective: Predict the conditional distributions of structural components.

By optimizing both objectives, the model learns embeddings that are decodable (via autoencod-
ing) and semantically meaningful (via autoregression).

Autoregressive Learning for Recursive Embeddings. Recursive embeddings represent hi-
erarchical or sequential structures by encoding pairs or groups of units recursively. For example,
in the context of text, the encoded pair may combine subwords, words, or phrases into a sin-
gle latent representation, which is then recursively combined with other components. Autore-
gressive learning complements this by ensuring that these embeddings capture dependencies
between the elements, enabling the model to account for semantic relationships.

Our method leverages this integration by predicting the immediate left and right nodes of
the encoded pair. Through recursive composition, however, both the neighboring nodes and
the encoded pairs usually represent multiple text units. This recursive composition allows the
model to maintain larger context while predicting neighboring nodes.

Advantages of Integration. The unification of autoencoding and autoregression offers sev-
eral unique advantages:

• Decodability: Autoencoding ensures that the learned embeddings are not just abstract
representations but can be reconstructed back into text or other input forms, enabling
interpretability and reconstruction-based tasks.

• Semantic Learning: Autoregressive learning aids in capturing fine-grained sequential
dependencies, enriching the embeddings with semantic information essential for down-
stream tasks like language modeling or sentiment analysis.

• Hierarchical Modeling: Recursive embedding, when combined with these approaches,
allows for the compact representation of complex structures, balancing global context
and local relationships.

3.3 Recursive Neural Networks

Recursive Neural Networks (RvNNs) are a class of neural networks designed to operate on
hierarchical or tree-structured data. Unlike traditional feedforward or recurrent neural networks,
RvNNs recursively apply the same set of weights at each node of a tree structure to compute
parent node representations from their child nodes. Formally, given a tree structure with a parent

47

Theoretical Background

node p and child nodes {c1,c2, . . . ,ck}, the representation of the parent node hp is computed as:

hp = fθ (hc1,hc2, . . . ,hck), (3.8)

where fθ is a learnable function parameterized by θ , often implemented as a neural network
layer. Recursive networks enable effective modeling of data with hierarchical relationships,
such as syntactic trees in NLP. Figure 3.4 illustrates this process applied to a morphological
tree, where word representations are constructed recursively from morphemic vectors.

Figure 3.4: Morphological Recursive Neural Network [78]. A vector representation for the word "un-
fortunately" is constructed from morphemic vectors: unpre, fortunatestm, lysuf.

3.3.1 Backpropagation Through Structure

Backpropagation through structure (BPTS) [141] is an extension of the traditional backpropa-
gation algorithm, specifically designed for training recursive neural networks on tree-structured
data. While traditional backpropagation computes gradients layer by layer in feedforward net-
works, and backpropagation through time (BPTT) extends this process to sequential recurrent
structures, BPTS adapts the gradient computation to hierarchical tree structures.

The adaptation in BPTS arises from the recursive dependency in tree-structured data,
where the parent node’s representation is computed as a function of its children. During back-
propagation, this hierarchical relationship requires the error signal to be distributed appropri-
ately among child nodes.

Forward Propagation. For a parent node p, its representation hp is computed from the rep-
resentations of its child nodes {hc1,hc2} as:

hp = g

W

hc1

hc2

+b

 , (3.9)

48

Theoretical Background

where W is a weight matrix applied to the concatenated child representations (hc1 and hc2), b is
a bias vector, and g is the activation function (e.g., tanh, ReLU). This formulation establishes a
dependency between hp and the outputs of its child nodes, which must be accounted for in the
backward pass.

Backward Propagation. During backpropagation, the error signal δp = ∂L
∂hp

, which repre-
sents the gradient of the loss L with respect to hp, is propagated to the child nodes. This is
achieved using the chain rule of differentiation.

To simplify the gradient computation, the tree structure is virtually unfolded into a se-
quence of layers, analogous to how BPTT unrolls recurrent networks in time. Each node in the
tree corresponds to a "layer" in this virtual structure. The error signals are propagated layer by
layer, ensuring that the exact gradient of the loss is computed.

Challenges. BPTS enables recursive neural networks to learn effectively from hierarchical
data. However, it introduces challenges such as:

• Computational complexity: Traversing tree structures and computing gradients for all
nodes can be computationally expensive.

• Gradient flow in deep trees: As trees grow deeper, gradients may vanish or explode,
especially in regions where node representations depend on long hierarchical paths.

3.4 Pyramidal Recursive Learning

Our proposed method, Pyramidal Recursive learning PyRv, unifies autoencoding, autoregres-
sion, and recursive neural networks into a hierarchical framework for text representation. It
addresses the challenges of learning structured, hierarchical representations of text through a
novel recursive encoding mechanism, as described in the next chapter.

PyRv operates by constructing a pyramidal hierarchy of representations, starting from low-
level units (e.g., characters, subwords, or words) and progressing to higher levels (e.g., words,
phrases, sentences). This approach leverages:

• Autoencoding: To enforce decodability, each level of the pyramid is encoded and de-
coded with an autoencoding head, enabling the reconstruction of lower-level representa-
tions from higher-level embeddings.

• Autoregression: To ensure embeddings are semantically and syntactically meaningful,
an autoregressive head predicts neighboring representations at each level.

• Recursion: The encoding of pairs of representations into higher-level embeddings mim-
ics the recursive operations in tree structures, facilitating compositional representation
learning.

49

Theoretical Background

3.4.1 Training Challenges and Solutions

Training PyRv introduces challenges primarily due to the hierarchical and recursive nature of
the architecture, as well as constraints imposed by computational complexity. To address these
issues, the following strategies are employed:

Small Batch Sizes. To manage computational demands, PyRv uses small batch sizes, typi-
cally comprising one paragraph of text per batch. While this minimizes memory usage, it can
lead to unstable training dynamics due to limited gradient diversity within each batch.

Multi-Level Loss Aggregation. To stabilize training despite small batch sizes, losses are
computed at every level of the pyramid. Each node on each level contributes an output and
a corresponding loss, ensuring that gradient updates capture information from all levels of re-
cursion. This design is conceptually similar to residual or skip connections, providing direct
gradient pathways that mitigate issues with vanishing gradients and improve training stability.

Gradient Normalization. To prevent gradient vanishing or explosion in deep hierarchies,
PyRv normalizes losses using a custom normalization technique, detailed in the next chapter
(Equation 4.8). By consistently scaling losses across all levels, this method ensures numerically
stable gradient updates, enabling the model to converge reliably.

50

Chapter 4

Methodology

Large language models with Transformer architecture [52] currently dominate natural language
processing (NLP) space, but other paths towards representation of text should be investigated
as well, especially smaller models that are easier to train and less demanding to use. Recursive
neural networks (RvNNs), such as those proposed by Luong et al. [78] and Socher et al. [25],
generalize recurrent neural networks (RNNs). While RNNs have a linear structure, RvNNs
have a hierarchical structure. RNNs are well suited for sequential data (e.g., time series data,
text, etc.), but suffer from slow training due to their sequential nature (parallel processing is
difficult), and difficult processing of long-term dependencies. Language is sequential but has
an implicit hierarchical structure (letters, syllables, morphemes, words, phrases, sentences, etc.
[142]), so processing text in a hierarchical structure could provide benefits over processing it
linearly.

Besides language being hierarchical in its nature, possibly making RvNNs a good option
for text representation, other reasons to use an RvNN for text are the variable length of the
input token sequence and reduction of the required neural network depth due to the recursive
application of the same weights.

Furthermore, the proposed approach based on Pyramidal Recursive learning enables the
incorporation of certain desirable properties. The primary properties we aim for in our text
representation model include representation compositionality, hierarchical representation, rep-
resentation decodability, and self-supervised learning. Part of this chapter, which describes the
PyRv method and its properties, has been published in our previous work ([143]).

The first property, representation compositionality (explored in [126], [127], and [128]),
entails that multiple representations can be combined into a single, unified representation. A
model with such a property could capture the meaning of a complex text by combining the
meanings of its constituent parts in a structured and semantically meaningful way. When a
model can combine representations, it can learn more efficiently from limited data.

The second property, hierarchical representation, would allow text to be represented at var-

51

Methodology

ious levels of detail, from individual characters or subwords to complete phrases or sentences,
producing multilevel representations. This property could be useful for languages with com-
plex morphology, variable-length phrases, and compound words. Hierarchical representations
enable fine-grained analysis of text. Most recursive models share this property (e.g., RAE [76]
and DIORA [83]), while most non-recursive language models do not.

The third property, representation decodability, simply means that a representation can be
decoded back into the text that it represents. Decodability can serve as a useful metric for
evaluating the quality of text representations and making it easier to understand and interpret
what the model has learned. All autoencoders share this property (e.g., [68]).

The fourth property, self-supervised learning, means the model does not need a labeled
dataset for training as the model trains by predicting neighboring representations and decoding
encoded representations, and it does not need a parse tree for each sentence due to the model’s
pyramidal nature. Most other recursive models for text require parse trees for each sentence
(e.g., RNTN [25] and Tree-LSTM [80]).

Utilizing the proposed method, we introduce a novel model for text representation, the
Pyramidal Recursive Neural Network (PyRvNN). This model achieves the desired properties
by adopting a recursive autoencoding and autoregressive approach, embedding text in a recur-
sive pyramidal fashion. At the zeroth pyramid level, the model takes as input a pair of one-hot
encoded tokens. As the pyramid levels increase, the model processes pairs of dense representa-
tions corresponding to sub-words, words, or phrases. The output includes these representations
and their neighboring counterparts to the left and right of the input pair.

The chapter is organized as follows:

• Pyramidal Recursive Learning (4.1): This section explains the PyRv method and its com-
putational complexity.

• Pyramidal Recursive Neural Network Architecture (4.2): This section outlines the design
of PyRvNN, including input representations.

• Training Procedure (4.3): This section discusses the self-supervised training process, cov-
ering training data, pyramidal training, loss computation, and the training setup.

• Evaluations (4.4): The section details intrinsic and extrinsic evaluations, downstream
tasks, and model variations.

• Model Limitations and Constraints (4.5): This section provides a critical assessment of
PyRvNN’s limitations and practical considerations.

4.1 Pyramidal Recursive Learning Method

Pyramidal Recursive learning (PyRv) is a method specifically designed for training neural net-
works to represent text. It operates by constructing a pyramidal hierarchy of representations, as
illustrated in Figure 4.1. In this hierarchy, each level encapsulates higher-level representations

52

Methodology

of the input text, progressively abstracting it from characters or subwords to words, phrases,
sentences, and potentially paragraphs.

Figure 4.1: A visualized example of a pyramidal recursion in the PyRv method. The lowest-level nodes
correspond to input tokens. Moving upward, the nodes within the three pyramids represent combined
subword embeddings. At the pyramid peaks, nodes represent word embeddings, and higher nodes signify
combined word embeddings, representing phrases.

At each level of the pyramid, the method encodes each successive pair of representations
into a higher-level representation. This representation is then used for two tasks: decoding
the representation into the pair of representations it was encoded with (autoencoding head)
and predicting the representations to the left and right of the encoded pair of representations
(autoregressive head).

The recursive encoding can start with characters or subwords (or with words in a simpler
version of this method). Each successive pair of representations is encoded into one represen-
tation, building a pyramid of subword representations for each word. After reaching the word
level the model starts pairing and encoding those representations into a single pyramid of phrase
representations starting with words until it reaches the tip of the pyramid or a defined maximum
level.

Due to this recursive encoding process, the trained model possesses the capability to embed
text hierarchically, generating representations on each level within the pyramidal hierarchy,
thus exhibiting a hierarchical representation property. Furthermore, neighboring representation
pairs can be jointly encoded into a single embedding, showcasing the property of representation
compositionality.

The autoencoding head can be used to decode the entire pyramid from the top-level rep-
resentation to the bottom-level representations. The autoregressive head is used to predict the
neighboring characters, subwords, words, etc., and learn a representation space in which the
relationship between the text representations is semantically/lexically meaningful.

The representation decodability property is facilitated by the autoencoder, as the trained
model possesses the ability to decode each representation down to the lowest level of the pyra-

53

Methodology

mid (tokens). The autoencoding and autoregressive nature of the model make the training pro-
cess self-supervised, eliminating the necessity for labeled data.

4.1.1 Complexity

The computational complexity of the PyRv method can be expressed as the number of node
pairs the neural network embeds into higher nodes. This count equals the number of nodes in a
pyramid, excluding the bottom-level nodes, which represent the input tokens. The total number
of nodes in a pyramid with n+1 input nodes can be calculated as the sum of nodes across each
level, except the bottom one (base level).

To find this sum of nodes, we employ the arithmetic series formula:

Sn =
n(a1 +an)

2
(4.1)

where Sn represents the sum of the series, n is the number of terms, a1 is the first term, and an

denotes the n-th term.

In our context, n corresponds to the number of levels above the pyramid’s base. This value
also equals the number of nodes in the level directly above the base. The first term a1 = 1
represents the apex node of the pyramid, while the n-th term an = n reflects the n nodes in
the level immediately above the base. Substituting these into the arithmetic series formula
simplifies the sum to:

Sn =
n(1+n)

2
=

n(n+1)
2

. (4.2)

This closed-form expression, Sn = n2+n
2 , efficiently calculates the cumulative count of nodes

across all levels above the base.

Considering only the dominant term, the computational complexity of the PyRv method
can be expressed as O(n2) for a single pyramid with n+1 input nodes. However, this analysis
does not account for the specifics of the neural network architecture employed.

By leveraging parallel processing of nodes at the same pyramid level on a graphics pro-
cessing unit (GPU), the computational complexity of the PyRv method can be reduced to O(n),
where n denotes the number of pyramid levels (excluding the bottom one) and the bottom pyra-
mid level contains n+1 nodes.

4.2 Pyramidal Recursive Neural Network Architecture

Following the proposed method, we implement a neural network model, PyRvNN. The model’s
layers are fully connected, but it has two paths of fully connected layers leading from the two
inputs to the one central layer that then branches towards two output layers for each head,
autoregressive and autoencoding, which is four output layers in total. The architecture is shown

54

Methodology

in Figure 4.2.

In the main architecture version, we use fully connected layers with the Leaky ReLU
activation function, defined as:

LeakyReLU(x) =

x if x≥ 0,

αx if x < 0,
(4.3)

where α is a small positive constant (in our case, α = 0.01). For the one-hot output layers, we
employ the softmax activation function, given by:

softmax(zi) =
ezi

∑
K
j=1 ez j

, (4.4)

where zi represents the input to the i-th output neuron and K is the total number of output classes.
Additionally, L2 regularization is applied to each layer, which adds a penalty term proportional
to the squared magnitude of the weights:

Lreg = λ

n

∑
i=1

w2
i , (4.5)

where λ is the regularization strength (in our case, λ = 0.001) and wi are the weights of the
layer.

The same neural network (with same weights and biases) is used recursively on each pyra-
mid level for every pair of nodes.

Figure 4.2: PyRvNN model architecture. The inputs are representations of adjacent nodes (one-hot
or dense embeddings). Boxes connected with an arrow are fully connected layers. Autoregressive and
autoencoding heads are identical, only the output labels they recieve differ.

55

Methodology

4.2.1 Input Representations

At each pyramid level, the input comprises two types of vector pairs: one-hot vectors and dense
vectors. In the initial pyramid level (zeroth), one-hot vector pairs represent adjacent input to-
kens, which are subwords in the current implementation. As we ascend to higher pyramid levels,
these one-hot vectors instead signify the current recursion level (either a subword pyramid or
the phrase pyramid).

At the zeroth pyramid level, the dense vectors are initialized with zeros. In subsequent
pyramid levels, these dense vectors encapsulate representations obtained from activations in the
middle "embedding" layer. These representations encode information about two neighboring
nodes from the pyramid level immediately below.

The autoencoding head’s outputs reconstruct the input vectors, while the autoregressive
head’s outputs predict vectors on both the left and right from the encoded pair of vectors from
the input.

4.2.2 Embedding Dimension

The embedding dimension is a critical hyperparameter in the PyRvNN model. It directly dic-
tates the dimensionality of the main embedding generated by the PyRvNN encoder. This dense
representation is subsequently used by the decoding heads or as input for higher pyramid lev-
els. Furthermore, the sizes of other layers within the PyRvNN model that process dense repre-
sentations, such as those receiving embeddings from child nodes, are also determined by this
embedding dimension. Consequently, the embedding dimension significantly impacts both the
model’s representational capacity and its computational demands. To investigate these effects,
we conducted a series of ablation studies.

In these studies, we varied the embedding dimension, examining values of 1000, 1200,
1400, 1600, 1800, 2000, 2200, and 2400, an increment of 200 for each step. We evaluated the
impact of these changes on decoding accuracy, processing time, and GPU memory consump-
tion.

The effect of embedding dimension on model performance is presented in Figure 4.3. This
figure illustrates the decoding accuracies achieved for different embedding dimensions when
decoding is initiated from various pyramid levels. For this experiment, the PyRvNN model
was trained on a corpus of 200,000 Wikipedia paragraphs for each of the tested embedding
dimensions, with the reported accuracy representing the average performance on the last 200
paragraphs of this dataset. The figure indicates that while larger embedding dimensions gen-
erally correlate with higher decoding accuracy at the word pyramid level, the gains tend to
diminish beyond a certain point. Phrase pyramid levels reach a plateau much earlier, which we
attribute to the limited amount of training data used in this ablation study.

The choice of embedding dimension also has a substantial impact on computational re-

56

Methodology

Figure 4.3: Decoding accuracy versus embedding dimension for different pyramid levels.

sources. Figure 4.4 presents a bar plot visualizing the average time taken for a single pyramid
level to process its input, across different embedding sizes. The data suggests that the time com-
plexity scales approximately linearly with the embedding dimension. This linear trend is further
explored in Figure 4.5, which plots the average processing time per pyramid level against the
input size (i.e., the number of pairs being embedded and processed concurrently) for each tested
embedding dimension. Trend lines, computed using an averaging sliding window of size 50,
confirm the linear relationship with input size. Notably, the figure illustrates that larger em-
bedding dimensions lead to steeper trend lines, indicating a proportionally greater increase in
processing time as more pairs are processed simultaneously.

Figure 4.4: Average processing time per pyramid level versus embedding dimension.

57

Methodology

Figure 4.5: Average processing time per pyramid level versus input size for different embedding dimen-
sions.

58

Methodology

GPU memory consumption is another critical factor influenced by the embedding dimen-
sion. Figure 4.6 shows average GPU memory usage per pyramid level for each embedding
dimension. The figure suggests that GPU memory consumption increases substantially, poten-
tially exponentially, with the embedding dimension. Figure 4.7 details GPU memory usage as
a function of input size across the different embedding dimensions. In contrast to the time mea-
surements where larger dimensions resulted in steeper slopes (Figure 4.5), this plot shows that
lines corresponding to larger embedding dimensions are primarily vertically offset, maintaining
a roughly parallel increase with input size. This implies that while the incremental memory
cost per additional input pair is relatively consistent across dimensions, the baseline memory
footprint is significantly elevated for larger embedding dimensions from the outset.

Figure 4.6: Average GPU memory usage per pyramid level versus embedding dimension.

4.3 Training Procedure

The training procedure is unsupervised, as it does not need labeled data. It is trained to decode
the encoded inputs (with the autoencoding head) and to predict the neighboring nodes (with the
autoregressive head).

The pyramidal recursive nature of PyRv method is visible in the way the model is trained.
The method recursively embeds inputs following the pyramidal hierarchy (as is visualized in
Figure 4.1 in Section 4.1), and on each level of recursion both autoencoding and autoregressive
heads produce outputs.

59

Methodology

Figure 4.7: Average GPU memory usage per pyramid level versus input size for different embedding
dimensions.

60

Methodology

4.3.1 Training Data

We use English Wikipedia articles (text only) from Wikimedia public dump (11. January 2020)
as the main training data. After preprocessing, it contains over 29,000,000 paragraphs (more
statistics about the dataset are shown in Table 4.1 and Figure 4.8 that shows density plot of word
counts per paragraph).

The entire text is lowercased and cleaned. We clean it by:

• removing external, file, and image links,
• replacing HTML special characters with Unicode characters,
• replacing different types of quotation marks and dashes with a singular and consistent

quotation mark and dash,
• adding spaces around words and other elements (in preparation for tokenization by words),
• removing miscellaneous junk,
• removing paragraphs that are short (less than 128 characters) or too long (more than 2000

characters).

Examples of preprocessed texts from Wikipedia:

recursion (adjective : recursive) occurs when a thing is defined

in terms of itself or of its type . recursion is used in a

variety of disciplines ranging from linguistics to logic . the

most common application of recursion is in mathematics and

computer science , where a function being defined is applied

within its own definition . while this apparently defines an

infinite number of instances (function values) , it is often

done in such a way that no infinite loop or infinite chain of

references can occur .

for classification , output will be a vector of class

probabilities (e.g. , (0.1 , 0.7 , 0.2) , and target output

is a specific class , encoded by the one-hot / dummy variable (

e.g. , (0 , 1 , 0)) .

w^l = (w^l_ { jk }) : the weights between layer l - 1 and l ,

where w^l_ { jk } is the weight between the k-th node in layer

l - 1 and the j-th node in layer l

After the texts have been cleaned and spaces have been added between words (and between
other text units), we train a byte pair encoding (BPE) tokenizer. We set its vocabulary size to
500, alphabet limit to 50, and define a list of special tokens:

• <subwordlvl>: used as a flag after the initial recursion, signifying that the current
recursion is computing embeddings on the subword level (nodes below word level - com-
binations of subwords).

• <phraselvl>: used as a flag after the initial recursion, signifying that the current

61

Methodology

Table 4.1: Wikipedia dataset statistics

Statistic Value

Paragraph count 29,402,923

Average words per paragraph 78

Standard deviation of words per paragraph 51

Minimum words in a paragraph 1

25th percentile words per paragraph 41

Median words per paragraph 64

75th percentile words per paragraph 100

Maximum words in a paragraph 653

Total word count 2,295,263,882

Figure 4.8: Density plot of word counts per paragraph.

62

Methodology

recursion is computing embeddings on the word level and above (nodes above word level
- nodes representing words and their combinations).

• <word.beg>: signifies the beginning of a word, and is placed before each word (a
sequence of subwords of that word).

• <word.end>: signifies the ending of a word, and is placed after each word (a sequence
of subwords of that word).

• <->: represents a dash surrounded by other characters (as in "j-th"), which differs from
a dash that is surrounded by spaces (as in "l - 1").

• <unk>: special token reserved for all characters that are not in the tokenizers alphabet
(limited to 50 characters).

The ordering of paragraphs is shuffled and fed into the training method. Each paragraph is
converted into one batch of input and output pairs used for training.

4.3.2 Pyramidal Training

The PyRvNN expects a pair of inputs (a neighboring pair of nodes) and two pairs of outputs (one
for the autoencoding head, and the other for the autoregressive head). The nodes on input are
one-hot representations of subwords when in the initial recursion (the zeroth subwords pyramid
level), and dense embeddings (produced by the middle PyRvNN layer) when on any pyramid
level above the zeroth.

The input and the autoencoder head’s output are identical - a neighboring pair of nodes
from the level below (nodes "A B C D" would form pairs "AB BC CD"). The autoregressive
head’s output pair contains the input node pair’s left and right neighbors (the same nodes would
form pairs "_C AD B_", where "_" symbolizes a null vector).

On each level of recursion, all the inputs and outputs are formed at once (by sliding win-
dows) and fed into the PyRvNN. First, as each word has its own sub-pyramid (containing sub-
word representations), each of those pyramids is processed before continuing with phrases.
Once we reach the top node of every sub-pyramid (representing entire words), the same process
continues for the pyramid above (which contains phrase representations) starting with word
representations. Figure 4.9 shows an example of a phrase being recursively encoded.

Loss, as is computed on individual pyramid levels, is described in the next subsection. The
total loss is the sum of those losses, divided by the number of pyramid levels.

4.3.3 Loss Computation

Loss is computed for each pyramid level as a combination of binary cross-entropy for one-
hot vectors and Huber loss for dense vectors. Pseudo-code for loss calculation is provided in
Algorithm 6 (in Appendix A).

63

Methodology

Figure 4.9: Utilizing the PyRv approach, the phrase "embed this phrase" undergoes recursive embed-
ding. Tokenized words (subwords) are received at the bottom pyramid level, with each node in the
hierarchy representing all the tokens below it, illustrating the recursive embedding process.

The binary cross-entropy loss function used for one-hot vectors is given by:

BCE(y, ŷ) =− 1
N

N

∑
i=1

(yi · log(ŷi)+(1−yi) · log(1− ŷi)) (4.6)

Here, y represents the true binary label, and ŷ denotes the predicted probability that the
sample belongs to a class.

The Huber loss function used for dense vectors is defined as:

HuberLoss(y, ŷ) =

1
2(y− ŷ)2 for |y− ŷ| ≤ δ

δ (|y− ŷ|− 1
2δ) otherwise

(4.7)

In this function, y represents the true value, ŷ denotes the predicted value, and δ serves as
a threshold parameter.

Loss Normalization Based on Previous Level Loss Value. The model’s ability to reconstruct
the input is contingent upon the quality of input representations. If a pyramid level exhibits a
high loss, the representations it generates will be of low quality. Subsequently, since these
representations serve as input for the next pyramid level, that level will incur an even higher
loss, as illustrated in Figure 4.10a.

To address this issue, we employ normalization of the loss on each level, resulting in
stabilized losses, as visualized in Figures 4.10b and 4.10c. The normalization factor (NF) is
inversely proportional to the total loss of levels below the current one (LB):

NF =
1

LBa ·b+1
, (4.8)

where a and b are constants.

64

Methodology

(a) Without normalization. Ex-
ample of loss explosion.

(b) With normalization. An ex-
ample where loss spiked on the
middle level.

(c) With normalization. An
example where loss is stable
across all levels after some
training.

Figure 4.10: Visualization of loss normalization by level.

Figure 4.11 shows loss by pyramid level for the initial untrained model, with and without
normalization. Figure 4.12 shows the same but for the trained model.

Figure 4.11: Loss by pyramid level for the initial untrained model, with and without normalization.

Loss Normalization Based on Representation Magnitude. The magnitude of PyRvNN rep-
resentations varies depending on the pyramid level at which they are computed (illustrated in
Figure 4.13). Since the loss function’s value is influenced by these magnitudes, discrepancies
in magnitude may lead to uneven learning speeds across pyramid levels. To address this, we
normalize the loss function by the average magnitude of all output vectors.

65

Methodology

Figure 4.12: Loss by pyramid level for the trained model, with and without normalization. The loss was
normalized while training the model.

Figure 4.13: Average magnitude of PyRvNN representations across different pyramid levels. The figure
shows Magnitude Enc and Magnitude Reg, corresponding to the autoencoding and autoregressive head
output magnitudes, respectively. Left and right representations are averaged into these two plots due to
their very similar magnitudes.

66

Methodology

Formally, let yenc,left, yenc,right, yreg,left, and yreg,right denote the dense output vectors from
the autoencoding and autoregressive heads for the left and right outputs, respectively. The
magnitude M is computed as:

M =

1, if one-hot
1
4

(
∥yenc,left∥+∥yenc,right∥+∥yreg,left∥+∥yreg,right∥

)
, otherwise.

(4.9)

where ∥ · ∥ represents the ℓ2 norm. The final magnitude M is averaged across all instances in
the batch.

To ensure consistent learning across pyramid levels, the loss function L is normalized as:

L ← L

M
. (4.10)

This approach guarantees that pyramid levels with larger representation magnitudes do not dom-
inate the learning process.

4.3.4 Training Setup

For optimizing the model, we employ the Adam optimizer from the tf.keras.optimizers module
with its parameter configuration: beta_1=0.9, beta_2=0.999, epsilon=1e-08, and amsgrad=False.
Adam (Adaptive Moment Estimation) combines the advantages of both the AdaGrad and RM-
SProp algorithms, making it highly effective for problems with sparse gradients and noisy data.
The parameters beta_1 and beta_2 control the exponential decay rates for the first and second
moment estimates of the gradients, respectively, which helps stabilize the optimization process.
The epsilon term ensures numerical stability during division by very small gradient values,
while the amsgrad parameter, when set to True, improves convergence in certain cases by pre-
venting the moment estimates from growing too large, though we opt to keep it disabled in this
setup.

To control overfitting and enhance generalization, we apply L2 regularization (with lambda
set to 0.001) to the model’s layers. L2 regularization works by adding a penalty proportional
to the square of the magnitude of the weights to the loss function, effectively discouraging
excessively large weight values. This regularization helps prevent the model from becoming
too complex and reduces the risk of overfitting the training data, especially in deep learning
models with many parameters.

The training schedule is designed to progressively expose the model to pyramid levels.
Initially, the model is trained on only subword-level pyramid levels, starting with the 0th level
and incrementally moving up to higher levels (1st, 2nd, and so on). After mastering these
subword levels, the training extends to include phrase-level pyramids, again starting at the 0th
level and progressively adding more phrase levels. Throughout this process, the model is trained

67

Methodology

on a maximum of 10 subword pyramid levels and up to 3 phrase pyramid levels.

To further support effective learning, the learning rate begins at 0.001 and is decreased to
0.0005 as the model encounters more pyramid levels. This progressive decrease allows for more
refined adjustments to the model’s weights as it is exposed to higher pyramid levels, ensuring
better convergence without overshooting or causing instability in the learning process.

In Figures 4.14 and 4.15, we visualize the loss values at the beginning of the training pro-
cess. Figure 4.15 presents the same loss curves as Figure 4.14 but scaled up to highlight smaller
loss variations. The plots display four types of losses: Onehot Enc, Onehot Reg, Dense Enc,
and Dense Reg, corresponding to the one-hot and dense representations in the autoencoding
and autoregressive heads, respectively. The total loss is computed as the mean of these four loss
types.

The effect of the progressive training schedule is evident in the spikes observed across
different loss components. The training schedule follows these stages:

• From iteration 0 to 5000, the model is trained solely on the 0th subword pyramid level.
• From iteration 5000 to 9000, training extends to subword levels 1 through 9, with each

level trained for 500 iterations.
• From iteration 9000 to 15000, the model is trained on all nine subword levels as well as

phrase levels 1 and 2.

Figure 4.14: Loss curves during the initial training phase, showing the impact of the progressive training
schedule across different loss components.

68

Methodology

Figure 4.15: Same loss curves as in Figure 4.14, but scaled up to emphasize smaller loss variations.

4.4 Evaluations

To evaluate PyRvNN, we employ a combination of intrinsic and extrinsic evaluation tasks that
measure different aspects of the model’s performance and the quality of the learned text rep-
resentations. These tasks provide insight into both the model’s internal capability (intrinsic
evaluation), such as decodability and compositionality, and its effectiveness on downstream
tasks (extrinsic evaluation), where text representations are used for more complex NLP tasks.

The first and most direct evaluation of PyRvNN is decodability. Decodability measures
how well PyRvNN can decode a subword, word, or phrase from its internal representation.
PyRvNN recursively embeds subwords pair-wise level-by-level into a word representation and
continues this process to form phrase-level representations. It can then decode these repre-
sentations back into subwords, demonstrating its ability to capture hierarchical structures. We
monitor decodability throughout the training process, as it serves as a core performance indi-
cator. A higher decodability score implies that the model’s internal representations preserve
essential linguistic information during both the encoding and decoding phases.

While decodability is a direct reflection of the model’s performance, additional evaluation
through downstream tasks is crucial to assess the usefulness of PyRvNN’s learned representa-
tions in real-world scenarios.

Downstream tasks evaluate how well the text embeddings produced by PyRvNN perform
on external tasks. These tasks assess whether the learned representations are generalizable and

69

Methodology

useful for various linguistic applications. Downstream evaluations are essential for text embed-
ding models because they reveal how well the internal representations encode information that
is beneficial for other NLP tasks, beyond just the original structure that the model was trained
on.

The downstream tasks used to evaluate PyRvNN are:

• Universal part-of-speech tagging (UPOS) and dependency relation labeling (DE-
PREL). Using these tasks we evaluate the effectiveness of PyRv for embedding com-
position (compositionality property of PyRv) using fastText word embeddings (as input
for PyRvNN). UPOS tagging assigns core grammatical categories (e.g., noun, verb, ad-
jective) to each token in a sentence, while DEPREL labeling identifies syntactic depen-
dencies between words, such as subject-object relationships.

• Memorization. While PyRv is primarily designed to produce structured embeddings by
focusing on properties like compositionality, hierarchy, and decodability, rather than for
direct text generation like Large Language Models (LLMs), we evaluate its embeddings’
utility in a sequential prediction context. Perplexity, a standard metric for generative lan-
guage models, is less suitable for PyRv given that its autoregressive component primarily
serves to enhance embedding quality rather than to enable fluent text generation. Instead,
in this task, we test the model’s ability to memorize a small dataset by training a simple
RNN language model to predict the next token in a sequence, using the embeddings as
input. The RNN model consists of fully connected layers at the input and output and mul-
tiple long short-term memory (LSTM) layers in between. We train the language model on
500 random Wikipedia paragraphs, using token embeddings produced by PyRvNN (and
FastText for comparison). This task measures how well the PyRvNN-generated represen-
tations support next-token prediction when utilized by a downstream sequential model.

• Plagiarism Detection. For evaluating PyRvNN on paraphrased plagiarism detection, we
use a dataset of 200,767 paragraphs from Wikipedia, with 50% of them paraphrased by
the SpinBot API. We evaluate embeddings by training a support vector machine (SVM)
classifier to distinguish between original and paraphrased text. Each paragraph is repre-
sented by averaging the token embeddings (produced by PyRvNN or baseline models like
GloVe, Word2Vec, and FastText).

• Readability Classification. In this task, we assess the model’s ability to classify texts
based on their readability. Using the CLEAR dataset, which categorizes texts by read-
ability level, we train a Naive Bayes classifier on embeddings generated by PyRvNN and
compare them with BERT (base model, uncased), FastText, and Term Frequency-Inverse
Document Frequency (TFIDF) embeddings. This task evaluates how well the embeddings
capture text complexity and readability.

70

Methodology

4.5 Model Limitations and Constraints

While the PyRvNN demonstrates promising capabilities in text representation learning, several
limitations and constraints emerged during its design, training, and evaluation. This section
highlights these challenges and proposes potential avenues for future research and improvement.

Decoding Accuracy and Recursion Depth. As observed in the decodability evaluation (5.1),
the accuracy of decoding representations back into text diminishes at higher pyramid levels, es-
pecially for longer phrases. This indicates that the model’s ability to effectively capture and
preserve information is adversely affected by increasing recursion depth. While increasing
the dimensionality of representations may improve performance at deeper levels, it also sig-
nificantly raises computational complexity and memory requirements. Future research could
explore alternative strategies, such as hierarchical attention or dynamic weighting mechanisms,
to maintain high decoding accuracy without excessive computational overhead.

Memory Constraints and Batch Size. The hierarchical representations in PyRvNN impose
high memory demands, restricting the model to training on batches containing a single para-
graph of text. While this approach manages memory usage, it limits the diversity of training
examples in each batch, potentially affecting learning efficiency and generalization. Techniques
such as gradient checkpointing, which trades off computation for reduced memory usage by se-
lectively storing and recomputing activations, could enable larger batch sizes and improve both
training speed and stability. This approach, commonly used in large language model training,
represents a promising direction for addressing memory constraints in PyRvNN.

Vanishing/Exploding Gradients and Training Instability. The recursive nature of PyRvNN
makes it vulnerable to vanishing and exploding gradient issues, leading to instability during
training. To mitigate this, the training procedure employs multi-level loss aggregation and gra-
dient normalization, where losses are computed and normalized at each pyramid level. This
stabilizes training, as visualized in Figures 4.10, 4.11, and 4.12. However, advanced optimiza-
tion techniques, such as gradient clipping, alternative activation functions, or adaptive learning
rate strategies, warrant further investigation to enhance training stability and convergence.

Computational Cost and Slow Training. The recursive and hierarchical nature of PyRvNN
necessitates the generation of input-output pairs for both the autoencoder and autoregression
heads at each pyramid level. This significantly increases computational cost and slows down
training.

Limitations in Handling Long-Range Dependencies. Although PyRvNN effectively cap-
tures hierarchical relationships within text, it struggles with long-range dependencies, a chal-
lenge common to many recursive models. Relationships between distant words in a sentence,

71

Methodology

which are better modeled by attention mechanisms, remain difficult for PyRvNN. Integrating
attention mechanisms into the PyRvNN architecture could enhance its ability to process longer
sequences and capture more nuanced relationships, addressing this limitation.

72

Chapter 5

Experiments and Results

To assess the effectiveness of the proposed Pyramidal Recursive Neural Network (PyRvNN)
and the quality of its learned text representations, this chapter presents a series of experiments
designed to evaluate both the intrinsic and extrinsic properties of the model. These experiments
provide a comprehensive view of PyRvNN’s capabilities, focusing on its internal mechanisms,
such as representation decodability and compositionality, and its performance on downstream
natural language processing (NLP) tasks. PyRvNN is designed primarily to investigate hierar-
chical and compositional representation learning from subword units in a self-supervised man-
ner, rather than to directly compete with large-scale pretrained contextual embedding models
on all downstream tasks. Some of the results presented in this chapter have been published in
our previous work ([143]).

The chapter begins with an evaluation of the representation decodability property (5.1),
assessing how well PyRvNN can decode subwords, words, and phrases from their internal rep-
resentations. This property serves as a crucial measure of the interpretability and reconstruction
quality of the model’s learned representations.

Next, the chapter explores the representation compositionality property (5.2). This evalua-
tion specifically isolates PyRvNN’s ability to compose multiple pre-existing word embeddings
(fastText embeddings, which are non-contextual) into meaningful representations that effec-
tively capture the structure and semantics of text. This setup allows for a focused assessment of
PyRv’s compositional mechanism itself. The compositionality experiments include tasks such
as universal part-of-speech (UPOS) tagging and Universal dependency relation (DEPREL) la-
beling, highlighting the model’s proficiency in leveraging hierarchical representation learning.

Beyond intrinsic evaluations, the chapter examines the practical utility of PyRvNN’s text
representations through several extrinsic tasks. In these tasks, PyRvNN is used to embed text
into representations that are subsequently fed into simpler models to perform the following:

• Memorization Task (5.3): Representations generated by PyRvNN are used by a sequence
prediction model to memorize a small dataset of Wikipedia paragraphs and predict the

73

Experiments and Results

next token in a sequence. FastText, another subword-based non-contextual embedding
method, serves as a suitable baseline here.

• Plagiarism Task (5.4): Following the methodology of Wahle et al. [144], which uses
averaged single-word embeddings for classification, PyRvNN embeddings (representing
single words composed from subwords) are input to a classification model. This evaluates
PyRvNN’s single-word representation quality in a setting directly comparable to their
word-level baseline evaluations.

• Readability Task (5.5): Representations from PyRvNN are utilized by a classifier to
determine the readability levels of texts in the CLEAR dataset.

5.1 Representation Decodability Property

Representation decodability property simply means that a representation can be decoded back
into the text that it represents. Decodability can serve as a useful metric for evaluating the
quality of text representations and making it easier to understand and interpret what the model
has learned.

The first task we evaluate PyRvNN on is decodability; how well PyRvNN decodes a sub-
word/word/phrase from a single representation. Decoding accuracy was the main measure used
for tuning PyRvNN hyperparameters during its training on the Wikipedia dataset. PyRvNN is
able to recursively embed subwords pair-wise level-by-level into a single word representation,
and then recursively embed word representations pair-wise level-by-level into a single repre-
sentation of a phrase up to three words long. It can then decode that representation down to
subwords again.

In this evaluation, we demonstrate the model’s capacity to decode representations into the
original input text from any level of the generated pyramid.

5.1.1 Results

We measure decoding accuracy by converting representations from various pyramid levels back
to text and comparing it with the original encoded text. Specifically, accuracy is measured as
the percentage of subword tokens that are correctly decoded. This evaluation was performed on
10,000 paragraphs randomly sampled from Wikipedia. Figure 5.1 depicts accuracy for different
word lengths and three phrase pyramid levels, excluding subword levels. Table 5.1 shows the
same.

This evaluation reveals the effective learning of three crucial properties by the model: hier-
archical representation, representation compositionality, and representation decodability. Rep-
resentation decodability is directly evaluated with decoding accuracy. Representation compo-
sitionality is implicitly proven to work because representations are composed together on each

74

Experiments and Results

Table 5.1: Decodability accuracy for each word length (token count) and three phrase pyramid levels,
tested on Wikipedia texts.

3 Tokens 4 Tokens 5 Tokens 6 Tokens 7 Tokens 8 Tokens

Phrase level 1 0.9994 0.9995 0.9992 0.9938 0.6253 0.0326

Phrase level 2 0.9674 0.9870 0.9645 0.5073 0.0192 0.0125

Phrase level 3 0.9479 0.6003 0.0955 0.0144 0.0108 0.0064

level to produce representations for the next level. The representations are composed hierarchi-
cally, so the accuracy of decoded text proves hierarchical representation works well.

Figure 5.1: Decodability accuracy for each word length (token count) and three phrase pyramid levels,
tested on Wikipedia texts.

To assess how decodability performance generalizes to texts different from the training
data (Wikipedia), we also evaluated it on texts from Amazon reviews. Specifically, we used a
random sample of 10,000 reviews from the test set of the dataset by McAuley and Leskovec
[145]. As shown in Table 5.2 and Figure 5.2, the performance is practically identical to that
observed on Wikipedia texts.

We observed in Figures 5.1 and 5.2 that the decodability accuracy experiences a sharp
drop when words are composed of approximately six or seven tokens. We hypothesize that the

75

Experiments and Results

Table 5.2: Decodability accuracy for each word length (token count) and three phrase pyramid levels,
tested on texts from Amazon reviews.

3 Tokens 4 Tokens 5 Tokens 6 Tokens 7 Tokens 8 Tokens

Phrase level 1 0.9991 0.9993 0.9989 0.9929 0.6095 0.0117

Phrase level 2 0.9864 0.9926 0.9580 0.4660 0.0220 0.0065

Phrase level 3 0.9724 0.5219 0.0814 0.0145 0.0102 0.0080

Figure 5.2: Decodability accuracy for each word length (token count) and three phrase pyramid levels,
tested on texts from Amazon reviews.

76

Experiments and Results

primary reason for this phenomenon is the relative scarcity of words with such lengths in the
training corpus. Consequently, the PyRvNN model receives less training exposure specifically
at its higher pyramid levels, as these levels are reached less often since they primarily process
longer words.

To investigate this hypothesis, we analyzed the distribution of word lengths in terms of
token counts. Figure 5.3 displays a histogram illustrating this distribution, calculated from a
sample of 10,000 paragraphs from the Wikipedia dataset. As the figure shows, the frequency of
words decreases as the number of tokens per word increases, lending support to our explanation
for the observed accuracy drop.

Figure 5.3: Histogram illustrating the frequency distribution of the number of tokens per word. Data was
computed using 10,000 paragraphs from the Wikipedia dataset. The histogram is truncated at 8 tokens
per word. The plot shows that longer words (e.g., 6+ tokens) are significantly less frequent, supporting
the hypothesis that reduced training data for these lengths contributes to the accuracy drop seen in Figure
5.1.

5.2 Representation Compositionality Property

One of the primary properties of the PyRv method is representation compositionality, which
enables the composition of multiple embeddings into a coherent, semantically rich representa-
tion. A model with such a property could capture the meaning of a complex text by combining
the meanings of its constituent parts in a structured and semantically meaningful way.

In this section, we explore the composition of word embeddings to create richer, more
meaningful representations of multi-word units. Existing methods, such as averaging word
embeddings, provide simple and efficient approaches. However, they often fail to capture the
complexity of multi-word interactions. To address this, we employ the Pyramidal Recursive
learning (PyRv) method, which recursively combines word embeddings into unified represen-
tations. Originally developed for constructing representations hierarchically from subwords to

77

Experiments and Results

phrases, PyRv is well-suited for progressively merging individual word vectors into phrase vec-
tors. We evaluate the effectiveness of PyRv specifically for its embedding composition mech-
anism using pre-trained fastText embeddings as input. This experimental design allows us to
isolate and assess PyRv’s ability to combine existing non-contextual word embeddings, rather
than comparing its end-to-end sentence representation capabilities against state-of-the-art con-
textual sentence encoders. The focus here is on the compositional transformation PyRv applies.
The evaluation is performed on the UPOS tagging task and DEPREL labeling task.

In many real-world applications understanding text at the word level alone is insufficient.
The need to represent larger linguistic units, such as phrases or sentences, necessitates tech-
niques for combining word embeddings into more complex structures. Word composition,
which involves aggregating individual word embeddings to represent multi-word expressions
or entire sentences, serves this purpose. By integrating information from multiple word vectors,
compositional methods aim to capture both the meanings of individual words and the syntactic
and semantic interactions between them, particularly in morphologically complex languages,
such as Croatian, which was used for evaluation in this section.

There are several established methods for combining word embeddings. Simple tech-
niques include element-wise operations such as addition, averaging, or multiplication, which
produce a composite vector by leveraging individual word vectors (such as [129] and [130]).
These methods, while computationally efficient, may fail to fully capture the complexity of
phrase or sentence meaning. More sophisticated approaches employ weighted combinations,
context-aware methods, or syntactic structures to improve the expressiveness of the resultant
embeddings (such as [25] and [98]).

While transformer-based models, such as BERT [4] and GPT [125], offer robust pre-
trained sentence embeddings by learning deep contextual representations, they are often com-
putationally expensive and may not always align with the specific needs of certain tasks. Word
composition methods provide a more lightweight and flexible alternative, especially in cases
where transparency and control over the aggregation process are crucial. Additionally, word-
level composition techniques can better retain the granularity of individual word meanings,
which is sometimes diluted in sentence-level embeddings produced by transformer models.

Word composition provides a valuable approach for constructing meaningful representa-
tions of multi-word units, balancing computational efficiency and interpretability. These meth-
ods remain relevant, particularly in domains where sentence embedding techniques may ob-
scure important details or where domain-specific customization of embedding composition is
required.

In this work, we leverage the PyRv method to compose multiple word embeddings into
unified representations. PyRv facilitates structured composition through its hierarchical learn-
ing approach, recursively combining representations at each level of abstraction. Initially de-
veloped for constructing representations from tokens (subwords) up to phrases (as illustrated

78

Experiments and Results

in Figure 4.1), PyRv is well-suited for combining word embeddings by progressively merging
individual word vectors into phrase vectors (as is shown in Figure 5.4).

Figure 5.4: A visual representation of pyramidal recursion in the PyRv+FT method. The lowest-level
nodes correspond to fastText-embedded words. As we move upward, the nodes represent combined word
embeddings, capturing phrase-level meanings.

5.2.1 Embedding method

In this subsection, we introduce word embeddings and common composition techniques, fol-
lowed by a detailed explanation of how the PyRv method is applied to compose word embed-
dings.

Word embedding. Word embeddings, such as those produced by fastText [2], are commonly
used to represent individual words. To represent multiple words, basic techniques like averaging
or concatenation can be applied. However, both approaches come with notable limitations.

When averaging embeddings (e.g., taking the mean of multiple word vectors), impor-
tant information, particularly word order, is lost. Concatenation preserves all information but
presents two significant challenges.

First, concatenated embeddings vary in dimensionality depending on the number of words,
which complicates their use as input for models that require a fixed input size. Second, the
dimensionality of concatenated representations can grow excessively large. For instance, a
5-word phrase embedded with 300-dimensional fastText results in a 1500-dimensional vector
(5x300).

79

Experiments and Results

In our evaluation, we use averaging to compose Croatian fastText embeddings [146] to
maintain a consistent dimensionality across all methods, ensuring that the results are compara-
ble.

Composing fastText word embeddings with PyRv. PyRv is a method designed to construct
hierarchical representations of text, moving progressively from low-level units such as charac-
ters or subwords to higher-level representations such as words, phrases, sentences, and even
paragraphs. PyRv combines representations recursively, forming increasingly abstract and se-
mantically rich embeddings at each level of the hierarchy.

To address the limitations of averaging and concatenation, we explore the use of PyRv for
composing multiple word embeddings into a single, unified representation. Unlike our previous
work on PyRv [143], where the recursion starts from subwords or tokens, in this study we begin
with word embeddings produced by fastText. This hybrid approach is referred to as PyRv+FT.

For this experiment, we use pre-trained Croatian fastText word vectors [146] to embed
words, which are then recursively combined into phrase embeddings via the PyRvNN model.
The PyRv+FT embeddings are trained on Croatian Wikipedia texts (Wikimedia public dump,
January 11, 2020) for 10 epochs.

We evaluate PyRv+FT on two downstream tasks, described in detail in the next subsection.
Through this process, we investigate how PyRv improves the compositionality of word embed-
dings while maintaining manageable dimensionality and enhancing representational quality.

5.2.2 Evaluation

In this subsection, we describe the evaluation of fastText and PyRv+FT embeddings on two
NLP tasks: UPOS tagging and DEPREL labeling. UPOS tags represent core grammatical cate-
gories such as nouns, verbs, and adjectives, while DEPREL captures the syntactic relationships
between words in a sentence, indicating dependencies like subjects, objects, and modifiers.

For this evaluation, we use the hr500k 2.0 dataset [147], a Croatian corpus with labeled
data for both UPOS and DEPREL tasks (amongst others). This dataset contains 901 texts,
24,763 sentences, and a total of 499,635 tokens.

Additionally, we perform a qualitative analysis of PyRv+FT embeddings by visualizing
the representation space to gain deeper insights into its structure and characteristics.

Experiment setup. To assess the performance of different embedding methods on the down-
stream tasks of UPOS and DEPREL, we use a multi-layer perceptron (MLP) model with one
hidden layer. The hidden layer consists of 1,000 neurons and uses the ReLU activation function.
The input to the model is a 300-dimensional vector (the size of both fastText and PyRv+FT em-
beddings). The output layer, with softmax activation, adjusts to the number of classes in each
task: 17 classes for UPOS and 37 classes for DEPREL. The MLP is trained on the training set

80

Experiments and Results

of the hr500k dataset and evaluated on its test set. Each evaluation is conducted by training the
MLP for one epoch.

The embedding procedure remains consistent across both UPOS and DEPREL tasks, dif-
fering only in the MLP output labels.

For strategies that incorporate context, a window of N words centered around the target
word is considered. We select N as an odd number to ensure the target word is central. Based
on the nature of the tasks and preliminary observations, N=3 (target word + 1 neighbor on each
side) is used for the UPOS task, as wider contexts tend to degrade performance for this rela-
tively local task. For the more complex DEPREL task, which benefits more from surrounding
syntactic cues, N=5 (target word + 2 neighbors on each side) is employed, as this window size
was found to be beneficial without introducing excessive noise from overly broad contexts.

The method of embedding a word from a sentence depends on the embedding strategy
employed:

• fastText 1 word: Embeds only the target word, ignoring its surrounding context.
• mean fastText N words: Represents the target word by embedding all N words (the target

word and its N-1 neighboring context words) separately and averaging the embeddings to
obtain a final representation.

• weighted average fastText N words: Represents the target word by computing a weighted
average of the embeddings of the N-word window centered around the target. The weights
are derived from a symmetric Gaussian distribution centered at the middle word. The
standard deviation of the Gaussian is defined as σ = N ·λ , where N is the window size
and λ is a tunable hyperparameter, referred to as the Gaussian STD factor. Smaller val-
ues of λ result in the middle word receiving most of the weight, reducing the influence of
surrounding context.

• PyRv+FT N words: Embeds each word using fastText, but instead of averaging the N
embeddings, it recursively combines them using the PyRvNN model to generate a single,
unified embedding.

Quantitative results: UPOS. Part-of-speech tagging is a relatively simple task where the
surrounding word context does not provide significant benefits for classification. We include
UPOS evaluation primarily to demonstrate how averaging fastText word embeddings can de-
grade downstream performance, while combining fastText word embeddings using PyRvNN
preserves much of the embedding quality.

When using fastText to embed a single word without considering its context, we achieve
an accuracy of 95%. However, averaging fastText embeddings over three words leads to a sub-
stantial drop in performance, with accuracy falling to 61%. Weighted averaging of three word
embeddings using a Gaussian kernel achieves the highest accuracy of 95% when the Gaussian
STD factor is set to 0.15. In this configuration, the middle word dominates the representation,

81

Experiments and Results

receiving approximately 86% of the total weight. This setting results in performance equiva-
lent to embedding the target word alone. As shown in Figure 5.5, increasing the STD factor
distributes the weights more evenly across the context window, degrading performance toward
the level of simple mean averaging (61% accuracy). In contrast, when combining fastText em-
beddings for three words using PyRvNN, the performance degradation is minimized, yielding
an accuracy of 93%. These results highlight how PyRvNN can effectively mitigate the loss of
information that occurs when averaging word embeddings. Detailed results are shown in Table
5.3.

Table 5.3: UPOS results, Macro and Weighted averages.

Accuracy Precision Recall F1 score

M. avg W. avg M. avg W. avg M. avg W. avg

fastText 1 word 0.95 0.91 0.95 0.89 0.95 0.89 0.95

mean fastText 3 words 0.61 0.57 0.61 0.59 0.61 0.57 0.61

w. avg. fastText 3 words 0.95 0.93 0.95 0.89 0.95 0.91 0.95

PyRv+FT 3 words 0.93 0.9 0.93 0.89 0.93 0.9 0.93

Quantitative results: DEPREL. The dependency relation task is more complex than UPOS,
as it requires understanding the syntactic relationships between words. In this case, enrich-
ing word embeddings with surrounding context can significantly improve classification per-
formance. Our primary objective here is to assess PyRvNN’s effectiveness as a method for
composing pre-existing word embeddings (fastText) for this context-sensitive task, rather than
to build a state-of-the-art dependency labeler.

When embedding a single word using fastText (without its context), the model achieves
an accuracy of 71%. However, averaging five fastText word embeddings, including the target
word and its four neighbors, results in a sharp decline in performance, with accuracy dropping
to 34%. This reduction in accuracy reflects how averaging word embeddings leads to the loss of
important information, including word order and syntactic structure. Weighted averaging of five
fastText word embeddings using a Gaussian kernel achieves a maximum accuracy of 74% when
the STD factor is 0.1, corresponding to a central weight of 79%. This surpasses the performance
of using only the target word embedding (71%) and demonstrates that, for DEPREL, limited
context improves classification. However, performance declines as the STD factor increases
and the weights become more uniform, reflecting the same degradation trend observed with
mean averaging (34%). These results are visualized in Figure 5.6. By contrast, composing five
fastText word embeddings using PyRvNN boosts accuracy to 77%, demonstrating the method’s
ability to capture more nuanced relationships between words.

82

Experiments and Results

Figure 5.5: UPOS task, weighted average: accuracy as a function of the Gaussian STD factor. As the
STD factor increases, the weights assigned to context words become more uniform, degrading perfor-
mance. The best result (95%) is obtained with STD factor 0.15, where the middle word dominates the
representation (86% of total weight). Plots for F1 score are shown in Appendix B: Figures B.1 and B.2.

83

Experiments and Results

Evaluation results are presented in Table 5.4 with more detailed results (by class) available
in Appendix B: Tables B.1, B.2, and B.3.

Table 5.4: DEPREL results, Macro and Weighted averages.

Accuracy Precision Recall F1 score

M. avg W. avg M. avg W. avg M. avg W. avg

fastText 1 word 0.71 0.52 0.68 0.48 0.71 0.47 0.68

mean fastText 5 words 0.34 0.25 0.34 0.19 0.34 0.19 0.31

w. avg. fastText 5 words 0.74 0.49 0.73 0.46 0.74 0.46 0.72

PyRv+FT 5 words 0.77 0.58 0.77 0.55 0.77 0.56 0.76

Figure 5.7 presents bar plots comparing F1 scores between two composition methods,
mean averaging and PyRv, relative to single word fastText embeddings’ performance. The left
plot 5.7a illustrates the F1 score ratio between "mean fastText 5 words" and "fastText 1 word",
while the right plot 5.7b contrasts "PyRv+FT 5 words" with "fastText 1 word".

In the following analysis, we focus on three notable classes: punctuation, conjuncts, and
adnominal clauses. These were selected because punctuation classification does not rely on
context (isolated punctuation tokens in this dataset are generally unambiguous), classifying
conjuncts without context is nearly impossible, and for adnominal clauses, context is helpful
but averaging tends to degrade performance.

Punctuation (punct) refers to punctuation marks such as ".", "?", "!", and ",". Since punc-
tuation is straightforward to classify without context (within the hr500k dataset), a single fast-
Text embedding for the target word alone achieves a perfect F1 score of 1. Averaging five
fastText embeddings (the target word and its four neighboring words) significantly degrades
performance, reducing the F1 score to 0.61. However, using PyRv to compose these embed-
dings preserves the high performance, maintaining an F1 score of 1. Weighted averaging with
Gaussian weighting also preserves high performance for the punctuation class, achieving an F1
score of 1 when the context is strongly downweighted.

Conjunct (conj) denotes a relation between elements connected by coordinating conjunc-
tions like "and," "or," or ",". In coordinate structures, the first element is conventionally treated
as the head, with subsequent elements connected through the conj relation. For example, in
the sentence "Bill is big and honest," the word "honest" is labeled as conj (connected to "big").
Similarly, in "He came home, took a shower and immediately went to bed," the words "took"
and "went" are both labeled as conj (connected to "came"). Classifying conjuncts accurately re-
quires contextual information. A single fastText word embedding, without any context, yields
a poor F1 score of 0.03. Averaging the embeddings of the target word and its four neighbors
improves performance significantly, achieving an F1 score of 0.32 (a 10.8x improvement over

84

Experiments and Results

Figure 5.6: DEPREL task, weighted average: accuracy as a function of the Gaussian STD factor. Maxi-
mum performance (74%) is reached at STD factor 0.1, where the middle word receives 79% of the total
weight. As the STD factor increases, the performance degrades toward the baseline of uniform averaging
(34%). Plots for F1 score are shown in Appendix B: Figures B.3 and B.4.

85

Experiments and Results

(a) "mean fastText 5 words" F1 scores divided by
"fastText 1 word" F1 scores.

(b) "PyRv+FT 5 words" F1 scores divided by
"fastText 1 word" F1 scores.

Figure 5.7: DEPREL relative F1 score ratios (by class) comparing different composition methods. The
left plot (a) shows the ratio of F1 scores for "mean fastText 5 words" versus "fastText 1 word", while
the right plot (b) compares "PyRv+FT 5 words" versus "fastText 1 word". Each bar represents a class,
and the length of the bar indicates the relative performance of the model. Classes are ordered by support
value in the test set (larger on the top).

single word fastText embedding). Weighted averaging yields an F1 score of 0.28, a significant
improvement over using the target word alone (0.03), though slightly below the performance of
uniform averaging (0.32). This suggests that while Gaussian weighting helps integrate context,
too narrow a focus may exclude useful syntactic signals necessary for accurate conj classifi-
cation. Composing these embeddings using PyRv further boosts performance, reaching an F1
score of 0.64 (a 21.85x improvement over the single word embedding).

Adnominal clause (acl) refers to finite or non-finite clauses that modify a nominal. For in-
stance, in "the issues as he sees them," the word "sees" is labeled as acl (connected to "issues").
In "There are many online sites offering booking facilities," the word "offering" is labeled as acl
(connected to "sites"). Using a single fastText word embedding results in an F1 score of 0.14.
Averaging the target word’s embedding with its four neighbors actually degrades performance
slightly, reducing the F1 score to 0.11. Weighted averaging yields an F1 score of 0.16, out-
performing both single word embeddings (0.14) and uniform averaging (0.11). This indicates
that Gaussian-weighted context can capture some of the syntactic dependencies without over-
whelming the representation with irrelevant context. Composing these word embeddings with
PyRv substantially improves performance, raising the F1 score to 0.53 (a 3.84x improvement
over the single word embedding).

86

Experiments and Results

Qualitative analysis. To gain qualitative insights into the structure of PyRv+FT embeddings,
we visualize the representation space. A portion of this space is shown in Figures 5.8 and 5.9.
This qualitative exploration aims to complement the quantitative results by offering an intuitive
understanding of whether PyRv+FT learns to group semantically or structurally similar phrases.
In these visualizations, each node represents a phrase consisting of two or three words. To
illustrate the hierarchical relationship captured by PyRv’s composition, a two-word phrase is
connected to a three-word phrase if the shorter phrase is part of the longer one.

Tables 5.5 and 5.6 (with original Croatian phrases in Tables 5.7 and 5.8) provide concrete
examples of phrases found within specific highlighted clusters (Areas A, B, C, D) from the
visualizations. While the figures offer a global view of the embedding space structure, these
tables allow for a detailed examination of the phrases that cluster together.

The areas circled in the figures contain phrases built around the prepositions "u" (Croatian
for "in") and "na" (Croatian for "on"). For example, Area C contains two-word phrases like
"primjena na" (eng. "application on"), while Area A includes phrases such as "na svijet" (eng.
"on the world"). Similarly, Area B features three-word phrases like "primjena na svijet" (eng.
"application on the world"), and Area D includes phrases like "na svijet oko" (eng. "on the
world around"). Same holds for the preposition "u".

The organization of phrases in the representation space is not random: phrases with similar
syntactic structures (e.g., where the preposition appears at the beginning, middle, or end of the
phrase) tend to cluster together. Furthermore, within these broader areas, smaller sub-clusters
form based on the specific preposition ("u" or "na") present in the phrase. This suggests that
the PyRv+FT composition method captures and reflects both structural and lexical similarities
in the resulting phrase embeddings.

5.2.3 Summary and Conclusions

In this section, we explored the use of PyRv for the composition of word embeddings and
evaluated its ability to generate meaningful representations of multi-word units. Our findings
show that PyRv outperforms simple averaging methods in embedding composition.

In the part-of-speech tagging task, where word context is less crucial, single word em-
beddings achieve an accuracy of 95%. Averaging 3-word context embeddings reduces this to
61% due to the loss of word order information, while PyRv retains a high accuracy of 93% by
effectively preserving word order.

In the more complex task of dependency relation labeling, where single word embeddings
reach 71% accuracy, averaging embeddings for 5-word contexts results in a sharp decline to
34%. In contrast, composing context words with PyRv attains a significantly higher accuracy
of 77%, demonstrating its superior capability in integrating multiple word embeddings into
cohesive and expressive representations. This validates the effectiveness of the compositionality

87

Experiments and Results

Table 5.5: Phrases by areas (A, B, and C) in the PyRv+FT representation space, translated to English
(some phrases are longer when translated).

Preposition "on" (cro. "na")
Area C Area B Area A

application on application on the world on the world
are on are on local on local
assistant on assistant on the subject on the subject
media on media on protest on the protest
vat on vat on tickets on tickets
based on based on data on data
finance on finance on revenues on revenues
os on os on which on which
dollars on dollars on google on google
found on found on the third on the third
relation on relation on the past on the past

Preposition "in" (cro. "u")
Area C Area B Area A

enthusiast in enthusiast in the river in the river
currently in currently in testing in testing
released in released in circulation in circulation
circulation in circulation in June in June
by activity in by activity in teaching in teaching
work in work in the wood in the wood
tickets in tickets in europe in europe
musician in musician in croatia in croatia
only in only in the past in the past
drop in drop in the sea in the sea
is in is in the past in the past
year in year in croatia in croatia
percent in percent in relation in relation
and in and in the average in the average
. in . in this in this

88

Experiments and Results

Figure 5.8: Visualization of the PyRv+FT representation space (reduced from 300 dimensions using
t-SNE). Highlighted areas A, B, and C contain phrases with the prepositions ’na’ (eng. ’on’) and ’u’
(eng. ’in’). Tables 5.7 and 5.8 (translated: 5.5 and 5.6) provide detailed examples of these phrases and
their connections within the space.

89

Experiments and Results

Figure 5.9: Visualization of the PyRv+FT representation space (reduced from 300 dimensions using
t-SNE). Highlighted areas A and D contain phrases structured around the prepositions ’na’ (eng. ’on’)
and ’u’ (eng. ’in’). Tables 5.7 and 5.8 (translated: 5.5 and 5.6) present examples of these phrases and
their relationships in the embedding space.

90

Experiments and Results

Table 5.6: Phrases in area D in the PyRv+FT representation space, translated to English (some phrases
are longer when translated).

Area D
Preposition "on" (cro. "na") Preposition "in" (cro. "u")

on the world around in the river which
on local elections in testing and
on the subject of organization in circulation in
on the protest of musicians in june 2009
on tickets for in teaching 1982
on the data collected in the wood industry
on budget revenues in europe .
on which this in croatia only
on google play in the past two
on the third position in the sea of state
on the past year in the past year

in croatia is not
in relation to
in the average spends
in this praise

property of PyRv in real-world tasks.

91

Experiments and Results

Table 5.7: Phrases by areas (A, B, and C) in the PyRv+FT representation space (original Croatian
phrases).

Preposition "na" (eng. "on")
Area C Area B Area A

primjena na primjena na svijet na svijet
su na su na lokalnim na lokalnim
asistentent na asistentent na predmetu na predmetu
medije na medije na prosvjed na prosvjed
pdv-a na pdv-a na ulaznice na ulaznice
baziranim na baziranim na podacima na podacima
financija na financija na prihodima na prihodima
os na os na koji na koji
dolara na dolara na google na google
nalazi na nalazi na trećoj na trećoj
odnosu na odnosu na prošlu na prošlu

Preposition "u" (eng. "in")
Area C Area B Area A

entuzijasta u entuzijasta u rijeci u rijeci
trenutno u trenutno u testiranju u testiranju
puštena u puštena u opticaj u opticaj
opticaj u opticaj u lipnju u lipnju
aktivnošću u aktivnošću u nastavi u nastavi
rada u rada u drvnoj u drvnoj
ulaznice u ulaznice u europi u europi
glazbenika u glazbenika u hrvatskoj u hrvatskoj
samo u samo u protekle u protekle
kap u kap u moru u moru
se u se u protekloj u protekloj
godini u godini u hrvatskoj u hrvatskoj
posto u posto u odnosu u odnosu
i u i u prosjeku u prosjeku
. u . u ovoj u ovoj

92

Experiments and Results

Table 5.8: Phrases in area D in the PyRv+FT representation space (original Croatian phrases).

Area D
Preposition "na" (eng. "on") Preposition "u" (eng. "in")

na svijet oko u rijeci koji
na lokalnim izborima u testiranju i
na predmetu organizacije u opticaj u
na prosvjed glazbanika u lipnju 2009.
na ulaznice u u nastavi 1982.
na podacima prikupljenim u drvnoj industriji
na prihodima proračuna u europi .
na koji ova u hrvatskoj samo
na google play u protekle dvije
na trećoj poziciji u moru državnog
na prošlu godinu u protekloj godini

u hrvatskoj nije
u odnosu na
u prosjeku troši
u ovoj hvale

5.3 Memorization Task

In the memorization experiment, we train a simple language model that memorizes a small
dataset. We use a recurrent neural network with fully connected layers as the first and the last
layers, and four long short-term memory (LSTM) layers in between. The first fully connected
layer has 2000 units, the four LSTM layers subsequently have 2000, 1000, 500, 500, 1000,
and 2000 units respectively, and the final fully connected layer has 2000 units. This simple
language model is trained on 500 random Wikipedia paragraphs to predict the next token and
effectively memorize the entire dataset. The tokens are embedded using PyRvNN, and for
comparison, fastText is chosen as a baseline. This comparison is intended to evaluate PyRvNN’s
quality as a method for generating non-contextual, single-word (or subword-unit) embeddings, a
domain where fastText is a well-established and relevant benchmark. The goal is not to compare
PyRvNN as a generative language model against state-of-the-art Large Language Models, but
rather to assess the utility of its word representations in a sequential task.

5.3.1 Results

The original fastText [2] embeddings with 300 dimensions performed very poorly. The lan-
guage model trained with fastText embeddings could barely memorize two paragraphs. To have
a leveled ground we trained fastText with 2000 dimensional vectors (same as PyRvNN) on the
same dataset and the same number of epochs as PyRvNN was trained on, and will refer to it as
"FastText2k".

Tables 5.9 and 5.10 show the results of that experiment after 260 epochs and 400 epochs

93

Experiments and Results

of LSTM language model training. Each language model generated the first 100 paragraphs
(from 500 memorized in total). The generated paragraphs are generated token by token with
all the previous tokens from the original paragraph as input. The two measures used are: the
percentage of words in the generated paragraph that are identical as in the original paragraph
and the average Levenshtein distance between the generated words and the original words. The
first 100 paragraphs have 7693 words and 34253 characters in total.

Table 5.9: Memorization results, 260 epochs.

Embedding model % of identical words Avg Levenshtein

PyRvNN 71.94 1.35

FastText2k 59.05 3.12

Table 5.10: Memorization results, 400 epochs.

Embedding model % of identical words Avg Levenshtein

PyRvNN 95.09 0.45

FastText2k 74.34 1.71

5.4 Plagiarism Task

Another task that can be used for the evaluation of PyRvNN representations is machine-paraphrased
plagiarism classification. Wahle et al. [144] constructed a dataset for such a task with 200,767
paragraphs (50% of which are paraphrased using the SpinBot API) extracted from Wikipedia
(English) articles. We trained our models on the training set defined by Wahle et al. and eval-
uated them on their corresponding test set. They evaluate some embedding models (GloVe,
Word2Vec, Doc2Vec, and FastText) on that task by training classical machine learning algo-
rithms (Naive Bayes, Logistic Regression, and Support Vector Machine). Crucially, for word
embedding models like GloVe and FastText, each paragraph in their study is represented as
an average of its constituent word embeddings. To ensure a fair and direct comparison within
this specific evaluation paradigm, we adopt the same approach for PyRvNN: PyRvNN is used
here to generate embeddings for individual words (composed from subwords), which are then
averaged to form paragraph representations. While Wahle et al. also report results for models
that embed entire texts contextually (e.g., Doc2Vec, and potentially BERT in broader contexts),
our comparison focuses on the word-level embedding averaging setup they established for mod-
els like GloVe and FastText, against which PyRvNN’s single-word representations are bench-
marked. The best-performing machine learning algorithm for every embedding model in their

94

Experiments and Results

work is support vector machine (SVM), so we use SVM for comparisons. Specifically, we used
an SVM with a linear kernel, a regularization parameter C set to 100, and all other parameters
set to their scikit-learn defaults (e.g., degree=3, gamma=’scale’).

5.4.1 Results

Wahle’s et al. evaluations on the machine-paraphrased plagiarism classification task with SVM
are as follows (F1 score): GloVe 89.55, Word2Vec 87.27, Doc2Vec 83.04, FastText-rw (without
subwords) 86.15, FastText-sw (with subwords) 82.57. PyRvNN is evaluated with F1 of 89,
which is better than all evaluated embeddings but one (GloVe) and is better than the only other
evaluated subword embedding model (FastText-sw). All the results are in the Table 5.11.

Table 5.11: Machine-paraphrased plagiarism classification results.

Embedding model F1 score

GloVe 89.55

Word2Vec 87.27

Doc2Vec 83.04

FastText-rw (without subword) 86.15

FastText-sw (with subwords) 82.57

PyRvNN 89

It is worth mentioning that embedding models evaluated by Wahle et al. were trained on
much bigger datasets than PyRvNN. The PyRvNN model evaluated here was trained on only
∼300,000 paragraphs from Wikipedia (one epoch).

PyRvNN embeddings, with a dimensionality of 2000 compared to ∼300 in other embed-
dings, prompted an investigation into dimensionality significance. To level the ground, we
compare FastText2k embeddings and PyRvNN embeddings by training an SVM on 10% of the
plagiarism dataset (due to the extended SVM training time with FastText2k embeddings). SVM
with FastText2k resulted in an F1 score of 79. In contrast, the SVM with PyRvNN embeddings
achieved a higher F1 score of 87. This suggests that, in this case, dimensionality may not be
decisive, leaving the role of dimensionality in this context as an open research question.

5.5 Readability Task

In our readability experiment, we assess text embeddings for readability classification using the
CommonLit Ease of Readability (CLEAR) dataset [148]. It contains approximately 5000 texts,
each accompanied by readability scores derived from teachers’ evaluations of text complexity

95

Experiments and Results

for student readers. We normalize readability scores from the CLEAR dataset to the values
between 0 and 1. Texts with scores below 0.45 are labeled as less readable (1812 texts) and
texts with scores above 0.55 as more readable (2030 texts). Texts with scores between 0.45
and 0.55 were excluded to create a clearer distinction between the two classes for this binary
classification task. Figure 5.10 shows the density plot of scores before this exclusion.

We employ PyRvNN, BERT (base model, uncased), fastText, and Term Frequency-Inverse
Document Frequency (TFIDF) embeddings. To evaluate the inherent separability of these em-
bedding spaces with respect to readability, we train a Gaussian Naive Bayes classifier. Gaussian
Naive Bayes is chosen for its simplicity and efficiency, providing a baseline indication of how
well the different embedding methods create feature spaces where the two readability classes
can be distinguished by a relatively straightforward probabilistic model. The model was trained
on 3000 texts and tested on a separate set of 800 texts from the binarized dataset.

Figure 5.10: Density plot of scores.

5.5.1 Results

To assess the separability of the PyRvNN representation space for the task of readability clas-
sification, we employ Gaussian Naive Bayes to classify embedded texts as either less or more
readable. Additionally, we train and evaluate the same model using BERT, FastText, and TFIDF
embeddings for comparison. Table 5.12 presents the accuracies achieved on both the training
and test sets using the embeddings mentioned.

The results in Table 5.12 indicate that BERT embeddings provide the most separable space

96

Experiments and Results

Table 5.12: Readability classification results.

Embedding model Train Acc Test Acc

BERT 0.85 0.84

PyRvNN 0.74 0.73

FastText 0.72 0.73

TFIDF 1.00 0.70

for this Gaussian Naive Bayes classifier, achieving the highest test accuracy of 0.84. This
suggests its contextual representations effectively capture features related to text readability.
PyRvNN and FastText embeddings yield comparable test accuracies (0.73), performing notice-
ably better than TFIDF (0.70) on the test set, despite TFIDF achieving perfect accuracy on the
training set. The perfect training accuracy for TFIDF, coupled with its lower test accuracy,
suggests overfitting, which is a common characteristic when using high-dimensional sparse
features like TFIDF with simpler classifiers [149, Chapter 3]. PyRvNN’s performance, on par
with FastText and substantially better than TFIDF on unseen data, demonstrates that its learned
representations capture meaningful signals related to text readability.

97

Chapter 6

Discussion

This chapter discusses the thesis’s main findings. It first highlights the work’s main scientific
contributions and novel aspects in comparison to existing research. The discussion then pro-
ceeds to an evaluation of the hypotheses, detailing how they were tested and validated through
extensive experimentation and analysis.

While Large Language Models (LLMs) show significant capabilities, this thesis investi-
gates an alternative approach through dedicated text embedding models. The PyRv method,
developed in this work, aims to combine several key characteristics: (1) meaningful compo-
sitionality from sub-components; (2) hierarchical encoding across different granularities; (3)
decodability of representations to their original text for better understanding; and (4) self-
supervised learning using unlabeled data, without needing external tools like parsers. To our
knowledge, achieving all these features together in one model is not common. For example,
obtaining robust compositionality with an explicit, multi-level decodable hierarchy via purely
self-supervised methods is an ongoing research challenge, which motivated the development
presented in this thesis.

6.1 Contributions

This section highlights the main scientific contributions of this thesis, which focus on the devel-
opment and evaluation of a method for learning structured text representations. The work intro-
duces a novel method for learning text representations, evaluates its performance, and demon-
strates its applicability to morphologically rich languages. These contributions are detailed as
follows.

Contribution 1: A novel method for learning text representations with pyramid-structured
recursive neural networks. This thesis introduces Pyramidal Recursive learning (PyRv), a
method for learning text representations using recursive neural networks. PyRv addresses cer-
tain limitations of existing techniques by effectively capturing the hierarchical and composi-

98

Discussion

tional nature of language in a decodable and unsupervised manner. Unlike traditional mod-
els such as one-hot vectors, bag-of-words, TF-IDF, and even word embedding techniques like
Word2Vec [1], FastText [2], and GloVe [3], PyRv explicitly models hierarchical relations.
Transformer-based models like BERT [4] and GPT [5] (and subsequent LLMs) provide dy-
namic representations but lack both decodability and hierarchical compositionality. In contrast,
PyRv utilizes a pyramidal recursive architecture to construct hierarchical representations from
subwords to sentences, ensuring a structured composition of learned features. Moreover, its
representations are inherently decodable in a self-supervised manner, enhancing both inter-
pretability and utility.

PyRv’s methodology diverges from many recursive models in its construction of an ex-
plicit, multi-level decodable hierarchy without reliance on linguistic parse trees. Traditional
recursive networks like MV-RNN [77] and RNTN [25], as well as more recent approaches such
as Transformer Grammars [86] and the model by Simoulin and Crabbé [85], typically require
or operate over predefined syntactic structures. While other self-supervised recursive models
including DIORA [83], CRvNN [84], Fast-R2D2 [87], and ReCAT [88] can induce latent tree
structures, PyRv instead forms its hierarchy through a deterministic, pyramidal pairwise merg-
ing process. This fixed structure, combined with its autoencoding objective at each level, facil-
itates direct multi-level decodability. Furthermore, unlike supervised non-parsing hierarchical
models like AdaSent [79], PyRv is entirely self-supervised.

Contribution 2: Extensive evaluation of the proposed method in terms of training stability,
quality of learned embeddings, and predictive performance on downstream tasks. The
thesis provides an extensive evaluation of PyRv’s ability to learn hierarchical, compositional,
and decodable representations without relying on labeled data or predefined parsing trees.

The evaluation covers intrinsic tasks, such as representation decodability and composition-
ality, and extrinsic NLP tasks, including memorization, plagiarism detection, and readability as-
sessment. These experiments validate the proposed mechanisms and demonstrate its real-world
applicability, highlighting its effectiveness in capturing linguistic properties. The detailed re-
sults and analysis of these evaluations are further discussed in the context of the hypotheses
presented in the next section.

PyRv improves upon simple embedding composition techniques, such as averaging (as
used by Joulin et al. [129] and Arora et al. [130]), which fail to capture word order and syntac-
tic structures. Instead, PyRv recursively combines lower-level representations into meaningful
higher-level ones, ensuring both structural and semantic integrity. Unlike some other recur-
sive autoencoders (e.g., RAE [76] and DIORA [83]), PyRv incorporates both autoencoding and
autoregressive objectives without relying on parsing trees, ensuring that the learned represen-
tations retain both decodability and contextual coherence without propagating possible parsing
tree errors and biases.

99

Discussion

Contribution 3: Improved pre-trained representations for morphologically rich languages
(e.g. Croatian) in terms of less training material when adapting to new domains. The re-
search demonstrates PyRv’s ability to enhance pre-trained representations for morphologically
rich languages, such as Croatian, where linguistic complexity poses challenges for traditional
models. Many NLP models are primarily optimized for English and struggle to generalize
effectively to languages with complex morphology.

PyRv’s approach supports effective application to new tasks using composed word em-
beddings. This is demonstrated in the Representation Compositionality experiments (5.2). In
these experiments, PyRvNN was trained on a general Croatian Wikipedia corpus, using Croa-
tian fastText word embeddings as input (this combination is termed PyRv+FT). This training
allowed PyRvNN to learn how to compose these fastText embeddings into multi-word repre-
sentations. Subsequently, these PyRv+FT composed embeddings were used to train a simple
MLP model for Croatian UPOS tagging and DEPREL labeling, where they demonstrated su-
perior performance. This indicates that PyRvNN, after learning a general composition function
from a corpus like Wikipedia, can effectively create multi-word representations from standard
word embeddings for downstream tasks, without needing task-specific retraining of the core
PyRvNN model itself.

6.2 Hypotheses

The research presented in this thesis was guided by the following hypotheses, which were eval-
uated through experiments and analyses.

H1: The training of pyramidal recursive networks for text representation can be stable
and efficient. The training procedure, outlined in Section 4.3, demonstrated stable conver-
gence across various pyramid levels due to the application of loss normalization. As detailed
in Subsection 4.3.3, loss normalization was designed to address the cascading effect of errors
between pyramid levels. Specifically, the normalization factor (NF) was made inversely propor-
tional to the total loss of all lower pyramid levels (LB). By stabilizing the losses across levels,
this approach ensured that low-quality representations generated at one level did not dispropor-
tionately degrade the performance of subsequent levels. The effectiveness of this stable learning
process is directly evidenced by the model’s performance in the Decoding Accuracy experiment
(Section 5.1). PyRvNN achieved high accuracy in decoding representations from various pyra-
mid levels back into their original textual components (achieving over 99% decoding accuracy
for words up to 6 tokens). This strong decoding performance indicates that the model success-
fully learned to form reconstructible representations at each stage of its recursive, hierarchical
encoding process. Such consistent decodability across levels serves as a direct measure of both
training stability and the model’s ability to learn effectively. The results presented in Chapter
5 support the claim that PyRvNN’s training procedure achieves both stability and efficiency in

100

Discussion

learning these structured representations.

H2: Pyramidal recursive training can simultaneously generate text representations for
different levels of linguistic units. The results of the Decoding Accuracy experiments in
Section 5.1 strongly support this hypothesis as well. PyRvNN successfully generated represen-
tations for subwords, words, and phrases. While accuracy declined for longer sequences, the
model effectively captured hierarchical linguistic structures for shorter sequences.

Further validation came from the Representation Compositionality experiments in Section
5.2. In these experiments, PyRvNN demonstrated its ability to generate representations at dif-
ferent levels of linguistic hierarchy by composing varying numbers of word embeddings. For
instance, in the UPOS tagging task, PyRvNN composed three fastText word embeddings to
create a phrase-level representation, maintaining 93% accuracy, compared to 61% for simple
averaging of the same context embeddings. For the more complex DEPREL task, PyRvNN
composed five fastText word embeddings, forming an even higher-level phrase representation,
and achieved 77% accuracy, again outperforming the averaging approach’s 34%. This process
of combining different numbers of word embeddings (e.g., three or five) corresponds to gener-
ating representations at different nodes or levels within the PyRvNN pyramidal structure. The
qualitative analysis of PyRv+FT embeddings further illustrated this by showing how distinct
representations for two-word phrases and three-word phrases were formed and how these rep-
resentations clustered based on syntactic similarities, effectively demonstrating the generation
of text representations for different levels of linguistic units (phrases of varying lengths).

H3: The proposed method has better performance compared to other competing methods
on selected tasks and domains. This hypothesis was supported by multiple extrinsic evalua-
tions presented in Chapter 5. In the Plagiarism Detection Task (Section 5.4), PyRvNN achieved
an F1 score of 89, surpassing Word2Vec (87.27), Doc2Vec (83.04), and FastText (86.15), though
slightly underperforming compared to GloVe (89.55). In the Readability Classification Task
(Section 5.5), PyRvNN demonstrated competitive performance with a test accuracy of 73%,
matching fastText and outperforming TFIDF (70%), though falling short of BERT’s 84%. The
Memorization Task (Section 5.3) further highlighted the model’s robustness, with PyRvNN
achieving 95.09% identical words, significantly outperforming fastText2k (74.34%). The Rep-
resentation Compositionality experiments further supported this hypothesis, with PyRvNN out-
performing FastText in DEPREL and maintaining high performance for UPOS tagging when
compared to context-averaging techniques. These results collectively demonstrate PyRvNN’s
strengths across diverse tasks, despite being trained on significantly smaller datasets in com-
parison to some competing methods, indicating strong potential for further improvements with
larger-scale training.

101

Chapter 7

Conclusion

This doctoral thesis has explored the intersection of natural language processing (NLP), text
representation learning, and recursive neural networks (RvNNs), culminating in the develop-
ment of a novel method called Pyramidal Recursive learning (PyRv). The research addresses
core challenges in representation learning by introducing a self-supervised approach that effec-
tively captures the hierarchical and compositional nature of language. In a landscape where
large language models (LLMs) have demonstrated significant capabilities, this work focuses on
an alternative paradigm emphasizing structured, hierarchical representations through recursive
mechanisms.

The core component of this research is the Pyramidal Recursive Neural Network (PyRvNN),
an architecture trained using the Pyramidal Recursive learning (PyRv) method. PyRvNN is
designed to learn multilevel text representations for subwords, words, and phrases within a
pyramidal structure. Unlike traditional RvNNs, which rely on explicit parse trees, PyRvNN
leverages a pyramidal approach to enable hierarchical representation learning without requiring
labeled data or explicit parsing. By combining recursive autoencoding and autoregressive ob-
jectives, the model ensures that the learned representations are both decodable and capable of
capturing sequential dependencies.

This thesis has demonstrated PyRvNN’s strengths across several dimensions:

• Decodability and Compositionality: PyRvNN achieves high decoding accuracy, recon-
structing text from its learned representations at various levels. It also exhibits effective
compositionality, combining lower-level embeddings (e.g., word embeddings) into mean-
ingful higher-level representations, as evidenced by its performance on universal part-of-
speech (UPOS) tagging and universal dependency relation (DEPREL) labeling tasks.

• Self-Supervised Learning: The model’s reliance on self-supervised learning objectives
eliminates the need for labeled data, making it versatile and adaptable across different
domains and languages.

• Promising Downstream Performance: PyRvNN demonstrates potential in downstream
applications, with notable performance in tasks like memorization, plagiarism detection,

102

Conclusion

and readability assessment.

In summary, the main contributions are: (1) a novel method for learning text representa-
tions with pyramid-structured recursive neural networks; (2) extensive evaluation of the pro-
posed method in terms of training stability, quality of learned embeddings, and predictive per-
formance on downstream tasks; (3) improved pre-trained representations for morphologically
rich languages (e.g. Croatian) in terms of less training material when adapting to new domains.

The hypotheses proposed in this study are as follows: (H1) the training of pyramidal re-
cursive networks for text representation can be stable and efficient; (H2) pyramidal recursive
training can simultaneously generate text representations for different levels of linguistic units;
(H3) the proposed method has better performance compared to other competing methods on
selected tasks and domains.

While PyRvNN demonstrates strong potential in text representation learning, several lim-
itations identified during its development and evaluation highlight opportunities for future re-
search. Below, we outline directions to improve and expand upon the current work.

Exploring Alternative Neural Network Architectures. Future research could investigate
alternative neural network architectures within the PyRv framework, such as integrating hierar-
chical attention mechanisms or dynamic weighting strategies. These additions may help address
challenges such as diminishing decoding accuracy at higher recursion depths while maintaining
computational efficiency.

Training Data Diversity. The primary pre-training of PyRvNN was conducted on a single
domain (Wikipedia). This may limit its performance on text from different domains. Future
work should involve pre-training PyRvNN on more diverse corpora to improve its robustness
and generalization.

Application to a Broader Range of Downstream Tasks, Datasets, and Baselines. The cur-
rent evaluation of PyRvNN focuses on a select set of NLP tasks and datasets. Expanding its
application to a wider variety of downstream tasks, such as machine translation, sentiment anal-
ysis, and question answering, as well as testing it on diverse datasets, including general text
embedding benchmarks, could further establish its generalizability and practical utility. Future
work should also include rigorous comparisons of PyRvNN against current state-of-the-art text
embedding methods on these benchmarks to better position its performance among general text
embedding approaches.

Developing Generative Capabilities and Perplexity Metric. The current PyRvNN is not
designed for text generation, making perplexity an unsuitable metric for its evaluation. Future
work could involve developing a generative variant of PyRvNN. For such a model, perplexity

103

Conclusion

would be an appropriate evaluation metric, allowing comparison with other generative language
models.

Investigating the Impact of Tokenization Methods. Different tokenization methods can sig-
nificantly influence the quality of learned representations. Exploring the effects of various tok-
enization strategies, such as subword units, byte-pair encoding, or character-level models, could
provide insights into optimizing PyRvNN’s performance, particularly for morphologically rich
languages.

Addressing Memory Constraints and Batch Size Limitations. The hierarchical structure
of PyRvNN imposes high memory demands, restricting batch sizes to a single paragraph dur-
ing training. Employing techniques such as gradient checkpointing or model parallelism could
reduce memory usage, enabling larger batch sizes and improving training efficiency and stabil-
ity.

Enhancing Training Stability and Efficiency. While multi-level loss aggregation and gradi-
ent normalization stabilize PyRv’s training, further exploration of advanced optimization tech-
niques (such as gradient clipping, alternative activation functions, and adaptive learning rate
schedules) could enhance convergence rates and mitigate vanishing or exploding gradient is-
sues inherent in recursive architectures.

Improving Computational Efficiency. The recursive and hierarchical nature of PyRvNN in-
creases computational complexity, especially when generating input-output pairs for autoen-
coder and autoregression heads at each pyramid level. Streamlining this process through more
efficient computation methods or architectural modifications could reduce training times with-
out sacrificing performance.

Handling Long-Range Dependencies. Although PyRvNN captures hierarchical relationships
effectively, it struggles with long-range dependencies, a limitation common to recursive mod-
els. Incorporating attention mechanisms into PyRvNN could enhance its ability to model distant
relationships in text, improving its capacity to process longer sequences and capture more nu-
anced linguistic structures.

104

Bibliography

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representa-
tions in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[2] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with sub-
word information,” Transactions of the Association for Computational Linguistics, vol. 5,
pp. 135–146, 2017.

[3] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word rep-
resentation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP), Doha, Qatar, 2014, pp. 1532–1543.

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” in Proceedings of the 2019 conference

of the North American chapter of the association for computational linguistics: human

language technologies, volume 1 (long and short papers), 2019, pp. 4171–4186.

[5] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language under-
standing by generative pre-training,” URL https://s3-us-west-2. amazonaws. com/openai-

assets/researchcovers/languageunsupervised/language understanding paper. pdf, 2018.

[6] J. Wei, M. Bosma, V. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M.
Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,” in
International Conference on Learning Representations, 2022. [Online]. Available:
https://openreview.net/forum?id=gEZrGCozdqR

[7] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agar-
wal, K. Slama, A. Ray et al., “Training language models to follow instructions with hu-
man feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–
27 744, 2022.

[8] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al.,
“Chain-of-thought prompting elicits reasoning in large language models,” Advances in

Neural Information Processing Systems, vol. 35, pp. 24 824–24 837, 2022.

[9] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models are
zero-shot reasoners,” Advances in neural information processing systems, vol. 35, pp.
22 199–22 213, 2022.

105

https://openreview.net/forum?id=gEZrGCozdqR

Bibliography

[10] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham,
H. W. Chung, C. Sutton, S. Gehrmann et al., “PaLM: Scaling language modeling with
pathways,” Journal of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.

[11] T. Zhong, Z. Liu, Y. Pan, Y. Zhang, Y. Zhou, S. Liang, Z. Wu, Y. Lyu, P. Shu, X. Yu
et al., “Evaluation of OpenAI O1: Opportunities and challenges of AGI,” arXiv preprint

arXiv:2409.18486, 2024.

[12] K. Babić, S. Martinčić-Ipšić, and A. Meštrović, “Survey of neural text representation
models,” Information, vol. 11, no. 11, p. 511, 2020.

[13] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning based
natural language processing,” IEEE Computational Intelligence Magazine, vol. 13, no. 3,
pp. 55–75, 2018.

[14] K. Jing, J. Xu, and B. He, “A survey on neural network language models,” arXiv preprint

arXiv:1906.03591, 2019.

[15] J. Camacho-Collados and M. T. Pilehvar, “From word to sense embeddings: A survey on
vector representations of meaning,” Journal of Artificial Intelligence Research, vol. 63,
pp. 743–788, 2018.

[16] S. Ruder, I. Vulić, and A. Søgaard, “A survey of cross-lingual word embedding models,”
Journal of Artificial Intelligence Research, vol. 65, pp. 569–631, 2019.

[17] M. Aßenmacher and C. Heumann, “On the comparability of pre-trained language mod-
els,” arXiv preprint arXiv:2001.00781, 2020.

[18] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Rup-
pin, “Placing search in context: The concept revisited,” in Proceedings of the 10th Inter-

national Conference on World Wide Web, 2001, pp. 406–414.

[19] M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, R. Zamparelli et al., “A
SICK cure for the evaluation of compositional distributional semantic models,” in LREC,
2014, pp. 216–223.

[20] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated corpus for
learning natural language inference,” in Proceedings of the 2015 Conference on Empiri-

cal Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 2015.

[21] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge corpus for
sentence understanding through inference,” in Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers). Association for Computational
Linguistics, 2018, pp. 1112–1122. [Online]. Available: http://aclweb.org/anthology/
N18-1101

[22] B. Dolan, C. Quirk, and C. Brockett, “Unsupervised construction of large paraphrase

106

http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101

Bibliography

corpora: Exploiting massively parallel news sources,” in Proceedings of the 20th In-

ternational Conference on Computational Linguistics. Association for Computational
Linguistics, 2004, p. 350.

[23] E. Agirre, C. Banea, C. Cardie, D. Cer, M. Diab, A. Gonzalez-Agirre, W. Guo, R. Mi-
halcea, G. Rigau, and J. Wiebe, “SemEval-2014 task 10: Multilingual semantic textual
similarity,” in Proceedings of the 8th International Workshop on Semantic Evaluation

(SemEval 2014), 2014, pp. 81–91.

[24] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continuous space word
representations,” in Proceedings of the 2013 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies, 2013,
pp. 746–751.

[25] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts,
“Recursive deep models for semantic compositionality over a sentiment Treebank,” in
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-

cessing, Seattle, Washington, USA, 2013, pp. 1631–1642.

[26] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning word
vectors for sentiment analysis,” in Proceedings of the 49th Annual Meeting of the As-

sociation for Computational Linguistics: Human Language Technologies - Volume 1.
Association for Computational Linguistics, 2011, pp. 142–150.

[27] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for sentiment catego-
rization with respect to rating scales,” in Proceedings of the 43rd Annual Meeting on

Association for Computational Linguistics. Association for Computational Linguistics,
2005, pp. 115–124.

[28] M. Hu and B. Liu, “Mining and summarizing customer reviews,” in Proceedings of the

Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Min-

ing, 2004, pp. 168–177.

[29] S. Rosenthal, N. Farra, and P. Nakov, “SemEval-2017 task 4: Sentiment analysis in Twit-
ter,” in Proceedings of the 11th International Workshop on Semantic Evaluation, ser.
SemEval ’17. Vancouver, Canada: Association for Computational Linguistics, August
2017.

[30] E. M. Voorhees and D. Harman, “Overview of TREC 2002,” in TREC, 2002.

[31] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ questions for
machine comprehension of text,” in Proceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing, J. Su, K. Duh, and X. Carreras, Eds. Austin,
Texas: Association for Computational Linguistics, Nov. 2016, pp. 2383–2392. [Online].
Available: https://aclanthology.org/D16-1264/

[32] J. Wiebe, T. Wilson, and C. Cardie, “Annotating expressions of opinions and emotions in

107

https://aclanthology.org/D16-1264/

Bibliography

language,” Language Resources and Evaluation, vol. 39, no. 2-3, pp. 165–210, 2005.

[33] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh, C. Alberti, D. Epstein,
I. Polosukhin, J. Devlin, K. Lee et al., “Natural Questions: A benchmark for question an-
swering research,” Transactions of the Association for Computational Linguistics, vol. 7,
pp. 453–466, 2019.

[34] J. Berant, A. Chou, R. Frostig, and P. Liang, “Semantic parsing on Freebase from
question-answer pairs,” in Proceedings of the 2013 Conference on Empirical Methods

in Natural Language Processing, 2013, pp. 1533–1544.

[35] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated corpus
of English: The Penn Treebank,” Computational Linguistics, vol. 19, no. 2, pp. 313–330,
1993.

[36] J. Wang, Z. Wang, D. Zhang, and J. Yan, “Combining knowledge with deep convolutional
neural networks for short text classification,” in IJCAI, 2017, pp. 2915–2921.

[37] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman, “GLUE: A
multi-task benchmark and analysis platform for natural language understanding,” in
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting

Neural Networks for NLP, T. Linzen, G. Chrupała, and A. Alishahi, Eds. Brussels,
Belgium: Association for Computational Linguistics, Nov. 2018, pp. 353–355. [Online].
Available: https://aclanthology.org/W18-5446/

[38] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy, “RACE: Large-scale reading
comprehension dataset from examinations,” in Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing. Copenhagen, Denmark:
Association for Computational Linguistics, 9 2017, pp. 785–794. [Online]. Available:
https://www.aclweb.org/anthology/D17-1082

[39] B. Pang and L. Lee, “A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts,” in Proceedings of the 42nd Annual Meeting on

Association for Computational Linguistics. Association for Computational Linguistics,
2004, p. 271.

[40] O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn, J. Leveling, C. Monz,
P. Pecina, M. Post, H. Saint-Amand, R. Soricut, L. Specia, and A. s. Tamchyna,
“Findings of the 2014 workshop on statistical machine translation,” in Proceedings of

the Ninth Workshop on Statistical Machine Translation. Baltimore, Maryland, USA:
Association for Computational Linguistics, June 2014, pp. 12–58. [Online]. Available:
http://www.aclweb.org/anthology/W/W14/W14-3302

[41] O. r. Bojar, R. Chatterjee, C. Federmann, B. Haddow, M. Huck, C. Hokamp,
P. Koehn, V. Logacheva, C. Monz, M. Negri, M. Post, C. Scarton, L. Specia,
and M. Turchi, “Findings of the 2015 workshop on statistical machine translation,”

108

https://aclanthology.org/W18-5446/
https://www.aclweb.org/anthology/D17-1082
http://www.aclweb.org/anthology/W/W14/W14-3302

Bibliography

in Proceedings of the Tenth Workshop on Statistical Machine Translation. Lisbon,
Portugal: Association for Computational Linguistics, September 2015, pp. 1–46.
[Online]. Available: http://aclweb.org/anthology/W15-3001

[42] E. Charniak, D. Blaheta, N. Ge, K. Hall, J. Hale, and M. Johnson, “BLLIP 1987-89 WSJ
corpus release 1,” (No Title), 2000.

[43] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and
S. Bowman, “SuperGLUE: A stickier benchmark for general-purpose language under-
standing systems,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[44] A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R.
Brown, A. Santoro, A. Gupta, and A. G.-A. at al., “Beyond the imitation game:
Quantifying and extrapolating the capabilities of language models,” Transactions

on Machine Learning Research, 2023, featured Certification. [Online]. Available:
https://openreview.net/forum?id=uyTL5Bvosj

[45] N. Muennighoff, N. Tazi, L. Magne, and N. Reimers, “MTEB: Massive text embedding
benchmark,” in Proceedings of the 17th Conference of the European Chapter of

the Association for Computational Linguistics, A. Vlachos and I. Augenstein, Eds.
Dubrovnik, Croatia: Association for Computational Linguistics, May 2023, pp.
2014–2037. [Online]. Available: https://aclanthology.org/2023.eacl-main.148/

[46] L. Svoboda and S. Beliga, “Evaluation of Croatian word embeddings,” in Proceedings of

the Eleventh International Conference on Language Resources and Evaluation (LREC

2018), N. Calzolari, K. Choukri, C. Cieri, T. Declerck, S. Goggi, K. Hasida, H. Isahara,
B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, S. Piperidis, and T. Tokunaga,
Eds. Miyazaki, Japan: European Language Resources Association (ELRA), May 2018.
[Online]. Available: https://aclanthology.org/L18-1240/

[47] J. Botha and P. Blunsom, “Compositional morphology for word representations and lan-
guage modelling,” in International Conference on Machine Learning, 2014, pp. 1899–
1907.

[48] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representa-
tions of words and phrases and their compositionality,” in Advances in Neural Informa-

tion Processing Systems, 2013, pp. 3111–3119.

[49] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush, “Character-aware neural language mod-
els,” in Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[50] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer,
“Deep contextualized word representations,” in Proceedings of the 2018 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), M. Walker, H. Ji, and A. Stent, Eds.
New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018, pp.

109

http://aclweb.org/anthology/W15-3001
https://openreview.net/forum?id=uyTL5Bvosj
https://aclanthology.org/2023.eacl-main.148/
https://aclanthology.org/L18-1240/

Bibliography

2227–2237. [Online]. Available: https://aclanthology.org/N18-1202/

[51] P. Gage, “A new algorithm for data compression,” C Users Journal, vol. 12, no. 2, pp.
23–38, 1994.

[52] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing

Systems, vol. 30, Long Beach, CA, USA, 2017.

[53] T. Kudo and J. Richardson, “SentencePiece: A simple and language independent
subword tokenizer and detokenizer for neural text processing,” in Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing: System

Demonstrations, E. Blanco and W. Lu, Eds. Brussels, Belgium: Association
for Computational Linguistics, Nov. 2018, pp. 66–71. [Online]. Available: https:
//aclanthology.org/D18-2012/

[54] M. Schuster and K. Nakajima, “Japanese and Korean voice search,” in 2012 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2012, pp. 5149–5152.

[55] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “XLNet: Gen-
eralized autoregressive pretraining for language understanding,” in Advances in Neural

Information Processing Systems, 2019, pp. 5754–5764.

[56] Y. Goldberg, “A primer on neural network models for natural language processing,” Jour-

nal of Artificial Intelligence Research, 2016.

[57] T. Shi and Z. Liu, “Linking GloVe with Word2Vec,” arXiv preprint arXiv:1411.5595,
2014.

[58] O. Levy and Y. Goldberg, “Neural word embedding as implicit matrix factorization,” in
Advances in Neural Information Processing Systems, 2014, pp. 2177–2185.

[59] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.

[60] J. Firth, “A synopsis of linguistic theory 1930-1955,” in Studies in Linguistic Analysis.
Philological Society, Oxford, 1957, reprinted in Palmer, F. (ed. 1968) Selected Papers of
J. R. Firth, Longman, Harlow.

[61] E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng, “Improving word representations
via global context and multiple word prototypes,” in Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics: Long Papers-Volume 1. As-
sociation for Computational Linguistics, 2012, pp. 873–882.

[62] O. Levy and Y. Goldberg, “Dependency-based word embeddings,” in Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers), 2014, pp. 302–308.

[63] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in In-

ternational Conference on Machine Learning. Bejing, China: PMLR, 2014, pp. 1188–

110

https://aclanthology.org/N18-1202/
https://aclanthology.org/D18-2012/
https://aclanthology.org/D18-2012/

Bibliography

1196.

[64] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using RNN encoder–decoder for statistical
machine translation,” in Proceedings of the 2014 Conference on Empirical Methods in

Natural Language Processing (EMNLP), A. Moschitti, B. Pang, and W. Daelemans, Eds.
Doha, Qatar: Association for Computational Linguistics, Oct. 2014, pp. 1724–1734.
[Online]. Available: https://aclanthology.org/D14-1179/

[65] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural net-
works,” in Advances in Neural Information Processing Systems, 2014, pp. 3104–3112.

[66] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler,
“Skip-thought vectors,” in Advances in Neural Information Processing Systems, 2015,
pp. 3294–3302.

[67] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural networks for text
classification,” in Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

[68] J. Li, T. Luong, and D. Jurafsky, “A hierarchical neural autoencoder for paragraphs
and documents,” in Proceedings of the 53rd Annual Meeting of the Association for

Computational Linguistics and the 7th International Joint Conference on Natural

Language Processing (Volume 1: Long Papers), C. Zong and M. Strube, Eds. Beijing,
China: Association for Computational Linguistics, Jul. 2015, pp. 1106–1115. [Online].
Available: https://aclanthology.org/P15-1107/

[69] F. Hill, K. Cho, and A. Korhonen, “Learning distributed representations of sentences
from unlabelled data,” in Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, K. Knight, A. Nenkova, and O. Rambow, Eds. San Diego, California:
Association for Computational Linguistics, Jun. 2016, pp. 1367–1377. [Online].
Available: https://aclanthology.org/N16-1162/

[70] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in translation: Contextu-
alized word vectors,” in Advances in Neural Information Processing Systems, 2017, pp.
6294–6305.

[71] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string embeddings for sequence label-
ing,” in Proceedings of the 27th International Conference on Computational Linguistics,
2018, pp. 1638–1649.

[72] S. Subramanian, A. Trischler, Y. Bengio, and C. J. Pal, “Learning general
purpose distributed sentence representations via large scale multi-task learning,” in
International Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=B18WgG-CZ

[73] M. Artetxe and H. Schwenk, “Massively multilingual sentence embeddings for zero-shot

111

https://aclanthology.org/D14-1179/
https://aclanthology.org/P15-1107/
https://aclanthology.org/N16-1162/
https://openreview.net/forum?id=B18WgG-CZ

Bibliography

cross-lingual transfer and beyond,” Transactions of the Association for Computational

Linguistics, vol. 7, pp. 597–610, 2019.

[74] M. Auli, M. Galley, C. Quirk, and G. Zweig, “Joint language and translation modeling
with recurrent neural networks,” in Proceedings of the 2013 Conference on Empirical

Methods in Natural Language Processing, Seattle, Washington, October 2013, pp. 18–
21.

[75] A. Conneau, R. Rinott, G. Lample, A. Williams, S. Bowman, H. Schwenk, and
V. Stoyanov, “XNLI: Evaluating cross-lingual sentence representations,” in Proceedings

of the 2018 Conference on Empirical Methods in Natural Language Processing,
E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii, Eds. Brussels, Belgium:
Association for Computational Linguistics, Oct.-Nov. 2018, pp. 2475–2485. [Online].
Available: https://aclanthology.org/D18-1269/

[76] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning, “Semi-supervised
recursive autoencoders for predicting sentiment distributions,” in Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing. Edinburgh, Scotland,
UK: Association for Computational Linguistics, 2011, pp. 151–161.

[77] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng, “Semantic compositionality through
recursive matrix-vector spaces,” in Proceedings of the 2012 Joint Conference on Em-

pirical Methods in Natural Language Processing and Computational Natural Language

Learning. Association for Computational Linguistics, 2012, pp. 1201–1211.

[78] M.-T. Luong, R. Socher, and C. D. Manning, “Better word representations with recur-
sive neural networks for morphology,” in Proceedings of the Seventeenth Conference on

Computational Natural Language Learning, Sofia, Bulgaria, 2013, pp. 104–113.

[79] H. Zhao, Z. Lu, and P. Poupart, “Self-adaptive hierarchical sentence model,” in Twenty-

Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Ar-
gentina, 2015.

[80] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representations from
tree-structured long short-term memory networks,” in Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Volume 1: Long Papers), C. Zong
and M. Strube, Eds. Beijing, China: Association for Computational Linguistics, Jul.
2015, pp. 1556–1566. [Online]. Available: https://aclanthology.org/P15-1150/

[81] D. Yogatama, P. Blunsom, C. Dyer, E. Grefenstette, and W. Ling, “Learning to compose
words into sentences with reinforcement learning,” in International Conference on

Learning Representations, 2017. [Online]. Available: https://openreview.net/forum?id=
Skvgqgqxe

[82] J. Choi, K. M. Yoo, and S.-g. Lee, “Learning to compose task-specific tree structures,” in

112

https://aclanthology.org/D18-1269/
https://aclanthology.org/P15-1150/
https://openreview.net/forum?id=Skvgqgqxe
https://openreview.net/forum?id=Skvgqgqxe

Bibliography

Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[83] A. Drozdov, P. Verga, M. Yadav, M. Iyyer, and A. McCallum, “Unsupervised latent
tree induction with deep inside-outside recursive auto-encoders,” in Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
J. Burstein, C. Doran, and T. Solorio, Eds. Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 1129–1141. [Online]. Available:
https://aclanthology.org/N19-1116/

[84] J. R. Chowdhury and C. Caragea, “Modeling hierarchical structures with continuous
recursive neural networks,” in International Conference on Machine Learning. PMLR,
2021, pp. 1975–1988.

[85] A. Simoulin and B. Crabbé, “Unifying parsing and tree-structured models for generating
sentence semantic representations,” in Proceedings of the 2022 Annual Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies. Association for Computational Linguistics, 2022, pp. 267–276.

[86] L. Sartran, S. Barrett, A. Kuncoro, M. Stanojević, P. Blunsom, and C. Dyer, “Transformer
Grammars: Augmenting Transformer language models with syntactic inductive biases at
scale,” Transactions of the Association for Computational Linguistics, vol. 10, pp. 1423–
1439, 2022.

[87] X. Hu, H. Mi, L. Li, and G. de Melo, “Fast-R2D2: A pretrained recursive neural
network based on pruned CKY for grammar induction and text representation,” in
Proceedings of the 2022 Conference on Empirical Methods in Natural Language

Processing, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds. Abu Dhabi, United Arab
Emirates: Association for Computational Linguistics, Dec. 2022, pp. 2809–2821.
[Online]. Available: https://aclanthology.org/2022.emnlp-main.181/

[88] X. Hu, Q. Zhu, K. Tu, and W. Wu, “Augmenting transformers with recursively
composed multi-grained representations,” in The Twelfth International Conference on

Learning Representations, 2024. [Online]. Available: https://openreview.net/forum?id=
u859gX7ADC

[89] T. Nakagawa, K. Inui, and S. Kurohashi, “Dependency tree-based sentiment classifi-
cation using crfs with hidden variables,” in Human Language Technologies: The 2010

Annual Conference of the North American Chapter of the Association for Computational

Linguistics, 2010, pp. 786–794.

[90] S. R. Bowman, J. Gauthier, A. Rastogi, R. Gupta, C. D. Manning, and C. Potts,
“A fast unified model for parsing and sentence understanding,” in Proceedings of

the 54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), K. Erk and N. A. Smith, Eds. Berlin, Germany: Association
for Computational Linguistics, Aug. 2016, pp. 1466–1477. [Online]. Available:

113

https://aclanthology.org/N19-1116/
https://aclanthology.org/2022.emnlp-main.181/
https://openreview.net/forum?id=u859gX7ADC
https://openreview.net/forum?id=u859gX7ADC

Bibliography

https://aclanthology.org/P16-1139/

[91] R. Collobert and J. Weston, “A unified architecture for natural language processing: Deep
neural networks with multitask learning,” in Proceedings of the 25th International Con-

ference on Machine Learning. ACM, 2008, pp. 160–167.

[92] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural network for
modelling sentences,” in Proceedings of the 52nd Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), K. Toutanova and H. Wu,
Eds. Baltimore, Maryland: Association for Computational Linguistics, Jun. 2014, pp.
655–665. [Online]. Available: https://aclanthology.org/P14-1062/

[93] N. Kalchbrenner, L. Espeholt, K. Simonyan, A. v. d. Oord, A. Graves, and
K. Kavukcuoglu, “Neural machine translation in linear time,” arXiv preprint

arXiv:1610.10099, 2016.

[94] Z. Gan, Y. Pu, R. Henao, C. Li, X. He, and L. Carin, “Learning generic sentence
representations using convolutional neural networks,” in Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, M. Palmer, R. Hwa,
and S. Riedel, Eds. Copenhagen, Denmark: Association for Computational Linguistics,
Sep. 2017, pp. 2390–2400. [Online]. Available: https://aclanthology.org/D17-1254/

[95] K. Shuang, Z. Zhang, J. Loo, and S. Su, “Convolution-deconvolution word embedding:
An end-to-end multi-prototype fusion embedding method for natural language process-
ing,” Information Fusion, vol. 53, pp. 112–122, 2020.

[96] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network regularization,”
arXiv preprint arXiv:1409.2329, 2014.

[97] J. Chung, K. Cho, and Y. Bengio, “A character-level decoder without explicit
segmentation for neural machine translation,” in Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), K. Erk and
N. A. Smith, Eds. Berlin, Germany: Association for Computational Linguistics, Aug.
2016, pp. 1693–1703. [Online]. Available: https://aclanthology.org/P16-1160/

[98] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[99] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical attention net-
works for document classification,” in Proceedings of the 2016 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, 2016, pp. 1480–1489.

[100] Y. Kim, C. Denton, L. Hoang, and A. M. Rush, “Structured attention networks,”
in International Conference on Learning Representations, 2017. [Online]. Available:
https://openreview.net/forum?id=HkE0Nvqlg

[101] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio, “A structured

114

https://aclanthology.org/P16-1139/
https://aclanthology.org/P14-1062/
https://aclanthology.org/D17-1254/
https://aclanthology.org/P16-1160/
https://openreview.net/forum?id=HkE0Nvqlg

Bibliography

self-attentive sentence embedding,” arXiv preprint arXiv:1703.03130, 2017.

[102] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang, “DiSAN: Directional self-
attention network for RNN/CNN-free language understanding,” in Thirty-Second AAAI

Conference on Artificial Intelligence, 2018.

[103] T. Shen, T. Zhou, G. Long, J. Jiang, and C. Zhang, “Bi-directional block self-attention for
fast and memory-efficient sequence modeling,” arXiv preprint arXiv:1804.00857, 2018.

[104] T. Shen, T. Zhou, G. Long, J. Jiang, S. Wang, and C. Zhang, “Reinforced self-attention
network: a hybrid of hard and soft attention for sequence modeling,” in Proceedings of

the 27th International Joint Conference on Artificial Intelligence, ser. IJCAI’18. AAAI
Press, 2018, p. 4345–4352.

[105] Y. Liu and M. Lapata, “Learning structured text representations,” Transactions of the

Association for Computational Linguistics, vol. 6, pp. 63–75, 2018.

[106] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models
are unsupervised multitask learners,” OpenAI Blog, vol. 1, no. 8, 2019.

[107] A. Conneau and G. Lample, “Cross-lingual language model pretraining,” Advances in

neural information processing systems, vol. 32, 2019.

[108] Q. Guo, X. Qiu, P. Liu, Y. Shao, X. Xue, and Z. Zhang, “Star-transformer,” in
Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), J. Burstein, C. Doran, and T. Solorio, Eds. Minneapolis, Minnesota:
Association for Computational Linguistics, Jun. 2019, pp. 1315–1325. [Online].
Available: https://aclanthology.org/N19-1133/

[109] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. Le, and R. Salakhutdinov, “Transformer-
XL: Attentive language models beyond a fixed-length context,” in Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics,
A. Korhonen, D. Traum, and L. Màrquez, Eds. Florence, Italy: Association
for Computational Linguistics, Jul. 2019, pp. 2978–2988. [Online]. Available:
https://aclanthology.org/P19-1285/

[110] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mass: Masked sequence to sequence pre-
training for language generation,” in International Conference on Machine Learning,
2019, pp. 5926–5936.

[111] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese
BERT-networks,” in Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan,
Eds. Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp.
3982–3992. [Online]. Available: https://aclanthology.org/D19-1410/

115

https://aclanthology.org/N19-1133/
https://aclanthology.org/P19-1285/
https://aclanthology.org/D19-1410/

Bibliography

[112] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representations,” in
International Conference on Learning Representations, 2020. [Online]. Available:
https://openreview.net/forum?id=H1eA7AEtvS

[113] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “SpanBERT: Im-
proving pre-training by representing and predicting spans,” Transactions of the Associa-

tion for Computational Linguistics, vol. 8, pp. 64–77, 2020.

[114] K. Guu, K. Lee, Z. Tung, P. Pasupat, and M. Chang, “Retrieval augmented language
model pre-training,” in International conference on machine learning. PMLR, 2020,
pp. 3929–3938.

[115] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “ELECTRA: Pre-training text
encoders as discriminators rather than generators,” in ICLR, 2020. [Online]. Available:
https://openreview.net/pdf?id=r1xMH1BtvB

[116] G. Lample, A. Conneau, M. Ranzato, L. Denoyer, and H. Jégou, “Word translation with-
out parallel data,” in International conference on learning representations, 2018.

[117] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas,
F. Bressand, G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux,
P. Stock, T. L. Scao, T. Lavril, T. Wang, T. Lacroix, and W. E. Sayed, “Mistral 7b,”
2023. [Online]. Available: https://arxiv.org/abs/2310.06825

[118] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai,
A. Hauth, K. Millican et al., “Gemini: a family of highly capable multimodal models,”
arXiv preprint arXiv:2312.11805, 2023.

[119] Anthropic, “The claude 3 model family: Opus, sonnet, haiku.” [Online]. Available:
https://api.semanticscholar.org/CorpusID:268232499

[120] A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman,
A. Mathur, A. Schelten, A. Vaughan et al., “The llama 3 herd of models,” arXiv preprint

arXiv:2407.21783, 2024.

[121] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Ostrow,
A. Welihinda, A. Hayes, A. Radford et al., “Gpt-4o system card,” arXiv preprint

arXiv:2410.21276, 2024.

[122] A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv
et al., “Qwen3 technical report,” arXiv preprint arXiv:2505.09388, 2025.

[123] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan
et al., “Deepseek-v3 technical report,” arXiv preprint arXiv:2412.19437, 2024.

[124] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi
et al., “Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learn-
ing,” arXiv preprint arXiv:2501.12948, 2025.

116

https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/pdf?id=r1xMH1BtvB
https://arxiv.org/abs/2310.06825
https://api.semanticscholar.org/CorpusID:268232499

Bibliography

[125] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” in Ad-

vances in Neural Information Processing Systems, vol. 33, virtual, 2020, pp. 1877–1901.

[126] O. Irsoy and C. Cardie, “Deep recursive neural networks for compositionality in lan-
guage,” in Advances in Neural Information Processing Systems, vol. 27, Montreal, Que-
bec, Canada, 2014.

[127] A. Frandsen and R. Ge, “Understanding composition of word embeddings via tensor
decomposition,” arXiv:1902.00613, 2019.

[128] M. Hartung, F. Kaupmann, S. Jebbara, and P. Cimiano, “Learning compositionality func-
tions on word embeddings for modelling attribute meaning in adjective-noun phrases,”
in Proceedings of the 15th Conference of the European Chapter of the Association for

Computational Linguistics: Volume 1, Long Papers, Valencia, Spain, 2017, pp. 54–64.

[129] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient
text classification,” in Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 2, Short Papers,
M. Lapata, P. Blunsom, and A. Koller, Eds. Valencia, Spain: Association
for Computational Linguistics, Apr. 2017, pp. 427–431. [Online]. Available:
https://aclanthology.org/E17-2068/

[130] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for sentence embed-
dings,” in International Conference on Learning Representations, 2017.

[131] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal paraphrastic sen-
tence embeddings,” arXiv preprint arXiv:1511.08198, 2015.

[132] C. Olah, A. Mordvintsev, and L. Schubert, “Feature visualization,” Distill, 2017,
https://distill.pub/2017/feature-visualization.

[133] H. Peng, J. Li, Y. He, Y. Liu, M. Bao, L. Wang, Y. Song, and Q. Yang, “Large-scale hier-
archical text classification with recursively regularized deep graph-CNN,” in Proceedings

of the 2018 World Wide Web Conference, 2018, pp. 1063–1072.

[134] S. Chen and W. Guo, “Autoencoders in deep learning—a review with new perspectives.”

[135] M. Tschannen, O. Bachem, and M. Lucic, “Recent advances in autoencoder-based
representation learning,” in Third workshop on Bayesian Deep Learning (NeurIPS

2018), 2018. [Online]. Available: http://www.nari.ee.ethz.ch/pubs/p/autoenc2018

[136] S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio, “Generating
sentences from a continuous space,” in Proceedings of the 20th SIGNLL Conference on

Computational Natural Language Learning, S. Riezler and Y. Goldberg, Eds. Berlin,
Germany: Association for Computational Linguistics, Aug. 2016, pp. 10–21. [Online].
Available: https://aclanthology.org/K16-1002/

[137] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT press, 2016.

117

https://aclanthology.org/E17-2068/
http://www.nari.ee.ethz.ch/pubs/p/autoenc2018
https://aclanthology.org/K16-1002/

Bibliography

[138] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new
perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 8, pp. 1798–1828, 2013.

[139] G. E. Hinton et al., “Learning distributed representations of concepts,” in Proceedings of

the Eighth Annual Conference of the Cognitive Science Society, vol. 1. Amherst, MA,
1986, p. 12.

[140] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic language model,” Ad-

vances in Neural Information Processing Systems, vol. 13, 2000.

[141] C. Goller and A. Kuchler, “Learning task-dependent distributed representations by back-
propagation through structure,” in Proceedings of International Conference on Neural

Networks (ICNN’96), vol. 1. IEEE, 1996, pp. 347–352.

[142] R.-M. Dechaine, S. Burton, and E. Vatikiotis-Bateson, Linguistics for Dummies. John
Wiley & Sons, 2012.

[143] K. Babić and A. Meštrović, “Recursively autoregressive autoencoder for pyramidal text
representation,” IEEE Access, vol. 12, pp. 71 361–71 370, 2024.

[144] J. P. Wahle, T. Ruas, T. Foltỳnek, N. Meuschke, and B. Gipp, “Identifying machine-
paraphrased plagiarism,” in International Conference on Information. virtual: Springer,
2022, pp. 393–413.

[145] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: Understanding rating di-
mensions with review text,” in Proceedings of the 7th ACM Conference on Recommender

Systems, 2013, pp. 165–172.

[146] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learning word vectors for
157 languages,” in Proceedings of the International Conference on Language Resources

and Evaluation (LREC 2018), 2018.

[147] N. Ljubešić, F. Klubička, Ž. Agić, and I.-P. Jazbec, “New inflectional lexicons and train-
ing corpora for improved morphosyntactic annotation of croatian and serbian,” in Pro-

ceedings of the Tenth International Conference on Language Resources and Evaluation

(LREC’16), 2016, pp. 4264–4270.

[148] S. Crossley, A. Heintz, J. S. Choi, J. Batchelor, M. Karimi, and A. Malatinszky, “A large-
scale corpus for assessing text readability,” Behavior Research Methods, vol. 55, no. 2,
pp. 491–507, 2023.

[149] C. M. Bishop, Pattern Recognition and Machine Learning. Springer Science+ Business
Media, LLC, 2006.

118

Chapter 8

Abbreviations

Abbreviation Description
AE Autoencoder

BPE Byte Pair Encoding

BPTS Backpropagation Through Structure

BPTT Backpropagation Through Time

CNN Convolutional Neural Network

DEPREL Universal Dependency Relation

GRU Gated Recurrent Unit

LSTM Long Short-Term Memory

MLM Masked Language Model

MLP Multilayer Perceptron

NLP Natural Language Processing

PCA Principal Component Analysis

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

RvNN Recursive Neural Network

SP SentencePiece

SVM Support Vector Machine

TFIDF Term Frequency-Inverse Document Frequency

UPOS Universal Part-of-Speech

WP WordPiece

119

List of Figures

2.1. Word2Vec architecture. In addition to an input layer and an output layer, shal-
low architectures have a small number of hidden layers (one in this case). . . . 13

2.2. Recurrent architecture and the unfolding in time. Recurrent nodes have con-
nections which lead to the next node, and connections which loop back to the
same node. The unfolding in time shows the same node in three consecutive
iterations. 15

2.3. The LSTM cell. Variables xt and ht are input and output, respectively, at time
t. Squares with "σ" or "tanh" represent layers, whereas ovals with "X", "+", or
"tanh" represent pointwise operations. 16

2.4. A parsing tree of a recursive neural network predicting word sentiment classes.
The leaf nodes are input tokens, all the other nodes are representations of the
combination of the child nodes. The root node is representation of the entire
input text. 19

2.5. Convolutional architecture. A convolution has multiple filters, and each filter
has a kernel (a matrix of weights) that is being trained. The kernel slides over
the values from the previous layer, producing values that are sent to the next
layer. Each filter learns to recognize a different pattern. 24

2.6. A visualization of a learned self-attention head on a sentence. The visualization
shows learned relations between the words this self-attention head has learned.
Each head learns a different kind of relations between the words. 26

3.1. Two-dimensional principal component analysis (PCA) projection of the 1000-
dimensional Skip-gram vectors of countries and their capital cities [48]. This
visualization highlights the ability of Skip-gram embeddings to organize seman-
tic concepts and capture implicit relationships, such as the association between
countries and their capitals, without explicit supervision. 43

3.2. Visualization of an autoencoder architecture, consisting of an encoder that maps
the input (e.g., a picture of a handwritten digit) to a lower-dimensional hidden
representation (code), and a decoder that reconstructs the input from the hidden
representation. 44

List of Figures

3.3. Illustration of the autoregressive modeling process for sentence generation. The
model predicts the next word in a sequence step by step, based on a fixed win-
dow of four preceding words. 46

3.4. Morphological Recursive Neural Network [78]. A vector representation for the
word "unfortunately" is constructed from morphemic vectors: unpre, fortunatestm, lysuf.

. 48

4.1. A visualized example of a pyramidal recursion in the PyRv method. The lowest-
level nodes correspond to input tokens. Moving upward, the nodes within
the three pyramids represent combined subword embeddings. At the pyramid
peaks, nodes represent word embeddings, and higher nodes signify combined
word embeddings, representing phrases. 53

4.2. PyRvNN model architecture. The inputs are representations of adjacent nodes
(one-hot or dense embeddings). Boxes connected with an arrow are fully con-
nected layers. Autoregressive and autoencoding heads are identical, only the
output labels they recieve differ. 55

4.3. Decoding accuracy versus embedding dimension for different pyramid levels. . 57
4.4. Average processing time per pyramid level versus embedding dimension. . . . 57
4.5. Average processing time per pyramid level versus input size for different em-

bedding dimensions. 58
4.6. Average GPU memory usage per pyramid level versus embedding dimension. . 59
4.7. Average GPU memory usage per pyramid level versus input size for different

embedding dimensions. 60
4.8. Density plot of word counts per paragraph. 62
4.9. Utilizing the PyRv approach, the phrase "embed this phrase" undergoes recur-

sive embedding. Tokenized words (subwords) are received at the bottom pyra-
mid level, with each node in the hierarchy representing all the tokens below it,
illustrating the recursive embedding process. 64

4.10. Visualization of loss normalization by level. 65
4.11. Loss by pyramid level for the initial untrained model, with and without normal-

ization. 65
4.12. Loss by pyramid level for the trained model, with and without normalization.

The loss was normalized while training the model. 66
4.13. Average magnitude of PyRvNN representations across different pyramid levels.

The figure shows Magnitude Enc and Magnitude Reg, corresponding to the
autoencoding and autoregressive head output magnitudes, respectively. Left
and right representations are averaged into these two plots due to their very
similar magnitudes. 66

121

List of Figures

4.14. Loss curves during the initial training phase, showing the impact of the progres-
sive training schedule across different loss components. 68

4.15. Same loss curves as in Figure 4.14, but scaled up to emphasize smaller loss
variations. 69

5.1. Decodability accuracy for each word length (token count) and three phrase
pyramid levels, tested on Wikipedia texts. 75

5.2. Decodability accuracy for each word length (token count) and three phrase
pyramid levels, tested on texts from Amazon reviews. 76

5.3. Histogram illustrating the frequency distribution of the number of tokens per
word. Data was computed using 10,000 paragraphs from the Wikipedia dataset.
The histogram is truncated at 8 tokens per word. The plot shows that longer
words (e.g., 6+ tokens) are significantly less frequent, supporting the hypothesis
that reduced training data for these lengths contributes to the accuracy drop seen
in Figure 5.1. 77

5.4. A visual representation of pyramidal recursion in the PyRv+FT method. The
lowest-level nodes correspond to fastText-embedded words. As we move up-
ward, the nodes represent combined word embeddings, capturing phrase-level
meanings. 79

5.5. UPOS task, weighted average: accuracy as a function of the Gaussian STD fac-
tor. As the STD factor increases, the weights assigned to context words become
more uniform, degrading performance. The best result (95%) is obtained with
STD factor 0.15, where the middle word dominates the representation (86% of
total weight). Plots for F1 score are shown in Appendix B: Figures B.1 and B.2. 83

5.6. DEPREL task, weighted average: accuracy as a function of the Gaussian STD
factor. Maximum performance (74%) is reached at STD factor 0.1, where the
middle word receives 79% of the total weight. As the STD factor increases, the
performance degrades toward the baseline of uniform averaging (34%). Plots
for F1 score are shown in Appendix B: Figures B.3 and B.4. 85

5.7. DEPREL relative F1 score ratios (by class) comparing different composition
methods. The left plot (a) shows the ratio of F1 scores for "mean fastText 5
words" versus "fastText 1 word", while the right plot (b) compares "PyRv+FT
5 words" versus "fastText 1 word". Each bar represents a class, and the length
of the bar indicates the relative performance of the model. Classes are ordered
by support value in the test set (larger on the top). 86

122

List of Figures

5.8. Visualization of the PyRv+FT representation space (reduced from 300 dimen-
sions using t-SNE). Highlighted areas A, B, and C contain phrases with the
prepositions ’na’ (eng. ’on’) and ’u’ (eng. ’in’). Tables 5.7 and 5.8 (translated:
5.5 and 5.6) provide detailed examples of these phrases and their connections
within the space. 89

5.9. Visualization of the PyRv+FT representation space (reduced from 300 dimen-
sions using t-SNE). Highlighted areas A and D contain phrases structured around
the prepositions ’na’ (eng. ’on’) and ’u’ (eng. ’in’). Tables 5.7 and 5.8 (trans-
lated: 5.5 and 5.6) present examples of these phrases and their relationships in
the embedding space. 90

5.10. Density plot of scores. 96

A.1. Overview of the PyRv implementation architecture, detailing the modular de-
sign and interactions between main components, including data preparation,
training algorithm, model architecture, and data manipulation modules. 126

B.1. UPOS task, weighted average: macro F1 score as a function of the Gaussian
STD factor. 135

B.2. UPOS task, weighted average: weighted F1 score as a function of the Gaussian
STD factor. 136

B.3. DEPREL task, weighted average: macro F1 score as a function of the Gaussian
STD factor. 137

B.4. DEPREL task, weighted average: weighted F1 score as a function of the Gaus-
sian STD factor. 138

123

List of Tables

2.1. The categorization of shallow models by input and representation level. All
listed models are unsupervised. 13

2.2. The categorization of recurrent models by input level, representation level, and su-
pervision. 17

2.3. The categorization of recursive models by input level, supervision, and parsing
tree source. All the listed models learn sentence+ representations. Un/super-
vised supervision represents both unsupervised and supervised learning. 20

2.4. The categorization of convolutional models by input level, representation level,
and supervision. Un/supervised supervision represents both unsupervised and
supervised learning. 24

2.5. The categorization of attention models by input level and supervision. All listed
models learn sentence+ representations. Un/supervised supervision represents
both unsupervised and supervised learning. 27

4.1. Wikipedia dataset statistics . 62

5.1. Decodability accuracy for each word length (token count) and three phrase
pyramid levels, tested on Wikipedia texts. 75

5.2. Decodability accuracy for each word length (token count) and three phrase
pyramid levels, tested on texts from Amazon reviews. 76

5.3. UPOS results, Macro and Weighted averages. 82
5.4. DEPREL results, Macro and Weighted averages. 84
5.5. Phrases by areas (A, B, and C) in the PyRv+FT representation space, translated

to English (some phrases are longer when translated). 88
5.6. Phrases in area D in the PyRv+FT representation space, translated to English

(some phrases are longer when translated). 91
5.7. Phrases by areas (A, B, and C) in the PyRv+FT representation space (original

Croatian phrases). 92
5.8. Phrases in area D in the PyRv+FT representation space (original Croatian phrases). 93
5.9. Memorization results, 260 epochs. 94
5.10. Memorization results, 400 epochs. 94

List of Tables

5.11. Machine-paraphrased plagiarism classification results. 95
5.12. Readability classification results. 97

B.1. DEPREL evaluation results (by class) using the fastText embedding method
(single-word embeddings). 139

B.2. DEPREL evaluation results (by class) using the fastText embedding method
(averaging embeddings of five words). 140

B.3. DEPREL evaluation results (by class) using the PyRv+FT embedding method
(composing embeddings of five words). 141

125

Appendix A

A: Implementation

This Appendix details the implementation of the proposed Pyramidal Recursive learning (PyRv)
method, specifically designed for training neural networks to hierarchically represent text. The
implementation is organized across modular components, each focusing on a distinct aspect of
the system’s functionality. The design choices emphasize the separation of concerns, scalabil-
ity, and adaptability to various input configurations. Figure A.1 provides an overview of the
system’s architecture.

Figure A.1: Overview of the PyRv implementation architecture, detailing the modular design and in-
teractions between main components, including data preparation, training algorithm, model architecture,
and data manipulation modules.

The implementation consists of five core modules:

• Module main.py (A.1): Orchestrates the training process by progressively training on
deeper pyramidal hierarchies, managing learning rates, and defining depth parameters for
subword and phrase levels.

126

A: Implementation

• Module modelarch.py (A.2): Encapsulates the neural network architecture, supporting
hierarchical encoding, decoding, and representation handling.

• Module trainalg.py (A.3): Implements the training algorithms, including pyramidal re-
cursion and optimization processes.

• Module dataprep.py (A.4): Handles the preparation and streaming of input data, includ-
ing tokenization and one-hot encoding of text.

• Module datamanip.py (A.5): Facilitates the creation and manipulation of hierarchical
data structures, generating representation pairs and neighbors for training.

The modular design ensures a clear distinction between the PyRvNN model and the PyRv
training method, aligning with the principles of maintainable and extensible codebases. Ad-
ditionally, the data streaming pipeline supports efficient input-output handling, enabling scal-
ability for large datasets. Each module is detailed in the following sections, with pseudocode
illustrating the core functionality implemented within these files.

The implementation is written in Python and utilizes TensorFlow as the primary deep learn-
ing framework. The complete source code for this implementation is available at the following
link: https://github.com/karlo-babic/pyrv

A.1 Module main.py

The Main.py module (Algorithm 1) serves as the entry point for orchestrating the training of
the PyRv model. It defines a progressive training schedule that incrementally exposes the model
to deeper pyramidal hierarchies in a staged manner. This schedule ensures efficient and stable
learning by managing the depth of subword and phrase pyramid levels, as well as adjusting the
learning rate across training stages.

The training process starts with subword-level pyramid hierarchies, beginning at level
SWL0 and gradually advancing to level SWLmax. Once the model is adequately trained on these
subword hierarchies, it proceeds to phrase-level pyramids, starting at level PHL0 and extend-
ing up to level PHLmax. Each stage is configured with a specific number of training steps and
learning rate.

The learning rate is initially set to LRinit and is reduced to LRreduce in later stages, promot-
ing stable convergence as the model encounters more complex pyramid levels.

An instance of PyRvNN is created in Main.py and passed as an argument to the PyRv
learning system. This design allows for seamless integration of other neural network architec-
tures into the PyRv framework by replacing PyRvNN with alternative implementations.

127

https://github.com/karlo-babic/pyrv

A: Implementation

Algorithm 1: Main (example of progressive model training)
Input: text dataset
Output: trained model (PyRvNN instance after training)
model← modelarch.PyRvNN.__init__()
trainalg.pyrv_train(model,max_subword_depth = 1,max_phrase_depth =

0,num_steps = 10000, learning_rate = 0.001)
for i← 2 to 9 do

trainalg.pyrv_train(model, max_subword_depth← i, max_phrase_depth← 0,
num_steps← 2000, learning_rate← 0.001)

trainalg.pyrv_train(model,max_subword_depth = 10,max_phrase_depth =

1,num_steps = 10000, learning_rate = 0.001)
for i← 1 to . . . do

trainalg.pyrv_train(model, max_subword_depth← 10, max_phrase_depth← 2,
num_steps← 100000, learning_rate← 0.0005)

A.2 Module modelarch.py

The modelarch.py module implements the core PyRvNN architecture as described in Sec-
tion 4.2. It defines the network’s initialization and forward pass functionality, encapsulated
within the PyRvNN class. This module is central to the composition process of the PyRv frame-
work.

The core operation of the modelarch.py module is implemented in the call function,
which is invoked during the forward pass. The pseudocode for this function is detailed in
Algorithm 2. It takes a pair of input representations as arguments and outputs:

• The composed embedding resulting from the combination of the input pair.
• Decoded representations of the input pair.
• Neighbors to the left and right of the composed embedding.

Algorithm 2: Model Call: call()
Input: inputs (pair of one-hot and dense vectors),
training (boolean flag indicating training or inference mode),
return_embs (boolean flag to include embeddings in the output)
Output: out puts (decoded representations of the input pair and their neighbors),
embs (composed embedding, included if return_embs is True)
Function call(inputs, training, return_embs):

embs← encode(inputs)
out puts← decode(embs)
if return_embs then

return out puts, embs

else
return out puts

128

A: Implementation

A.3 Module trainalg.py

The trainalg.py module is central to implementing the PyRv method. This module encap-
sulates the core training algorithms and associated processes. Below, we describe the primary
functions included in this module.

A.3.1 Function pyrv_train()

The pyrv_train function (Algorithm 3) serves as the entry point for the training process.
It orchestrates the overall training flow, including initialization, data processing, recursive loss
computation, and optimization.

Algorithm 3: Pyramidal Recursive Training: pyrv_train()
Input: model (PyRvNN instance to be trained),
max_subword_depth (maximum depth for subword pyramid levels),
max_phrase_depth (maximum depth for phrase pyramid levels),
num_steps (number of training steps),
learning_rate (learning rate for the optimizer)
Output: trained model (PyRvNN instance after training)
Function pyrv_train(model, max_subword_depth, max_phrase_depth, num_steps,
learning_rate):

. . . ,data_gen, . . .← train_init()
while do_train do

input_data, . . .← next(data_gen) dataprep.generate_arrays_from_data() out put

loss← pyramidal_recursion(model, input_data, . . .)
optimizer(model, loss)

A.3.2 Function train_init()

The train_init function (Algorithm 4) initializes the training environment. This includes
setting up the optimizer and preparing the data generator. The function ensures that all compo-
nents are ready for training.

A.3.3 Function pyramidal_recursion()

The pyramidal_recursion function (Algorithm 5) implements the core of the Pyramidal
Recursive learning method. It processes input data through successive levels of the hierarchical
pyramid, computing loss and composing embeddings at each level. Depending on the level, it
prepares token pairs, subword pairs, or word/phrase pairs for encoding and regression.

129

A: Implementation

Algorithm 4: Training Initialization: train_init()
Input: model (PyRvNN instance to be trained),
optimizer (optimization algorithm instance),
learning_rate (learning rate for the optimizer)
Output: optimizer (initialized optimizer),
init_step (starting training step),
data_gen (data generator instance),
do_train (flag indicating whether training should continue)
Function train_init(model, optimizer, learning_rate):

. . .
data_gen← dataprep.generate_arrays_from_data(. . .)
return optimizer, init_step, data_gen, do_train

Algorithm 5: Pyramidal Recursion: pyramidal_recursion()
Input: model (PyRvNN instance),
input_data (initial input one-hot representations),
max_subword_depth (maximum depth of the subword pyramid),
max_phrase_depth (maximum depth of the phrase pyramid)
Output: total_loss (average loss computed over all levels of the pyramid)
Function pyramidal_recursion(model, input_data, max_subword_depth,
max_phrase_depth):

total_loss← 0
for each embedding level do

if below word level then
if at 0th level then

enc_pairs,reg_pairs← datamanip.token_pairs_prep(input_data)

else
enc_pairs,reg_pairs,word_lvl_lengths,word_embs,reached_words←
datamanip.subwordlvl_pairs_prep(embs, . . .)

if reached_words then
embs← word_embs

if at phrase level then
enc_pairs,reg_pairs← datamanip.phraselvl_pairs_prep(embs)

X← enc_pairs
y← concatenate(enc_pairs,reg_pairs)
lvl_loss,embs← loss(model,X,y)
total_loss← total_loss+ lvl_loss

total_loss← total_loss
subword_depth+phrase_depth

return total_loss

130

A: Implementation

A.3.4 Function loss()

The loss function (Algorithm 6) computes the combined loss for the model. It evaluates
autoencoding and autoregressive objectives for both one-hot and dense representations using
Binary Cross-Entropy and Huber loss, respectively. These losses are aggregated to guide the
model’s learning process.

Algorithm 6: Loss Calculation: loss()
Input: model (PyRvNN instance),
X (input pairs for encoding),
y (target pairs for autoencoding and autoregressive heads)
Output: loss (aggregated loss from autoencoding and autoregressive objectives)
Function loss(model, X, y):

ŷ← model.call(X)
lossonehot_enc←

BinaryCrossentropy(yonehot_enc_left,ŷonehot_enc_left)+BinaryCrossentropy(yonehot_enc_right,ŷonehot_enc_right)
2

lossonehot_reg←
BinaryCrossentropy(yonehot_reg_left,ŷonehot_reg_left)+BinaryCrossentropy(yonehot_reg_right,ŷonehot_reg_right)

2

lossdense_enc←
Huber(ydense_enc_left,ŷdense_enc_left)+Huber(ydense_enc_right,ŷdense_enc_right)

2

lossdense_reg←
Huber(ydense_reg_left,ŷdense_reg_left)+Huber(ydense_reg_right,ŷdense_reg_right)

2
loss← lossonehot_enc + lossonehot_reg + lossdense_enc + lossdense_reg
return loss

A.4 Module dataprep.py

The dataprep.py module is responsible for preparing and generating data arrays required
for training the Pyramidal Recursive Neural Network (PyRvNN) model. This module includes
functions for streaming input data, converting text into token-level one-hot encodings, and out-
putting the necessary data arrays for subsequent processing.

A.4.1 Function generate_arrays_from_data()

The generate_arrays_from_data function (Algorithm 7) generates arrays of data from
the input stream. It operates in a loop, processing paragraphs of text into token-level one-
hot encodings and preparing the data in a format suitable for training, outputting one encoded
paragraph each time next(data_gen) is called (in Algorithm 3).

A.4.2 Function text_to_onehots_by_words()

The text_to_onehots_by_words function (Algorithm 8) transforms text input into lists
of token-level one-hot encodings. It splits the text into words, maps the words to their token

131

A: Implementation

Algorithm 7: Data Generator: generate_arrays_from_data()
Input: init_index_pos (initial position index for the data stream)
Output: onehots_by_words (token-level one-hot encodings of a paragraph)
Function generate_arrays_from_data(init_index_pos):

while True do
paragraph, . . .← stream(. . .)
onehots_by_words← text_to_onehots_by_words(paragraph)
output onehots_by_words, . . .

IDs, and then converts these IDs into one-hot representations. The output is a list where each
word is represented by its respective subword-level one-hot encodings.

Algorithm 8: Text One-Hot Encoding: text_to_onehots_by_words()
Input: text (input text to be encoded as one-hot vectors)
Output: onehots_by_words (list of token-level one-hot encodings for each word in the

input text)
Function text_to_onehots_by_words(text):

words← text.split()
words_tokenIDs← _string_to_tokenIDs(words)
words_onehots← _tokenIDs_to_onehots(words_tokenIDs)
return onehots_by_words

A.5 Module datamanip.py

The datamanip.py module facilitates the preparation of input and output data pairs at vari-
ous levels of the pyramidal hierarchy in the PyRv method. This module includes functions for
organizing and pairing data at the token, subword, and phrase levels, preparing the inputs and
outputs required for both the autoencoding and autoregressive tasks.

A.5.1 Function token_pairs_prep()

The token_pairs_prep function (Algorithm 9) prepares the input and output pairs for
the zeroth (subword) level of the pyramid. It takes token-level one-hot representations and
generates:

• enc_pairs: Pairs of neighboring nodes used as inputs and autoencoding outputs.
• reg_pairs: Pairs of left and right neighboring nodes used as autoregressive outputs.

A.5.2 Function subwordlvl_pairs_prep()

The subwordlvl_pairs_prep function (Algorithm 10) prepares pairs for the subword
levels of the pyramid. It organizes subword embeddings into word-specific lists, enabling the

132

A: Implementation

Algorithm 9: Token Pairs Preparation: token_pairs_prep()
Input: input_data (token-level one-hot representations)
Output: enc_pairs (pairs of neighboring nodes for input and autoencoding output),
reg_pairs (pairs of left and right neighbors for autoregressive output)
Function token_pairs_prep(input_data):

enc_pairs← _make_pairs(input_data) under each word
reg_pairs← _make_neighbors(input_data) under each word
return enc_pairs, reg_pairs

recursive generation of:

• enc_pairs: Input and autoencoding output pairs at the subword level.
• reg_pairs: Autoregressive output pairs at the subword level.

If all subword embeddings are processed and word-level embeddings are reached, the function
returns the word-level embeddings and a flag indicating the transition to the word level.

Algorithm 10: Subword Pairs Preparation: subwordlvl_pairs_prep()
Input: embs (subword embeddings),
word_lvl_lengths (list of word lengths by subword tokens),
word_embs (word-level embeddings),
subword_depth (maximum subword depth in the pyramid)
Output: enc_pairs (input and autoencoding output pairs at the subword level),
reg_pairs (autoregressive output pairs at the subword level),
word_lvl_lengths (updated word lengths list),
word_embs (updated word-level embeddings if reached),
reached_words (flag indicating if recursion has reached the word level for every word)
Function subwordlvl_pairs_prep(embs, word_lvl_lengths, word_embs,
subword_depth):

for each word in token_lvl_lengths do
Organize embeddings in lists for each word

if there are some embeddings of subwords left then
enc_pairs← _make_pairs(subword_embs)
reg_pairs← _make_neighbors(subword_embs)
return enc_pairs, reg_pairs, word_lvl_lengths, word_embs, False

else
when recursion reached word level

return None,None,None,word_embs,True

A.5.3 Function phraselvl_pairs_prep()

The phraselvl_pairs_prep function (Algorithm 11) prepares pairs for the phrase levels
of the pyramid. Using word or phrase embeddings as inputs, it generates:

• enc_pairs: Input and autoencoding output pairs at the phrase level.

133

A: Implementation

• reg_pairs: Autoregressive output pairs at the phrase level.

Algorithm 11: Phrase Level Pairs Preparation: phraselvl_pairs_prep()
Input: embs (word or phrase embeddings)
Output: enc_pairs (input and autoencoding output pairs at the phrase level),
reg_pairs (autoregressive output pairs at the phrase level)
Function phraselvl_pairs_prep(embs):

enc_pairs← _make_pairs(embs)
reg_pairs← _make_neighbors(embs)
return enc_pairs, reg_pairs

134

Appendix B

B: Additional Results

This Appendix contains additional compositionality results. Section 5.2 covers that topic.

Figure B.1: UPOS task, weighted average: macro F1 score as a function of the Gaussian STD factor.

135

B: Additional Results

Figure B.2: UPOS task, weighted average: weighted F1 score as a function of the Gaussian STD factor.

136

B: Additional Results

Figure B.3: DEPREL task, weighted average: macro F1 score as a function of the Gaussian STD factor.

137

B: Additional Results

Figure B.4: DEPREL task, weighted average: weighted F1 score as a function of the Gaussian STD
factor.

138

B: Additional Results

Table B.1: DEPREL evaluation results (by class) using the fastText embedding method (single-word
embeddings).

Class Precision Recall F1 score Support

punct 1 1 1 3037
nmod 0.6 0.58 0.59 2437
case 0.96 0.98 0.97 2364
amod 0.79 0.93 0.85 2355
nsubj 0.53 0.66 0.59 1725
obl 0.48 0.57 0.52 1607
root 0.45 0.67 0.53 1136
conj 0.19 0.02 0.03 1134
obj 0.49 0.44 0.46 1072
aux 0.75 0.96 0.84 1037
cc 0.83 0.97 0.89 887
advmod 0.8 0.88 0.84 825
flat 0.54 0.69 0.61 689
mark 0.85 0.91 0.88 471
acl 0.44 0.08 0.14 452
cop 0.58 0.22 0.32 415
det 0.87 0.87 0.87 400
xcomp 0.61 0.7 0.65 350
expl 0.85 1 0.92 302
parataxis 0.63 0.38 0.47 300
ccomp 0.18 0.02 0.03 230
discourse 0.48 0.21 0.29 208
advcl 0.29 0.08 0.12 198
nummod:gov 0.72 0.9 0.8 187
appos 1 0.01 0.02 130
nummod 0.82 0.63 0.71 117
fixed 0.34 0.33 0.34 100
csubj 0 0 0 40
det:numgov 0.73 0.66 0.69 29
orphan 0 0 0 13
advmod:emph 0 0 0 5
flat:foreign 0 0 0 4
vocative 0 0 0 3
compound 0 0 0 1

macro avg 0.52 0.48 0.47
weighted avg 0.68 0.71 0.68

139

B: Additional Results

Table B.2: DEPREL evaluation results (by class) using the fastText embedding method (averaging em-
beddings of five words).

Class Precision Recall F1 score Support

punct 0.54 0.71 0.61 3037
nmod 0.42 0.35 0.39 2437
case 0.28 0.56 0.37 2364
amod 0.3 0.4 0.34 2355
nsubj 0.3 0.3 0.3 1725
obl 0.29 0.03 0.06 1607
root 0.26 0.17 0.21 1136
conj 0.27 0.38 0.32 1134
obj 0.26 0.12 0.16 1072
aux 0.35 0.34 0.35 1037
cc 0.22 0.25 0.24 887
advmod 0.29 0.24 0.26 825
flat 0.44 0.43 0.44 689
mark 0.33 0.27 0.3 471
acl 0.23 0.07 0.11 452
cop 0.22 0.14 0.17 415
det 0.25 0.13 0.17 400
xcomp 0.35 0.15 0.21 350
expl 0.26 0.35 0.3 302
parataxis 0.76 0.09 0.16 300
ccomp 0 0 0 230
discourse 0.67 0.03 0.06 208
advcl 0.14 0.01 0.01 198
nummod:gov 0.27 0.6 0.37 187
appos 0.2 0.02 0.04 130
nummod 0.24 0.13 0.17 117
fixed 0.31 0.24 0.27 100
csubj 0 0 0 40
det:numgov 0 0 0 29
orphan 0 0 0 13
advmod:emph 0 0 0 5
flat:foreign 0 0 0 4
vocative 0 0 0 3
compound 0 0 0 1

macro avg 0.25 0.19 0.19
weighted avg 0.34 0.34 0.31

140

B: Additional Results

Table B.3: DEPREL evaluation results (by class) using the PyRv+FT embedding method (composing
embeddings of five words).

Class Precision Recall F1 score Support

punct 1 1 1 3037
nmod 0.74 0.71 0.73 2437
case 0.98 0.97 0.97 2364
amod 0.81 0.82 0.82 2355
nsubj 0.7 0.7 0.7 1725
obl 0.59 0.63 0.61 1607
root 0.61 0.69 0.65 1136
conj 0.66 0.62 0.64 1134
obj 0.52 0.65 0.58 1072
aux 0.78 0.94 0.85 1037
cc 0.91 0.95 0.93 887
advmod 0.68 0.82 0.74 825
flat 0.77 0.69 0.73 689
mark 0.91 0.91 0.91 471
acl 0.6 0.47 0.53 452
cop 0.69 0.39 0.5 415
det 0.72 0.69 0.71 400
xcomp 0.67 0.59 0.63 350
expl 0.86 0.99 0.92 302
parataxis 0.83 0.56 0.67 300
ccomp 0.41 0.16 0.23 230
discourse 0.65 0.52 0.58 208
advcl 0.38 0.22 0.28 198
nummod:gov 0.82 0.76 0.79 187
appos 0.42 0.38 0.4 130
nummod 0.67 0.76 0.71 117
fixed 0.67 0.61 0.64 100
csubj 0 0 0 40
det:numgov 0.5 0.52 0.51 29
orphan 0 0 0 13
advmod:emph 0 0 0 5
flat:foreign 0 0 0 4
vocative 0 0 0 3
compound 0 0 0 1

macro avg 0.58 0.55 0.56
weighted avg 0.77 0.77 0.76

141

	Introduction
	Problem Statement
	Limitations of Current Text Embedding Techniques
	Novel Text Representation Method

	Objectives and Scope
	Hypotheses
	Contributions
	Scope of the Study

	Overview of Proposed Method
	Thesis Structure

	Literature Review
	Comparative Analysis
	Model Categorization
	Shallow Models
	Recurrent Models
	Recursive Models
	Convolutional Models
	Attention Models
	Analysis Conclusions

	Desirable Model Properties
	Representation Compositionality
	Hierarchical Representation
	Representation Decodability
	Self-supervised Learning

	Identified Gaps and Challenges

	Theoretical Background
	Neural Network Representations
	The Role of Representations in Machine Learning
	Representations in Text

	Autoencoders and Autoregressive Learning
	Autoencoders
	Autoregressive Learning
	Integration of Autoencoding and Autoregression

	Recursive Neural Networks
	Backpropagation Through Structure

	Pyramidal Recursive Learning
	Training Challenges and Solutions

	Methodology
	Pyramidal Recursive Learning Method
	Complexity

	Pyramidal Recursive Neural Network Architecture
	Input Representations
	Embedding Dimension

	Training Procedure
	Training Data
	Pyramidal Training
	Loss Computation
	Training Setup

	Evaluations
	Model Limitations and Constraints

	Experiments and Results
	Representation Decodability Property
	Results

	Representation Compositionality Property
	Embedding method
	Evaluation
	Summary and Conclusions

	Memorization Task
	Results

	Plagiarism Task
	Results

	Readability Task
	Results

	Discussion
	Contributions
	Hypotheses

	Conclusion
	Bibliography
	Abbreviations
	A: Implementation
	Module main.py
	Module modelarch.py
	Module trainalg.py
	Function pyrv_train()
	Function train_init()
	Function pyramidal_recursion()
	Function loss()

	Module dataprep.py
	Function generate_arrays_from_data()
	Function text_to_onehots_by_words()

	Module datamanip.py
	Function token_pairs_prep()
	Function subwordlvl_pairs_prep()
	Function phraselvl_pairs_prep()

	B: Additional Results

